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Abstract

We present two new approaches to extending ex-
isting light fields with additional image data. In
this case a light field is initially constructed from an
image sequence taken by a hand-held camera, and
pose parameters of this camera obtained through
structure-from-motion approaches. To extend such
a light field, point correspondences are necessary
from one image in the original sequence to the new
images to estimate their relative poses. The two in-
troduced approaches assist in finding the original
image closest to the new image, and provide initial
motion estimates. A SIFT feature based method is
used to determine the closest image and an image-
space motion homography. The second approach
uses images rendered from the light field to esti-
mate the camera pose of the image to be added us-
ing adaptive random search or a particle filter.

1 Introduction

The light field was first introduced in [9] and simi-
larly in [3] as a means to render arbitrary views of
a previously recorded real scene without requiring
a geometric model of the scene. The various differ-
ent approaches to light field rendering nevertheless
range from purely image-based [9] to those apply-
ing at least local depth information for each input
image [3, 2].

A light field requires, besides the input im-
ages and the already mentioned depth information,
knowledge about the pose parameters of the record-
ing camera for each image. In many applications
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these parameters can be acquired by a mechanical
arm or gantry. A more flexible and inexpensive ap-
proach is the use of a hand-held camera and the
recording of continuous image sequences [7]. The
pose parameters are then estimated using structure-
from-motion algorithms such as factorization meth-
ods [15, 12] and non-linear optimization [6]. This
process was applied for all light field computations
throughout this contribution.

For this kind of camera parameter reconstruction
point feature correspondences between the images
of the sequences have to be calculated. However,
many commonly used feature tracking algorithms
[14, 18] assume that camera motion between two
consecutive images is quite low and that the search
range can thus be restricted considerably. The draw-
back of this assumption is that once the recording
of an image sequence has been completed it is dif-
ficult to track features in any new images or im-
age sequences which were taken later from a dif-
ferent view point and thus calculate the correspond-
ing camera pose parameters. For the light field this
means that once it has been reconstructed from one
image sequence, it is difficult to extend it e. g. to
cover a broader viewing range or to improve its
quality by adding more images.

Therefore, in order to allow this extension of a
light field with new images it is necessary to at least
find the most similar already known image to the
new one. Since the disparity between those two im-
ages may be too large for robust feature tracking, it
is desirable to additionally supply a good estimate
for the new feature positions.

In this contribution we present two methods
which are able to determine both the closest im-
age and a feature position estimate. The first one
is based on local features, namely David Lowe’s
SIFT features [10], which has been proven to be a
very efficient technique in a quantitative compari-
son of different local descriptors [11]. The most
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similar image is found by using a majority voting
technique, i. e. counting the number of best match-
ing SIFT features. Once the most similar image is
found, the SIFT features are used to estimate the
2-D homography by a least squares approach for
translating the pixels from the matched image to
the new image. Using this homography, the point
tracker is able to continue tracking on the new im-
age.

The second method uses the rendered images
from the light field constructed so far as feedback
for a parameter search. The camera parameters (po-
sition and orientation) are optimized such that the
image rendered from them is most similar to the
new image to be inserted. We use two optimiza-
tion methods: adaptive random search [16], a robust
global optimizer, and a particle filter [8] based ap-
proach. These methods can perform a global search,
or can use the image determined by the SIFT fea-
ture method above as a starting point. The resulting
camera parameters are then used as a starting point
for inserting new images into the light field.

The remainder of this contribution is structured
as follows. Section 2 gives a short introduction to
the methods used for camera motion estimation and
thus light field reconstruction in general. The re-
quirements for extending the light field with new
images are described as well. The image match-
ing algorithm and homography computation using
SIFT features is discussed in Sect. 3, and Sect. 4
concentrates on the probabilistic camera pose esti-
mation with particle filters. An experimental evalu-
ation of the algorithms follows in Sect. 5, the article
is concluded by a summary and an outlook to future
work.

