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Abstract. A common approach to 3-D reconstruction from image se-
quences is to track point features through the images, followed by an es-
timation of camera parameters and scene geometry. For long sequences,
the latter is done by applying a factorization method followed by an
image-by-image calibration. In this contribution we propose to integrate
the tracking and calibration steps and to feed back already known cam-
era parameters to both tracking and calibration. For loop-like camera
motion, reconstruction can thus be optimized by using loop-closing al-
gorithms known from robot navigation.

1 Introduction

Reconstructing 3-D scene geometry and camera parameters from a sequence of
images is a common problem in many computer vision applications. One of these
applications, for which the approach described in the following was developed,
is the computation of light fields [5]. The light field is an image-based scene
model where a set of original images is used to render new views of a scene from
arbitrary camera positions. Beside image data and geometry information light
fields require very accurately determined camera parameters for good rendering
results.

If no information is available about the camera pose and internal parame-
ters they are estimated by so-called structure-from-motion approaches [7]. Using
feature detection and tracking algorithms point correspondences are established
between the images of a sequence. These are used by a factorization algorithm
to simultaneously determine the scene geometry (structure) and camera poses
(motion) of multiple images. Usually there are not enough point correspondences
to process the whole image sequence at once using one factorization, therefore
the camera parameters of the rest of the sequence are computed image by image
using camera calibration methods. This approach is described in detail in [3].

The main problem arising during this extension process is that, though errors
may be small from one image to the next, they accumulate over a large number of
images leading to inconsistencies in the geometry reconstruction. In the following
we will consider the case that a hand-held camera is moved in loops around a
scene, e. g. to view an object from every direction or to get a dense sampling. The
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Initialize frame number: i := 0
Track point features to frame i and detect new ones
i := i + 1

UNTIL min. number of features visible in all frames reached or i = N − 1
Apply factorization method to first i frames
WHILE i < N

Track point features to frame i and detect new ones
Triangulate 3-D points and calibrate frame i

i := i + 1
Apply bundle adjustment to all frames and 3-D points

Fig. 1. Linear tracking and calibration over N images in two steps: factorization of
initial subsequence and calibration of subsequent images

approach we will introduce was inspired by solutions in the field of simultaneous
localization and mapping (SLAM) for robot navigation. Here, the goal is to
generate a globally consistent map of the surroundings of a robot [6], while
the data from the robot’s sensors, e. g. odometry and a camera, are unreliable.
Consistency of the map can be established when the robot returns to a previous
position and recognizes landmarks it has seen before. The accumulated error
can then be determined and the rest of the map corrected accordingly. For the
case of 3-D reconstruction we will now use the occurrence of a loop in camera
movement to update the pose of all previous cameras in the loop. The error
introduced by this process is reduced by bundle adjustment.

The idea of using topology information to improve reconstruction was imple-
mented before in [4], where a zigzag motion of the camera was utilized to track a
feature in an increased number of images. In [1] the accumulated reconstruction
error of a turntable image sequence is distributed to all camera position esti-
mates by aligning several sub-sequences. A similar distribution of errors is done
in [9] for image mosaics, although in this case the camera motion is constrained
to rotations only.

A description of the linear, integrated structure-from-motion approach of
tracking, factorization and frame-wise extension will be given in Section 2. The
closing of loops by information feedback and optimization is the topic of Section
3, and its experimental evaluation is described in Section 4. A summary and
outlook to the future are given in the conclusion.

2 Linear Calibration Process

The usual processing chain for a 3-D reconstruction of a scene is to first gener-
ate the required point correspondences for all images followed by the respective
algorithms for structure-from-motion. In the work at hand we want to demon-
strate the usefulness of feeding back information from the calibration step to
the tracking and subsequent calibration. Therefore, tracking and calibration are
first integrated into a linear processing chain as shown in Figure 1.

First, feature tracking is done until the number of tracked points reaches a
lower bound and a factorization is performed for the images so far. In the second



loop the features are tracked to the subsequent images and a camera calibration
is applied for each. Thus the camera movement and 3-D points are recovered
image by image. Last, the reconstruction is optimized by bundle adjustment on
all camera positions and points.

The individual steps of this linear processing chain will be described in more
detail in the following, whereas the extension to an iterative process, including
information feedback, will be introduced in Section 3.

2.1 Feature Detection and Tracking

In order to get accurate point correspondences over a large number of images
feature detection and tracking are performed using the gradient-based algorithm
by Tomasi and Kanade [11] and the extension by Shi [8]. In the latter robustness
is increased by considering affine transformations for each feature window.

This procedure has been further augmented by a hierarchical approach which
computes a Gaussian resolution pyramid for each image, thus increasing the
maximum disparity allowed between two images. A final improvement incorpo-
rates illumination compensation which solves for many problems occurring in
environments which are not particularly lighted [14].

