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Christoph Gräßl⋆, Timo Zinßer⋆, and Heinrich Niemann

Lehrstuhl für Mustererkennung, Universität Erlangen-Nürnberg, Martensstraße 3,
91058 Erlangen, Germany

{graessl, zinsser}@informatik.uni-erlangen.de

Abstract. Data-driven object tracking is very important for many vi-
sion based applications, because it does not require any previous knowl-
edge about the object to be tracked. In the literature, template matching
techniques have successfully been used to solve this task. One promis-
ing descendant of these techniques is the hyperplane approach, which is
both fast and robust. Unfortunately, like other template matching algo-
rithms, it is inherently sensitive to illumination changes. In this paper,
we describe three methods that considerably improve the illumination
insensitivity of the hyperplane approach, while retaining the capability
of real-time tracking. Experiments conducted on real image sequences
prove the efficiency of our enhancements.

1 Introduction

In recent years, visual tracking has emerged as an important component of vision-
based systems. It is used in many different application areas like medical imaging
[1] and video surveillance [2]. The main purpose of visual tracking is to compute
the position of a target object in each image of an image sequence. Additionally,
it might be interesting to recover the orientation of the object.

The main problem of visual tracking is that the appearance of an object can
change dramatically in the 2-D image sequence. This is not only caused by object
motion in conjunction with projective geometry, but also by occlusions, highlight
effects and changes in illumination. One way to overcome these difficulties is to
use model-based tracking algorithms, which require a priori knowledge about
the objects. For example, the approach presented in [3] applies lightfield models
and a particle filter for estimating the pose of an object.

One shortcoming of model-based tracking approaches is that they cannot be
used when dealing with unrecognized or unknown objects. In this case, data-
driven tracking, for example with template matching, is the only viable alter-
native. The template matching algorithm proposed by Hager and Belhumeur in
[4] approximates the relation between variations in intensities and variations in
pose by computing the Jacobian matrix of the initial template. Recently, Jurie
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and Dhome [5] have improved the basin of convergence of Hager’s algorithm by
replacing the Jacobian approximation with a hyperplane approximation.

As both algorithms directly operate on image intensities, they are inherently
sensitive to changes in illumination. Belhumeur and Kriegman [6] have shown
that the image of an object can be reconstructed under arbitrary lighting con-
ditions if a small number of base images is available. Hager incorporated this
method into his algorithm [4], basically transforming it into a model-based al-
gorithm and thus losing the possibility of working with unknown objects.

In this paper, we present and compare three methods for reducing the illu-
mination sensitivity of Jurie’s hyperplane tracker without using prior knowledge
about the tracked objects. Our first method does not work on the original im-
ages, but on edge images created with an adapted Sobel filter. The other two
methods estimate linear illumination compensation parameters, either with a
least square minimization technique or by computing the mean and variance
of the template intensities. Especially the last two methods do not inhibit the
real-time capability of the original approach and vastly improve its illumination
insensitivity.

Our paper is structured as follows. In the next section, a short review of tem-
plate matching is given. We present three methods for reducing the illumination
sensitivity of the hyperplane tracker in Sect. 3. In the subsequent section, the
results of our experimental evaluation with real image sequences are detailed.
After a summary of our work, possible future extensions are discussed in Sect. 5.

2 Template Matching for Data-Driven Tracking

Template matching algorithms for data-driven tracking work on a sequence of
images, which we represent as vectors of gray-level intensities. Additionally, a
reference template must be specified in the first image. The reference template is
defined by vector r = (x1, x2, . . . , xN )T , which contains the 2-D coordinates of
the template points. The gray-level intensity of a point xi = (xi, yi)

T at time t is
given by f(x, t). Consequently, vector f (r, t) contains the intensities of template
r at time t.

The transformation of the reference template r at time t can be modeled
by rt = g (r, µ(t)), where vector µ(t) = (µ1(t), µ2(t), . . . , µn(t))

T
contains the

motion parameters. Examples of tracking with different motion parametrizations
are shown in Fig. 1. Template matching can now be described as computing
the motion parameters µ(t) that minimize the least-square intensity difference
between the reference template and the current template:

µ(t) = argmin
�

‖f (r, t0) − f (g (r, µ) , t)‖2 . (1)

Non-linear minimization in a high-dimensional parameter space involves ex-
tremely high computational cost and cannot be performed in real-time [7]. It is
more efficient to approximate µ by a linear system

µ̂(t + 1) = µ̂(t) + A(t + 1) (f (r, t0) − f (g (r, µ(t)) , t + 1)) (2)
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Fig. 1. Some examples of tracking with different motion parametrizations. The refer-
ence template was taken from the initial image. The templates are marked by white
rectangles.

as presented in [4, 5]. There are two approaches for computing matrix A(t) from
equation (2). Hager and Belhumeur [4] propose the use of a Taylor approxima-
tion. The hyperplane approach presented in [5] acquires matrix A by a least-
square estimation. In the latter approach, matrix A is independent from time t,
but has to be computed in a separate training step when the initial image and
the reference template are available. As the hyperplane approach has a superior
basin of convergence, we will use it throughout the rest of this paper.

