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Abstract In this paper, we compare and evaluate five contemporary, data-driven,
real-time 2D object tracking methods: the region tracker by Hager et al., the Hy-
perplane tracker, the CONDENSATION tracker, and the Mean Shift and Trust
Region trackers. The first two are classical template based methods, while the
latter three are from the more recently proposed class of histogram based track-
ers. All trackers are evaluated for the task of pure translation tracking, as well as
tracking translation plus scaling. For the evaluation, we use a publically available,
labeled data set consisiting of surveillance videos of humans in public spaces.
This data set demonstrates occlusions, changes in object appearance, and scaling.

From W. Kropatsch et al., Pattern Recognition, 27th DAGM Symposium, Springer, 2005, (pp. 269–276).

1 Introduction

Data driven real-time 2D object tracking is a preliminary for many different computer
vision tasks, like face and gesture recognition, surveillance tasks, or action recogni-
tion. Recently, two promissing classes of 2D data driven tracking methods have been
proposed: template, or region based, tracking methods and histogram based methods.
The idea of template based tracking is to track a moving object by defining a region of
pixels belonging to that object and, using local optimization methods, to estimate the
transformation parameters of that region between two consecutive images. In histogram
based methods, the idea is to represent an object by a distinctive histogram, for exam-
ple a color histogram. Tracking is then performed by searching for a similar region in
the image whose histogram best matches the object histogram from the first image. In
this paper, we present a comparative evaluation of five different object trackers, two re-
gion based [1, 2] and three histogram based approaches [3–5]. We test the performance
of each tracker both for pure translation and for translation with scaling. Due to the
rotational invariance of the histogram based methods, further motion models, such as
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Figure 1. Example of template matching: The left image is the reference image from which the
reference template was extracted. The region points are marked by crosses. In the other two im-
ages, the reference region has been transformed (center: translation, right: translation and scaling)
to match with the reference template. The reference region is marked by the dashed rectangle.

rotation or general affine motion, are not considered. In the evaluation, we focus espe-
cially on natural scenes with changing illuminations and partial occlusions based on a
publicly available data set [6].

The paper is structured as follows: in Section 2, we give a short introduction to the
mathematics of both tracking principles. Section 3 deals with the test set and evaluation
criteria that we use for our comparative study. The main contribution consists of the
evaluation of the different tracking algorithms in Section 4. The paper ends with a short
conclusion and discussion of the results.

2 Data Driven 2D Object Tracking

In the following two sections, we summarize two different classes of data driven ob-
ject tracking in the image plane: template matching methods and histogram matching
methods.

2.1 Template Matching

One type of algorithm for data driven object tracking is based on template-matching.
During an initialization step, the intensity values are extracted from image points be-
longing to the object. These points form the reference region r = (x1, x2, . . . , xN )T ,
where xi = (xi, yi)

T is a 2D point. The gray-level intensity of a point x at time t is
given by f(x, t). Consequently, the vector f(r, t) contains the intensities of the entire
region r at time t and is called a template. The template at the starting time t0 is denoted
as the reference template. Template matching can now be described as computing the
motion parameters µ(t) that minimize the least-square intensity difference between the
reference template and the current template:

µ(t) = argmin
µ

‖f (r, t0) − f (g (r, µ) , t)‖2 . (1)

The function g (r, µ) performs a geometrical transformation of the the region, param-
eterized by vector µ. Several such transformations can be considered, e.g., [2] use a



parameterization which not only deals with translation, rotation, and scaling, but also
with affine and projective transformations. In this paper, we restrict ourselves to trans-
lation and scale estimation, as illustrated in Fig. 1.

The minimization in Eq. 1 is computationally expensive if done by a brute-force
search. It is more efficient to approximate µ through a linear system

µ̂(t + 1) = µ̂(t) + A(t + 1) (f (r, t0) − f (g (r, µ(t)) , t + 1)) . (2)

We compare two approaches for computing matrix A(t) from Eq. 2. Jurie and Dhome
[2] perform a short training step, where random transformations are simulated in the
reference image. Typically, on the order of 1000 transformations are executed and their
motion parameters µ̃i and difference vectors f (r, t0) − f (g (r, µ̃i) , t0) collected.
Afterwards, matrix A is derived through a least squares approach. Note that A can be
made independent from t in this approach. For details, we refer to the original paper.
A more analytical way is proposed by Hager et al. [1], who use a first order Taylor
approximation. During initialization, the gradients of the region points are used to build
a Jacobian matrix. Although A cannot be made independent from t, the transformation
can be performed very efficiently and the approach has real-time capability.

2.2 Histogram Matching

In histogram based tracking methods, the target is again identified by an image region
r(µ(t)), where µ(t) contains the time variant parameter of the region, also referred to
as the state of the region. One simple example for a region r(µ(t)) is a rectangle of
fixed dimensions. The state of the region µ(t) = (mx(t), my(t))T is the center of that
rectangle in pixel coordinates, mx(t) and my(t), for each time step t. With this simple
model, translation of a target region can be easily described by estimating µ(t), i.e.
center of gravity of the rectangle, over time. If the size of the region is also included in
the state, estimation of the scale is possible.