2 Light Field Reconstruction

A light field in its basic form constitutes a collection
of light rays emitted from the scene surface. Each
input image contributes a set of light rays to this
collection, and a new image is rendered by interpo-
lating between the closest known light rays for each
pixel. In actual implementations [13, 2] this inter-
polation is often done on triangle patches instead of
individual pixels.

In order to reconstruct a light field from an image
sequence it is thus necessary to compute the origin
and direction of the light rays represented by the
pixels in each image. This is done by estimating
the pose and projection properties of the camera for

each image and an associated depth map. The pro-
cedure is explained in the following, along with the
requirements for extending an existing light field.

2.1 Camera Parameter Estimation

As mentioned before, the basis of many structure-
from-motion algorithms is the availability of point
correspondences for the different input images. In
our case, these are computed using an extension of
the Tomasi-Kanade algorithm [14] by Zinßer et al.
[18]. Since these tracking algorithms perform well
on continuous image sequences but poorly in case
of high image disparity, they form the main problem
for extending a light field with new images as it will
be explained in Sect. 2.2.

The camera parameter estimation is done in two
steps. In the first, the computation is done for
only a sub-sequencef s of all imagesf i, i. e. s =
ia, . . . , ib. A factorization method [15] is able to
estimate the relative camera pose parametersR̂s,
t̂s for a set of images from point features which are
visible in all images. For each featureqs,j in image
f s a corresponding 3-D point̂pj is returned as well.
In our case the method by Poelman and Kanade [12]
is used which assumes a paraperspective projection
model.

For a Euclidean reconstruction the projection of
a 3-D point into an imagef i is given by

qi,j = P ipj = Ki(R
T
i | − R

T
i ti)pj (1)

where Ki contains the intrinsic parameters for
camerai, focal length, pixel size ratio and center of
projection, andRi andti the pose parameters [4].
Since the factorization does not yieldK i, the intrin-
sic parameters are set to standard values which are
only close to reality and equal for all camera posi-

tions. The estimateŝP s = Ks(R̂
T

s | − R̂
T

s t̂s) and
p̂j from the factorization are now refined by mini-
mizing the back-projection error

ǫs =
∑

j

(qs,j − P̂ sp̂j)
2 (2)

for each imagef s by optimizing in turn the camera
pose parameters and the 3-D points. This method of
computing a Euclidean reconstruction by non-linear
optimization using the Levenberg-Marquardt algo-
rithm was similarly proposed by Hartley [4]. In our
case the reconstruction will be slightly skewed per-
spectively due to the inaccurateKs.
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Figure 1: Camera pose and 3-D point reconstruction
of the santasequence with207 images. Cameras
are depicted as pyramids with their bases facing in
viewing direction.

For the second processing step this method of es-
timating camera parameters by non-linear optimiza-
tion was extended in [6] to cover the rest of the im-
age sequence, too. For each remaining imagef r,
r = 1, . . . , ia − 1, ib + 1, . . . N the estimates in
equation 2 are initialized with the closest known
projection matrixP̂ r±1 and the 3-D points visible
in imagef r. New 3-D points are added by triangu-
lation as soon as they are visible in enough known
images. The result of the reconstruction of thesanta
sequence introduced in Sect. 5 is shown in Fig. 1.

In addition to the now known camera parameters,
a light field requires some depth knowledge for each
image, especially for sparse input data in case of a
hand-held camera. A simple and fast way to com-
pute these depth maps is to use the depth values of
the reconstructed 3-D points and interpolate the re-
maining pixels as a distance weighted sum of the
three closest known 3-D points.

2.2 Extending the Light Field

Extending an existing light field with the above
method, i. e. adding new images or whole se-
quences, poses one major difficulty: where to start
feature tracking. It is difficult to assure, and shall
not be required, that the new image is similar to
the last in the original image sequence. However,
we will assume that the new image is taken within,
or close to, the convex hull of the camera positions
of the original sequence. Therefore, the task is to
find the closest known image so that feature track-
ing may generate enough point correspondences for

estimating the camera parameters of the new image.
This information of the most similar image will

be supplied by the methods described in the fol-
lowing two sections. However they also supply ad-
ditional information which is helpful for tracking
as well as calibration. The SIFT feature matching
yields a 2-D homography which describes the trans-
formation from the closest to the new image. Adap-
tive random search and particle filter of Sect. 4 re-
turn a camera pose estimation which can be used to
project known 3-D points into the new image and
thus yield an estimate for feature tracking.