3 Illumination Insensitive Template Matching

The template matching algorithm presented in the last section is inherently
sensitive to illumination changes, because it directly uses gray-level differences
of the templates to compute the motion parameters. These illumination changes
are a common problem in real images; they can be caused by automatic exposure
adjustments of the camera, changes of light source irradiance, appearance of
shadows or movement of the tracked objects [8].

We have investigated two different methods for countering the effects of illu-
mination changes. One possibility is to preprocess the captured images in such
a way that most of the adverse lighting effects are eliminated. In the next sub-
section, we will present such an approach based on edge images, which were
created by applying a modified Sobel filter. Another technique is to estimate
illumination compensation parameters for the current template, in order to ad-
just its gray-level values with respect to the reference template. Two algorithms
employing this approach are described below.
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Fig. 2. Two edge images computed with the adapted Sobel filter.

3.1 Edge Images

In this subsection, we present a method for increasing illumination insensitivity
by preprocessing the captured images. This approach has the advantage that
there is no need to change the internal structure of the tracking system. Instead,
only a preprocessing step has to be performed before passing the images to the
tracker.

As it is independent of image brightness, the Sobel edge detection filter is an
obvious choice for the preprocessing step. But using the Sobel filter also intro-
duces new problems. Firstly, image noise is amplified by edge detection filters
like the Sobel filter. Furthermore, if fast moving objects are temporarily blurred
in the captured image, their appearance in the edge image changes considerably.

In order to counteract the problems described above, we suggest to compute
the edge images according to

fedge = blur (abs (sobelx (blur(f))) + abs (sobely (blur(f)))) , (3)

where blur(·) is a 3 × 3 box filter operation, sobelx(·) and sobely(·) are 3 × 3
horizontal and vertical Sobel filter operations and abs(·) computes the absolute
values of the input image intensities. The inner blurring operation reduces the
noise in the captured image. After applying both Sobel filters, the absolute values
of the intensities are computed and the resulting edge images are combined. This
operation ensures that similar images are obtained even if the tracked object
rotates in the image plane. At last, the edge image is blurred in order to smooth
the edges, thus making the final image more suitable for the hyperplane tracker.
The input images of our adapted Sobel filter consist of 8 bit unsigned integer
values. After internally computing with larger data types, the final values are
again saturated to this range.

Figure 2 shows two images captured in varying illumination conditions. Al-
though the brightness of the original images is clearly differing, the computed
edge images look very similar. However, in areas where the intensities of the
original images are saturated, edges may appear weaker in the corresponding
edge image. This example clearly demonstrates that the presented approach can
compensate for changes of brightness, but not for changes of contrast.



timet t + 1

retrieve image
adjust template
(βt−1, γt−1)

estimate µ
compute
(βt, γt)

retrieve

image

Fig. 3. One iteration cycle for the illumination insensitive hyperplane tracker using
illumination compensation parameters

3.2 Intensity Difference Minimization

The influence of illumination changes on the gray-level values of an image is gen-
erally of non-linear nature. Nevertheless, previous work has shown that approx-
imating these changes by a linear model is sufficiently accurate for our purposes
[8]. Using the linear model

fnew(x) = βf(x) + γ ∀x ∈ r (4)

with illumination compensation parameters β and γ, we can represent variations
of contrast and brightness.

When corresponding points of the initial template f(r, t0) and the current
template f(g(r, µ(t)), t) are given, the illumination compensation parameters
are a solution to the least-squares minimization problem

(βt, γt) = argmin
(β,γ)

∑

x∈r

[ β f(g(x, µ(t)), t) + γ − f(x, t0)]
2

. (5)

For brevity, we replace g(x, µ(t)) with x̃(t). Differentiating equation (5) with
respect to the motion compensation parameters yields the linear system

[

∑

x∈r

(

f2(x̃(t), t) f(x̃(t), t)
f(x̃(t), t) 1

)

]

(

βt

γt

)

=
∑

x∈r

(

f(x, t0)f(x̃(t), t)
f(x, t0)

)

. (6)

When using equation (6) directly, the matrix on the left has to be computed
at every time step. To avoid this time consuming operation, we swap the reference
template with the current template and thus obtain the motion compensation
parameters β̃ and γ̃ for adapting the reference template to the current template.
Consequently, the matrix in equation (6) has to be computed only once. As we
still want to adapt the current template, we revert to the original illumination
compensation parameters β = 1/β̃ and γ = γ̃/β̃.