The information contained within the region is used to model the moving object,
but instead of focusing on individual pixels and their values, the distribution of features
defined at each pixel is used. The information may consist of the color, the intensity, or
certain other features like the gradient. At each time step t and for each state µ(t), the
representation of the moving object consists of a probability density function p(µ(t)) of
the chosen features within the region r(µ(t)). In practice, this density function has to be
estimated from image data. For performance reasons, a weighted histogram q(µ(t)) =
(q1(µ(t)), q2(µ(t)), . . . , qN (µ(t)))T of N bins is used as a non-parametric estimation
of the true density. Each individial bin qi(µ(t)) of the histogram is computed by

qi(µ(t)) = Cµ(t)

∑

u∈r(µ(t))

Lµ(t)(u)δ(bt(u) − i), i = 1, . . . , N (3)

with Lµ(t)(u) being a suitable weighting function, bt(u) the function that maps the
pixel u to the number j of the bin which the feature at position u falls into (j ∈
{1, . . . , N}), and δ being the Kronecker-Delta function. The value

Cµ(t) =
1∑

u∈r(µ(t)) Lµ(t)(u)
(4)



Figure 2. Stills from three of the videos used. The solid box marks the hand-labled ground truth.
The dashed box is the tracker’s current estimate. In the right-most image, the tracker has been
distracted by a temporary occlusion from another person, and subsequently lost the real target.

is a normalizing constant. In other words, (3) counts all occurances of pixels that fall
into bin i, where the increment within the sum is weighted by Lµ(t)(u).

Object tracking can now be defined as an optimization problem. Starting with an ini-
tial target region—for example, manually or automatically defined in the first image at
t = t0—an initial histogram q(µ(t0)) can be computed. For t > t0, the corresponding
region is defined by

µ(t) = argmin
µ

D(q(µ(t0)), q(µ(t))) (5)

with D(·, ·) being a suitable distance function defined on histograms. In our work we
compare two local optimization techniques, the Mean Shift algorithm [7, 8] and the
Trust Region algorithm [4, 9], as well as a global optimization technique using particle
filters [5, 10].

3 Test Set and Evaluation Criteria

The experiments were performed on publically available videos from the CAVIAR [6]
project. These are surveillance-type videos from a fixed camera, showing human be-
ings performing a variety of actions. The videos come with hand-labeled ground truth
information, which allows an independent evaluation of our trackers. The ground truth
information describes rectangles surrounding the individual humans in each scene.

Figure 2 shows sample images from three of the videos used. The change in the
tracked person’s appearance, as well as the heterogeneous background, makes this a
relatively difficult problem.

In each experiment, a specific person was to be tracked. The tracking system was
given the frame number of the first unoccluded appearence of the person, the ground
truth rectangle around the person, and the frame of the person’s dissappearance. Each
tracker was initialized with this enclosing rectangle. Aside from this initialization, the
trackers had no access to the ground truth information.

For each frame, two measurements between the tracked region and the ground truth
region were recorded. The first is defined as the fraction of non-overlapping area by the
total area of both regions:

er(A, B) :=
|A \ B| + |B \ A|

|A| + |B|
(6)



Without scaling With scaling
initial per frame initial per frame

Hager & Belhumeur 5 2.33 5 2.87
Hyperplane 528 2.16 536 2.19
Mean Shift 2 1.03 2 2.74

Trust Region 9 4.01 18 8.63
CONDENSATION 11 79.71 11 109.95

Table 1. Timing results from the first sequence, in milliseconds. For each tracker, the time taken
for initialization, and the average time per frame, are shown for scaling and non-scaling versions.

where A and B are image regions, represented as sets of image points, and | · | is the
cardinal number of a set. Identical regions have a region error of er(A, A) = 0, while
non-overlapping rectangles have a region error of 1. The second measurement, denoted
ec, is the Euclidean distance between both rectangles’ centers, measured in pixels.

Twelve experiments were performed on seven videos (some videos were reused,
tracking a different person each time).

4 Experimental Results

The following five trackers were compared: The region tracking algorithm of Hager et
al.[1], working on a three-level Gaussian image pyramid hierarchy to enlarge the basin
of convergence. The Hyperplane tracker, using a 150 point region and initialized with
1000 training perturbation steps. The Mean Shift and Trust Region algorithms, using an
Epanechnikov weighting kernel, the Bhattacharyya distance measure and the HSV color
histogram feature from [5] for maximum comparability. Finally, the CONDENSATION
based color histogram approach from Pérez et al.[5], with 400 particles diffused by a
zero-mean Gaussian distribution with a variance of 5 pixels in each dimension. All
trackers were tested with pure translation, and with translation and scaling.