3 Matching with SIFT Features

Determining the most similar image to a new one
will be done in the following by a full compari-
son with all known images already in the light field.
For the matching of images, we propose to use lo-
cal features, namely the SIFT features introduced
by [10], which have been shown to be very efficient
in a quantitative comparison [11].

3.1 Acquisition of SIFT Features

The SIFT feature points are detected by applying
a scale selection mechanism based on differences
of Gaussian smoothed images. The scale-space is
built by convolving with a Gauss filter and down-
sampling after each octave, so that a pyramid-like
data structure is obtained. The difference of the
Gauss filtered images is computed by the difference
of neighboring scales. After that, feature points are
detected by searching for maxima with respect to
the eight bordering pixels. In a second step, all the
points which represent a maximum in scale-space
are selected, by comparing the closest pixel at the
next higher and next lower scale. In a third step,
pixels which lie on edges are also ruled out, because
such points are poorly determined.

In the next step, a significant SIFT feature vec-
tor c is calculated for every SIFT feature point.
Therefore, the orientation of a region of size 16x16
around the SIFT feature point has to be adjusted to
achieve invariance from rotation. In the scaled im-
age, the magnitude and orientation is calculated as
presented in [10] and used to create an orientation
histogram. 36 bins were used for this and each pixel
is weighted by its magnitude and by a Gaussian ker-
nel. The region which is used for calculating vector
c is rotated to the maximum of the orientation his-
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togram. The SIFT feature vector itself is formed by
using the orientation histograms. Therefore, the ori-
ented region is divided into 4x4 subregions, and for
every subregion an orientation histogram consisting
of eight bins is calculated. Thus the feature vector
has 128 elements altogether. For further details we
refer to [10].

3.2 Image Matching

In our work, we want to estimate which of the im-
ages of the first sequence is most similar to the first
imagef̄ (test image) of the second sequence. For
our purpose, a technique based on majority voting,
which is described below, is well suited.

For every imagef i, i = 1, 2, . . . , N in the
first sequence, a set of SIFT featuresC i =
{c1

i , c
2
i , . . . , c

Ni

i } is calculated. The valueNi de-
pends on the number of SIFT features which were
detected by the SIFT feature point detector in image
f i. Similarly, we computēC = {c̄1, c̄2, . . . , c̄N̄}
for the test imagēf . For counting the votes we use
an accumulator

an =

N̄∑

k=1

δ(n − argmin
i

min
j

d(cj

i , c̄
k)) (3)

whereδ is the Kronecker delta function,an is the
accumulator entry for imagefn and d(·, ·) is the
Euclidian distance of two SIFT features. The index
b of the best matching image can be retrieved from
the accumulator by

b = argmax
n

an. (4)

Thusf b is the image with the most matching SIFT
features with the SIFT features off̄ .

3.3 Homography Estimation

For the 3-D reconstruction, we use the feature point
tracker of [14] to solve the correspondence problem.
Those tracking feature points differ from the SIFT
feature points as their matching can be done in real-
time [18] and scale space stability is not needed.
But if one would try to match the tracking feature
points off b with the corresponding feature points
of f̄ using the feature point tracker directly, a great
number of tracking feature points could be lost in
case of large rotation, scale change or translation
of the image, since a feature point tracker assumes

H

H

H

Imagef b Imagef̄

Figure 2: Illustration of the translation of the
tracked feature points (marked as circles) using the
homography matrixH

only a small movement. To deal with these geomet-
ric transformations of the pixels off b to f̄ , we use
the SIFT features to estimate a homography [5] to
retrieve a close position of the tracked feature points
in imagef̄ as an initial guess. For this purpose, we
calculate a set of the coordinates of theNB best
matching SIFT features in imagef b andf̄

M = {(x1, x
′
1), (x2, x

′
2), . . . , (xNB

, x′
NB

)}

wherex = (x, y, 1)T . We assume that the transfor-
mation ofxi to x′

i is a perspective transformation

M 2 = HM 1 (5)

where matrixH ∈ IR3×3 is a homography matrix
and

M 1 = (x1, x2, . . . , xNB
)

M 2 = (x′
1, x

′
2, . . . , x

′
NB

).