2.2 Factorization and Calibration Extension

For the images in the first block of Figure 1 structure and motion in the sequence
are recovered using a factorization method assuming weak-perspective projec-
tion [7]. It yields the camera pose parameters for a set of images and the 3-D
position of each feature visible in every image. In order to gain a perspective re-
construction of the camera poses perspective projection matrices are constructed
from the result of the preceding factorization. Since the intrinsic parameters are
unknown the principal point is assumed to be in the image center. For the fo-
cal length a rough approximation of the correct one is chosen as described in
[3]. Camera parameters and 3-D points are then optimized using the Levenberg-
Marquardt algorithm minimizing the back-projection error. Intrinsic parameters
are assumed to be constant which results in a small but acceptable error due to
the wrongly estimated focal length.

Once this initial reconstruction of the first subsequence is available, it can
be used as a calibration pattern for calibrating the subsequent images. Features
which are visible in the next image to be calibrated but whose 3-D positions are
not yet available are triangulated using their projections in the already calibrated
images. With these correspondences the camera position can be estimated using
common calibration algorithms [12], and the result is optimized again by mini-
mizing the back-projection error. In fact this optimization is accurate enough so
that for small camera movements it can be initialized with the position of the
last camera and the calibration step can be omitted entirely.

2.3 Bundle Adjustment

The optimization of the camera parameters and 3-D points in the steps before
was always done for one camera after another and in turn with the point posi-
tions. In contrast to that the idea of bundle adjustment is to optimize all these
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Fig. 2. Example reconstruction of a camera path around an object. Correct camera
positions are denoted by dotted triangles, erroneous ones by solid triangles.

parameters at once to reduce the back-projection error globally. This straight-
forward approach, as used in [2] for scene reconstruction, has the disadvantage
of a very large parameter space to be optimized. Therefore the less complex
interleaved bundle adjustment [10] is used in the following.

Bundle adjustment is usually applied to an image sequence as a whole. For
long sequences with more than 100 images it is very time consuming, especially
if it is repeated every m images as explained later in Section 3.3. Therefore
the method was adapted to support the optimization of only a few cameras at
a time. The camera positions in such a subsequence are optimized jointly but
without considering the rest of the sequence, while the 3-D points are optimized
considering all cameras. Thus, back-projection error is only slightly increased for
cameras outside the subsequence, while it is improved for those inside.

3 Feedback Loop

The main problem of the linear calibration process described in Section 2 is that
small errors from one frame to the next accumulate over time and may thus lead
to serious displacements of the camera positions. This is demonstrated in Figure
2, where a camera moves in a circle around an object taking 10 images in the
process. The correct camera positions are equally spaced around the object, but
an error of only about four degrees from each camera to the next adds up to
more than 35 degrees. In order to get a correct reconstruction the circle must
be closed again by removing this inconsistency. This situation is equivalent to a
robot moving in a loop through some complex environment, and the approach
introduced in the following is used similarly for mapping the robot’s environment.

3.1 Closing Loops

Although in case of a hand-held camera it may be moved back to any earlier
position, we assume here that N camera positions form a loop and that camera 0
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Fig. 3. (a) Linear, erroneous reconstruction. (b) Loop closed without considering ro-
tation. (c) Loop closed considering rotation. (d) Final, optimized reconstruction.

follows again on camera N −1. In contrast to the linear calibration process used
before features are now tracked from image N −1 to image 0, thus establishing a
relationship between the two images. By applying the extension step of Section
2.2 the displacement between the last and the first camera position, ∆tN−1,
is calculated with a much higher accuracy than before when the accumulated
error was included. Going back to the image of a robot this is the equivalent of
recognizing a formerly seen landmark.

Using this new information the task of closing the loop is again formulated
as an optimization process. For now, only the translation vector of each camera,
tn, is considered. The displacement vector between two cameras is denoted by
∆tn = ∆t̃n = tn+1 − tn for 0 ≤ n < N −1. Additionally, ∆t̃N−1 constitutes the
current displacement vector between last and first camera while ∆tN−1 is the
corresponding target displacement calculated above. Thus, for 0 ≤ n < N the
∆tn form the desired set of displacements while the ∆t̃n are the displacements
to be optimized. The residual vector is defined as

ǫ =
(

(∆t0 − ∆t̃0)
T , (∆t1 − ∆t̃1)

T , . . . , (∆tn − ∆t̃n)T
)T

(1)

and using the Levenberg-Marquardt algorithm the camera positions tn, n > 0
are optimized by minimizing the residual ǫT ǫ. The first camera position t0 is
kept unchanged.

The result of an erroneous, linear reconstruction of an example sequence is
shown in Figure 3(a). Here, an object was placed on a turntable and rotated
in 40 steps with one image taken for each. Applying the optimization above for
closing this circle yields the reconstruction of Figure 3(b), which is obviously not
satisfactory. The rotations between the displacement vectors ∆tn do not sum
up to a full circle, therefore the optimization does not yield a circle either.

The solution is to incorporate the missing rotation to a full circle into the
computation of the residual vector. This rotation is calculated as the rotation
difference between the last and the first camera pose, ∆R = R0R

T

N−1. Lacking
any other knowledge we assume that the n

N
th part of this rotation, ∆Rn, is

missing in each displacement vector. ∆Rn is computed using spherical linear
interpolation [13] on a quaternion representation of ∆R. Thus the new displace-
ment vectors are computed as

∆t̂n = ∆RnRn(tn+1 − tn). (2)



Using these new target displacement vectors ∆t̂n the result improves to that
of Figure 3(c). The new camera positions were also rotated by ∆Rn so that they
now face in approximately the correct direction.