One iteration cycle for the illumination insensitive hyperplane tracker is
shown in Fig. 3. During the initialization, the illumination compensation pa-
rameters are set to βt0 = 1 and γt0 = 0.

3.3 Intensity Distribution Normalization

Another approach for illumination compensation is presented in [9]. All tem-
plates are normalized by subtracting the mean value and dividing by the stan-
dard deviation of their intensities:

fnorm(r) =
f (r) − m

σ
, m =

1

N

∑

x∈r

f(x), σ2 =
1

N

∑

x∈r

(f(x) − m)2 . (7)
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Fig. 4. The setup of the experiments is shown on the left. The camera takes images
from two different books, which are placed on a turntable and illuminated from the
right side. Three images for each book from different turntable positions are shown on
the right to demonstrate the correlation of turntable position and illumination.

In this approach, adapting the current template to the reference template can
also be written with linear illumination compensation parameters

βt =
σt0

σt

and γt =
σt0

σt

mt − mt0 . (8)

These parameters are applied exactly as in the previous subsection. In con-
trast to the intensity difference minimization approach, where the intensities of
corresponding points are analyzed, the intensity distribution normalization ap-
proach considers the distribution of intensities in the templates. Consequently,
we expect it to be more robust when the motion parameter estimation is slightly
inaccurate, as the distribution of intensities will be affected less than the indi-
vidual point intensities.

4 Experimental Results

The following experiments with real image sequences demonstrate that our pro-
posed methods significantly reduce the illumination sensitivity of Jurie’s hy-
perplane tracker. Our experimental setup is shown in Fig. 4. This setup is
used to generate K image sequences where the turntable moves from 0◦ to αk

(k = 1, 2, . . . , K) and back to 0◦. Turntable angle α directly influences the illu-
mination of the object. The values of αk range from −90◦ to 90◦ in steps of 5◦.
The image resolution is 640×480 pixels and the turntable speed is 20.8◦/sec. The
frame rate of the Sony DFW-VL500 firewire camera is 30 frames per second.

The initial position of the book was obtained manually and was used for the
reference template. The tracker used a general affine motion parametrization and
was initialized with N = 100 reference template points, which were selected at
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Fig. 5. The four graphs show the number of successfully tracked image sequences in
dependency of the turntable angle α. The used objects (book 1 and book 2) have been
presented in Fig. 4.

random. An image sequence is successfully tracked if the initial motion parameter
is approximately the same as the motion parameter in the last frame. With these
image sequences, we tested the traditional hyperplane approach (Sec. 2), the
hyperplane approach with the edge filter preprocessing step (Sec. 3.1) and both
illumination compensation methods (Sec. 3.2 and 3.3).

The results of the experiments, which are presented in Fig. 5, show that
all of our suggested methods significantly improve the tracker’s insensitivity to
illumination changes. Using intensity distribution normalization clearly leads to
the best results. This is what we expected, as small errors in the estimation of
the motion parameter have only a small impact on the intensity distribution of
the templates, and thus the illumination parameter estimation is very stable.
This is not the case for the intensity difference minimization, which generally
seems to be more unstable. The edge image method performs quite respectably,
but as it does not compensate for contrast changes, it cannot cope with extreme
illumination changes.

All presented methods are real-time capable on an Intel Pentium 4 proces-
sor system with 2.4 GHz and 1GB of memory. Motion estimation takes about
2.3msec per frame with the traditional hyperplane approach. This value in-
creases to 3.8msec per frame for both illumination compensation approaches.
With 10.4msec per frame, the edge image method is slowest.



5 Conclusion and Further Work

We have presented three approaches for reducing the illumination sensitivity of
Jurie’s hyperplane tracker. The first approach uses an adapted Sobel filter for
preprocessing and does not require further changes to the tracking algorithm.
The two remaining approaches estimate linear illumination compensation param-
eters for adjusting the templates to the reference template, either by considering
corresponding points or by equalizing the intensity distributions.

Experiments conducted with real image sequences prove the efficiency of the
proposed algorithms, as all of them clearly enhance the illumination insensitiv-
ity of the hyperplane tracker. Among the presented algorithms, the intensity
distribution normalization approach achieves the best results. Additionally, all
approaches retain the tracker’s real-time capability.

Our further work will concentrate on dealing with partial occlusions and
highlights. For this purpose, the use of an iteratively reweighted least-square
technique as shown in [4] seems to be very promising. We will also try to find a
more intelligent way for choosing the points in the template, as they are currently
selected at random. By doing so, we hope to reduce the number of points needed
for reliable tracking.
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