As NB > 3, we use a least square estima-
tion, namely the pseudo-inverse [17], to solve this
overdetermined linear equation system of Equ. (5).

To estimate the positions of the tracked feature
points inf̄ , we useH to map the 2-D positions of
the tracked feature points fromf b to f̄ as illustrated
in Fig. 2.

4 Rendering feedback

So far, the camera parameter estimation has only
used the original camera images, which the light
field is based upon, for image matching. One of the
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purposes of light fields, however, is to render photo-
realistic images of the acquired scene from arbitrary
view points.

For any camera parametersv, the light field can
be used to generate the imagef

v
corresponding to

those parameters.v contains the extrinsic camera
parameters, i. e. position and orientation of a cam-
era. We can use this generated image to search for
the camera parameters̄v of the new imagēf by
searching for thev such thatf

v
is closestto f̄ . We

call this approach arendering feedbackapproach,
since we use images from the light field itself for
the purpose of extending it.

Using a distance metric to compare images, the
parameter search becomes a global minimization
problem. For this work, we used a sum-of-squared-
differences (SSD) distance metric. SSD is very ef-
ficient and can be used with multi-channel (color)
images. SSD’s main drawback is its lighting de-
pendence, however to extend a light field the new
images must necessarily be recorded with the same
lighting conditions.

Several optimization algorithms can be applied
to this problem. We have adopted two (related)
approaches: one using adaptive random search
(ARS) [16], and one using a particle filter (PF),
specifically the Condensation algorithm [8].

Both approaches maintain a current setV t of
camera parameterhypothesesvt,i, i = 1, . . . , |V t|,
wheret is an iteration index and|V t| the fixed size
of the set. Each hypothesisvt,i also has a scalar rat-
ing νt,i, derived from the image comparison. The
initial set V0 can be derived from the camera pa-
rameters of the first sequence for a global search,
or clustered around an initial estimate. Both ap-
proaches iterate over this set several times to fine-
tune it, by generating new hypothesesvt+1,i and
ratingsνt+1,i from the current ones. The methods
differ in how the new hypothesis set is generated.

For the ARS, the rating is unchanged from the
SSD distance measure.V t+1 is generated fromV t

by discarding the worse rated half of allvt,i, and re-
placing them with diffused copies of the better rated
half. The diffusion is an additive Gaussian noise,
the standard deviation of which is derived from the
spread of the original camera parameters. This stan-
dard deviation is reduced on each iteration to de-
crease the search area.

The PF has been used in conjunction with light
fields for a model-based object tracking implemen-
tation [19]. Unlike the adaptive random search, the

PF algorithm uses a probabilistic framework.
The rated hypothesis set represents the probabil-

ity density function (pdf) of the camera position,
p(vt|f̄ ), given the target image. Such rated hy-
potheses are also calledparticles. With Bayes’ for-
mula, we get

p(vt|f̄ ) =
1

c
p(f̄ |vt)p(vt) (6)

with c a normalizing constant. Thus, we seek infor-
mation about the camera parametersvt correspond-
ing to the new imagēf . As with the ARS, the ini-
tial a priori densityp(v0), represented byV0 can be
uniformly distributed over the search space or clus-
tered around an initial estimatev0.

The a priori densityp(vt) is derived from the
previous a posteriori densityp(vt−1|f̄ ) through

p(vt) =

∫
p(vt|vt−1)p(vt−1|f̄ ) dvt−1 . (7)

In typical particle filter usage, this models the noisy
state transition over time. Since the state is not ex-
pected to change, this is merely a diffusing process,
as with the ARS.