Usually an image sequence does not consist of exactly one revolution around
an object. More circular camera movements may follow the first one, and in such
cases it is not desired to change the camera positions in a loop already closed
before. From there on, the position of a camera once adjusted is kept untouched,
and the algorithm above is only applied to later cameras.

3.2 Optimizing Reconstruction

Changing the camera positions renders the 3-D point positions invalid, as seen
in Figures 3(b) and 3(c), and they have to be recalculated. This is done by again
minimizing the back-projection error during an optimization of the 3-D points.

Finally the result is again optimized globally using bundle adjustment as
described in Section 2.3. The intrinsic parameters are assumed to be correct and
bundle adjustment is only applied for the extrinsic parameters. The final result
of such an optimization is shown in Figure 3(d). If only some cameras of a loop
were adjusted in the closing step before, only those are optimized now, too.

3.3 Finding Loops

In a common application such as scene reconstruction from the images of a hand-
held camera it is not known when a camera loop has been completed and the
closing algorithm should be applied. The example of Figure 3 of an object on
a turntable thus constitutes a special case since the end of the circle is known
beforehand. For the general case a simple comparison scheme is used. A camera
position is a neighbour of the current camera if its distance is smaller than k
times the average distance between two consecutive camera positions and is not
one of the m last positions. k and m are user-defined values. In order to assure
that the corresponding images show approximately the same part of the scene a
maximum viewing direction difference can be defined additionally.

An unsolved problem using this method is that large displacements, as in the
example above, are not detected, while the closing algorithm makes the more
sense the larger the accumulated error. This contradiction will be exemplified in
the experiments in Section 4.

4 Experiments

Measuring the accuracy of a structure-from-motion reconstruction is a difficult
problem especially for real scenes. The back-projection error is often used as
a measure, but it depends highly on the quality of feature points, and a low
back-projection error may still not give a satisfactory result.

Given ground-truth data for the camera positions a direct comparison to
the reconstruction is possible and more meaningful. Therefore, two example se-
quences were chosen of an object being placed on a turntable and with a camera
mounted on a robot arm above the table. Sequence 1 was already shown in Fig-
ure 3. It consists of 40 images of a coke can, taken during one revolution of the



(a) (b) (c)

Fig. 4. Reconstruction of the Santa Claus image sequence: (a) linear reconstruction,
(b) only bundle adjustment on loops, (c) loops closed and bundle adjustment.

back-projection error [pixel] position difference
linear rec only bundle close+bundle linear rec only bundle close+bundle

Sequence 1 1.28 1.75 2.06 11.7 11.5 5.18
Sequence 2 1.15 2.96 3.61 13.5 7.49 8.34

Table 1. Back-projection errors and camera position differences for the two example
image sequences

turntable. Sequence 2 was taken from a Santa Claus figure with five revolutions
of the turntable and 40 images each, where the robot arm was moved upward on
a circle by 3 degrees after each revolution. The result of only a linear calibration
is shown in Figure 4(a). For the improved calibration loops were detected auto-
matically every tenth image after reconstruction of the first revolution, yielding
the much improved results of Figures 4(b) and 4(c).

For comparison, the ideal camera positions were calculated from the turntable
and robot arm positions. The reconstruction differs from the ideal one by a
rotation, translation and scale factor. Using axis-angle notation for the rotation
the 7 parameters of this transformation are estimated using (again) Levenberg-
Marquardt to optimally register the two reconstructions with each other. The
error value for the camera positions is calculated as the average distance of two
corresponding cameras.

As mentioned before in Section 3.3 the closing of loops makes the more sense
the larger the accumulated error. This issue is reflected in the experimental re-
sults of Table 1. Both the average back-projection errors and camera position
differences are given for the reconstruction using only bundle adjustment on
identified loops and for the whole process of closing loops of Section 3.1. The
linear reconstruction of sequence 1 has a large accumulated error therefore clos-
ing loops has a great effect on the position difference while just applying bundle
adjustment is insufficient to reduce this error. For sequence 2 on the other hand
the accumulated error is rather low (the gap visible in Figure 4(b)) and thus,
although this gap is closed for the reconstruction with closing in Figure 4(c), the
camera position difference is still lower without the closing step. The inaccura-
cies introduced by closing, represented by the increased back-projection error in
both sequences, were not compensated sufficiently by bundle adjustment.



5 Conclusion

In this contribution we proposed a method for creating a globally consistent
scene reconstruction from an image sequence of a hand-held camera. Loops in
the movement of the camera are detected and the accumulated error due to the
linear calibration process is compensated by closing this loop. This approach
is used similarly in robot navigation for simultaneous localization and mapping
(SLAM). The results of each loop are optimized by bundle adjustment.

Since the closing introduces some error on each camera position it works
well for the compensation of large errors, but for small displacements using only
bundle adjustment may yield better results. Thus the main issues for future
work are the identification of loops despite large errors and the reduction of
errors introduced during the closing process.
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