All tests were timed on a 2.8 GHz Intel Xeon processor. The methods differ greatly
in the times taken for initialization (once per sequence) and tracking (once per frame).
Table 1 shows the timing results from the first sequence. Notable points are the long
initialization phase of the Hyperplane tracker due to training, and the long per-frame
time of the CONDENSATION tracker due to the large number of particles.

The trackers’ output was compared to the ground truth with the two evaluation cri-
teria introduced in section 3 (distance between centers ec, and fraction of region overlap
er). For each tracker, the errors from all sequences were concatenated and sorted.

Figure 3 shows the measured distance error ec and the region error er for all trackers,
both with and without scaling.

Performance varies widely between all tested trackers, showing strengths and weak-
nesses for each individual method. There appears to be no method which is universally
“better” than others.

The structure-based region trackers, Hager and Hyperplane, are potentially very
accurate, as can be seen at the left-hand side of each graph, where they display a larger
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Figure 3. The result graphs. The top row shows the distance error ec, the bottom row shows the
region error er. The left-hand column contains the results for trackers without scaling, the right-
hand column those with scaling. The horizontal axis does not correspont to time, but to sorted
aggregation. The vertical axis for ec has been truncated to 100 pixels to emphasize the relevant
details.

number of frames with low errors. However, both are prone to losing the target quicker,
causing their errors to climb faster than the other three methods. Particularly when
scaling is also estimated, the additional degree of freedom typically provides additional
accuracy, but causes the estimation to diverge sooner. This is a consequence of the
strong changes of appearance of the tracked regions in these image sequences.

The CONDENSATION method, for the most part, is not as accurate as the two
local optimization methods, Mean Shift and Trust Region. We believe this is partly
due to the fact that basic CONDENSATION does not provide intra-frame refinement,
and that time constraints necessitate the use of a quickly computable particle evaluation
function. However, the strength of the CONDENSATION approach lies in its robustness
against local optima: it is capable of reacquiring a lost (or nearly lost) target, which
shows in the flatness of the error curves towards the high end.

Figure 4 shows a direct comparison between a locally optimizing structural tracker
(Hager) and the globally optimizing histogram based CONDENSATION tracker. It is
clearly visible that the Hager tracker provides more accurate results, but cannot reac-
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Figure 4. Comparison of the Hager and CONDENSATION trackers using the er error measure
(cf. Sec. 3). The black rectangle shows the ground truth. The white rectangle is from the Hager
tracker, the dashed rectangle from the CONDENSATION tracker. The top, middle and bottom
images are from frames t1, t2, and t3 respectively. The tracked person (almost) leaves the cam-
era’s field of view in the middle image, and returns near the left image. The Hager tracker is
more accurate, but loses the person irretrievably, while the CONDENSATION tracker is able to
reacquire the person.

quire a lost target. The CONDENSATION tracker, on the other hand, can continue to
track the person after it reappears.

The Mean Shift and Trust Region trackers perform equally well and provide the
overall best tracking when scaling is not estimated. When scaling is introduced, how-
ever, the Mean Shift algorithm performs noticably better than the Trust Region ap-
proach. This is especially visible when comparing the region error er (figure 3, bottom
right), where the error in the scaling component plays an important role.

Another very interesting thing to note is that tracking translation and scaling, as
opposed to tracking translation only, generally did not improve the results on these
sequences. In fact, the performance of all trackers deteriorated, even when measuring
the fraction of region non-overlap (where any changes in target scale will automatically
penalize trackers which do not estimate scaling).

For the structure-based trackers, Hager and Hyperplane, the changing appearance
of the tracked persons is a strong handicap. The extra degree of freedom opens up more
chances to diverge towards local optima, which causes the target to be lost sooner.

The trackers using histogram features, on the other hand, suffer from the fact that
the features themselves are typically rather invariant under scaling. Once the scale, and
therefore the size of the region, is wrong, small translations of the target can go com-
pletely unnoticed.



5 Conclusion

In this paper, we presented a comparative evaluation of five state of the art algorithms
for data-driven object tracking, namely Hager’s region tracking technique [1], Jurie’s
Hyperplane approach [2], the probabilistic color histogram tracker by Perez [5], Co-
maniciu’s Mean Shift tracking approach [3], and the Trust Region method introduced
by Chen [11]. All of those trackers have the ability to estimate the position and scale of
an object in the image in real-time. For the comparison, the CAVIAR video database,
which includes ground-truth data, has been employed. The results of our experiments
shows that, in cases of strong appearance change, the region based methods of [2, 1]
tend to lose the object more often than the histogram based methods. On the other
side, if the appearance change is weak, the region based methods surpass the other ap-
proaches in tracking accuracy. Comparing the histogram based methods among each
other, the Mean Shift approach [3] leads to the best results. The experiments also show
that the probabilistic color histogram tracker [5] is not quite as accurate as the other
techniques, but is more robust in case of occlusions and appearance changes.
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