The likelihood p(f̄ |vt) is derived from the im-
age comparison by constructing a Gibbs distribu-
tion [1]:

p(f̄ |vt) =
1

z
exp

(
−λE(f̄ |vt)

)
(8)

with z a normalizing constant. For each hypothe-
sis vt,i, the rating isνt,i = p(f̄ |vt,i). The term
E(f̄ |vt) is an error energy, comparing the target
image with the image corresponding to the hypoth-
esisvt. The better the hypothesis image matches
the target, the lower the energy should be. Our
image comparison metric, the SSD over the image
space, has such a property, and is used unchanged
for E(f̄ |vt). However, this may result in very sim-
ilar energies for all compared images, which erodes
the particle filter’s effectiveness. Multiplying the
SSD by a scalar valueλ > 1 requires a hypothe-
sis to be much closer for a good rating.

Using this likelihood definition as a hypothesis
rating, the PF solves the combination of equations
(6) through (8) using Monte Carlo integration. A
new setV t+1 is derived fromV t by sampling from
the latter, using the ratings as a sampling probabil-
ity, and then re-ratingV t+1. This new set represents
the pdf whose main mode is the hypothesisv̄ with
the lowest image discrepancy from̄f .
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office santa candy
feat. dist (noH ) 57.8 52.0 121.0
feat. dist (H ) 5.85 25.7 6.27
% tracked (noH ) 38.7% 64.4% 35.3%
% tracked (H ) 67.2% 70.1% 68.6%

Table 1: Tracking accuracy of SIFT features in pix-
els and percentage of features tracked without (no
H ) and with (H ) using homography matrix for pre-
diction

office santa candy
ARS rot.α 0.800◦ 10.891◦ 1.035◦

ARS rot.β 0.634◦ 4.854◦ 0.556◦

ARS rot.γ 0.595◦ 9.291◦ 0.699◦

ARS trans. 105.9% 799.9% 152.2%
PF rot.α 2.579◦ 4.717◦ 9.688◦

PF rot.β 1.600◦ 7.626◦ 6.281◦

PF rot.γ 0.986◦ 10.082◦ 5.284◦

PF trans. 299.2% 712.4% 1287.7%

Table 2: Correctness of estimation of closest image
for adaptive random search and particle filter

There are two caveats with this method. If the op-
timization starts from a single initial state estimate,
the standard deviation of the particle diffusion must
be chosen large enough so that the particles search
beyond any local minima. Secondly, the results may
by biased due to the rendering of light field images.
Due to the rendering methods, an image rendered
from a light field will usually display moderate to
strong local distortion. This naturally causes the
minimum to diverge slightly from the true camera
parameters of̄f .

5 Experiments

The methods introduced before were tested on three
different image sequences from a hand-held cam-
era, office (109 images),santa (207 images) and
candy (113 images). For each of these scenes, a
second sequence was recorded starting at an arbi-
trary camera position within, or close to, the convex
hull of the camera positions of the first sequence.

Two sets of experiments were performed to test
the SIFT feature image matching1. For the first set,
only the first image sequence was used. One of the

1For detection and calculation of the SIFT features the soft-
ware of D. Lowe was used, which can be downloaded at
http://www.cs.ubc.ca/˜lowe/keypoints/.

images was removed from the sequence and then
given to the search algorithm to perform a search for
the nearest image. This was done for 10 images for
each of the three scenes. The SIFT feature method
found an image neighboring the missing image in
the sequence in 100% of the experiments.

The second set of experiments dealt with attach-
ing a second sequence to the original sequence.
Again, 10 images were used, this time the first 10
from the second sequence. The SIFT feature neigh-
bor detection then calculated the index of the im-
age from the first sequence nearest to the target im-
age. The homographyH was then determined as
in Sect. 3.3. The reconstruction of the camera poses
of the first sequence was then extended by the target
image. The nearest neighboring image was used as
a starting point for feature tracking.

The extension was evaluated by measuring the
average feature distance from the expected posi-
tion, and the fraction of successfully matched track-
ing features with and without the homography. Ta-
ble 1 shows the results. It is obvious that using the
homography matrix improves the number of fea-
tures tracked and the feature distance, in some cases
dramatically. The homography allows the feature
search to start much closer to the actual location.

For thesantascene, on a Pentium IV 2.4 GHz
processor, a typical neighbor detection took about
120 seconds. Calculating the homographyH took
an additional 4 seconds.

To test the rendering feedback, two sets of exper-
iments were again performed, similar to the SIFT
feature tests. The first set again deals with finding
the parameters of missing images, using the same
setup as above for a global search. The result of the
search, i. e. the proposed camera parameters of the
removed image, were then compared to the original,
ground-truth camera parameters from the image se-
quence including the missing image, calibrated as
in Sect. 2.1. This was done for 10 images for each
scene for both optimization methods. Both methods
used the same number of particles and iterations.

Table 2 shows the average rotational and trans-
lational error. The rotational error is given as car-
dan angles in absolute degrees. Since the light
fields use arbitrary coordinate units, the transla-
tional error for removed imagef i is calculated as
|̄t− ti|/|ti+1− ti|, wherēt is the found translation
andti the calibrated translation of imagef i. Thus,
the translational error is given as a percentage of the
average camera distance around the removed image.
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scene office santa candy
algorithm ARS PF ARS PF ARS PF
feature dist (all) 14.0 48.9 22.5 23.4 35.9 57.8
feature dist (init) 13.3 15.1 35.2 32.0 28.1 64.2
% tracked (all) 68.8% 68.1% 62.6% 62.3% 63.4% 54.8%
% tracked (init) 69.0% 68.7% 61.6% 60.9% 64.9% 55.9%

Table 3: Tracking accuracy of adaptive random search and particle filter in pixels and percentage of features
tracked for a full search (all) or initialized with the closest image (init)

As can be seen, the ARS method outperforms the
PF approach in two out of three sequences. The
translational distances are generally within a few
neighboring images, and the rotational ones within
a few degrees. Though this error is larger than if
the closest image as per the SIFT method had been
used, the results are quite usable for a global search,
especially since the rendered images are highly de-
pendant on accurate depth maps, which were not
always available. The number of particles in the
santascene, equaling the number of camera images,
is larger than in the other scenes. Since both meth-
ods use the same image comparison, it is expected
that with more iterations or particles, the PF method
will match the ARS. However, for a limited number
of iterations, the ARS converges faster.

For thesantascene, on a Pentium IV 2.66 GHz
processor, 20 iterations at 207 particles take about
20 minutes for ARS, and 35 minutes for PF, mostly
due to the time-intensive rendering of the images.

The second set of feedback experiments again
dealt with attaching a second sequence. Initializing
of the search was tested both from all first sequence
camera parameters, and from the closest camera as
per the SIFT neighbor search. The resulting pro-
posed camera parameters were then passed to the
light field extension process by using the projec-
tions of every known 3-D point as an estimate for
the feature positions similar to the homographyH .

The results are listed in table 3. The slower con-
vergence of PF in theofficeandcandyscenes is re-
flected in the larger feature distance. However, ini-
tialization from a closest image is often beneficial
for all approaches. The percentage of tracked fea-
tures is comparable for all methods and situations.

Figure 3 finally shows the result of adding the
secondsantasequence to the first one. Image (a)
shows the reconstruction already seen in Fig. 1 but
augmented by the camera positions of the additional
sequence. Images (b) and (c) show two images ren-
dered from the resulting light field without (b) and

with (c) the additional images, demonstrating the
increased viewing range of the extended light field
as well as a reduction in distortions.

6 Conclusion

We have presented two enhancing methods for solv-
ing the problem of accurately adding image data to
a light field from an image sequence taken with a
hand-held camera. The first method based on SIFT
features significantly improves the point tracking
from the original image sequence to the additional
images. The second method obtains an estimate for
the camera pose of a new image by using images
rendered from the light field as state hypotheses in
a parameter search.

The experiments have shown that using one or
both methods successively reliably solves the prob-
lem of extending a light field. Nevertheless, both
methods may yet be improved, the SIFT feature ap-
proach e. g. by taking into account clusters of votes
in neighboring images, and the pose estimation will
benefit from any improvement in rendering quality.
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