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Abstract

Object tracking is still a challenging task, especially if it is
done in a realistic environment. The ongoing increase of
computational power and the efficiency of the algorithms
allow real-time estimation of the object’s pose in six de-
grees of freedom. One of these algorithms is the 3-D hyper-
plane approach, which is used throughout this paper, as it
has been proven to be fast and accurate. We show how to
enhance its robustness by using a linear illumination model
to gain more insensitivity to variations of the illumination
conditions. We also present an adaption to compensate ap-
pearence changes in case of external rotations.

Although some “six degrees of freedom” trackers have
been established, the necessary initialization is often ig-
nored or is only solved rudimentarily. In contrast to this,
we show how to use a 3-D SIFT object model for initializa-
tion of the whole tracking system and prove its efficiency by
experimental results using real image sequences.

1 Introduction

Visual object tracking has emerged as an important compo-
nent in computer vision fields such as intelligent human ma-
chine interaction, surveillance, video annotation, and med-
ical applications. The main purpose of tracking systems
is the estimation of the position of an object in each im-
age of an image sequence, under the assumption that the
movements are small. Depending on the system demands,
different solutions have been developed in the last decades,
which allow the tracking of moving objects in a real envi-
ronment with cluttered background using a non-fixed cam-
era. Approaches based on color histograms [2, 11] have
been proven to be very robust even in case of occlusions and
strong appearance changes. However, they lack the abil-
ity to estimate object rotation. A different approach based
on the eigenspace representation of an object [1] estimates
the translation, rotation, and scale of an object in the image
plane, but does not have the capability of real-time process-
ing.

Template matching techniques that are based on a first
order approximation of the object’s motion [5, 9] are able
to compute the translation, rotation, scale, and perspective
distortion of an object in the image plane and are robust
against appearance changes caused by illumination varia-

tions [4]. As many template matching approaches assume
a planar surface, [8, 13] apply a 3-D model of an object
and estimate the three translation and three rotation para-
meters of the object with known intrinsic camera parame-
ters. Both approaches yield very good results, but for ex-
perimental evaulations only objects with primitive surfaces
like planes and cylinders are used. In contrast,the approach
of [15] allows tracking of arbitrary rigid objects by apply-
ing lightfield models in a probabilistic approach, but lacks
in computational efficiency if all six pose parameters have
to be calculated.

Our tracking system is based on the 3-D hyperplane ap-
proach by [8], a 3-D template matching technique. We
present the integration of 3-D point models which are ac-
quired by a structure-from-motion approach [6] from arbi-
trary objects. The correspondence problem is solved by us-
ing SIFT features [10], which we also use for the initial-
ization of the object tracker, since the initial pose is gener-
ally not known. Therefore, corresponding feature points of
the initial image and the 3-D point model of the object are
detected and the six pose parameters are estimated by the
POSIT algorithm [3]. As the correspondences of feature
points can be incorrect, we use the LMedS [12] to compen-
sate for outliers. We examine the capabilities and limita-
tions of this method by experiments with real images.

The appearance of an object can change rapidly due to
illumination variations, e.g., caused by auto-exposure cor-
rection of the camera. We propose to compensate those
influences with a linear illumination model. Another en-
hancement addresses the problem of the appearance change
of an object caused by external rotation (i.e., rotation not in
the image plane). We show how to adapt the model during
runtime to incorporate new views to enhance the robust-
ness of the motion estimation. In our experiments, we use
an object with a complex surface and show that our pro-
posed method yields very good results, even in scenes with
cluttered background.

2 Template Matching with Hyperplanes

Template matching algorithms for data-driven tracking
work on a sequence of images, where every image is in-
dexed by a discrete time t. Additionally, a reference tem-
plate must be specified in the first image. The reference
template is defined by the vector r = (x1, x2, . . . , xN)T ,

User
Text Box
Proceedings of the Ninth IAPR Conference on Machine Vision Applications, Tsukuba, Japan, 2005, pp. 5-8



which contains the homogeneous 3-D coordinates [6] of
selected object points. The gray-level intensity of a 3-D
point xi = (xi, yi, zi, 1)T , which has been projected into
the image plane at time t using the projection matrix of a
calibrated camera, is given by f(x, t). Consequently, the
vector f(r, t) contains the intensities of template r at time
t.

The transformation of the reference template r at time t
is modeled by r(t) = g (r, µ(t)), where the vector µ(t) =
(µt1(t), µt2(t), µt3(t), µr1(t), µr2(t), µr3(t))

T contains
the 3-D translation parameters µt1(t), µt2(t), µt3(t) and the
three rotation parameters µr1(t), µr2(t), µr3(t) (axis-angle
parameterization [6]) of the object. Template matching
can now be described as computing the motion parameters
µ(t) that minimize the least-squares intensity difference
between the reference template and the current template.

Since non-linear minimization in a high-dimensional pa-
rameter space involves extremely high computational cost,
it is more efficient to use a first order approximation

µ(t + 1) = µ(t) + (1)

A(t + 1) (f (r, t0) − f (g (r, µ(t)) , t + 1))

as presented in [5, 9]. The transformation function
g (r, µ(t)), which projects the model points into the image
plane, is given by

g (r, µ(t)) =
(
Mi

(
1 0 0 0
0 1 0 0
0 0 1 0

)
Me(µ(t))rT

)T

, (2)

where the matrix Mi ∈ IR3×3 contains the intrinsic cam-
era parameters and Me(·) ∈ IR4×4 contains the extrinsic
camera parameters.

There are two approaches for computing the matrix A(t)
from Eq. (1). Hager and Belhumeur [5] propose the appli-
cation of a Taylor approximation. The hyperplane approach
presented in [9] acquires matrix A(t) by a least-squares es-
timation which is done in a short initialization step. It was
also shown how to make matrix A independent of time t.
As the hyperplane approach has a superior basin of conver-
gence, we will use it throughout the rest of this paper.

3 SIFT Object Models

The acquisition of the reference template r is a very chal-
lenging task. We decided to use a structure-from-motion
technique [6], because many robust algorithms are known
and only a short sequence of training images is required
to create a precise point model of the object. For solving
the correspondence problem of 2-D points, we use local
SIFT features [10], which consist of a 2-D coordinate (fea-
ture point) and a 128 dimensional feature vector c. The
SIFT feature points are detected by applying a scale selec-
tion mechanism based on differences of Gaussian smoothed
images. For detailed information refer to the original paper
[10].

For every feature point in every training image, a SIFT
feature vector c is calculated. In order to estimate the 3-D
position of the feature points, similar features are collected
in a set

Ci = {c | m(ck) �= m(cl) ∧ ∃d(ck, cl) < ε} ; (3)

i �= j ⇒ Ci ∩ Cj = ∅,

Figure 1: Example of the assignment of the 3-D point
model (left) of a SIFT object model to a 2-D image. The
pose is estimated by the POSIT algorithm [3].

where m(c) returns the index of the image where the fea-
ture vector c has been calculated, i, j are indices of the set,
d(ck, cl) is the Euclidean distance of two features and ε is
a threshold in order to ensure that only similar features are
stored in the set. This set is very similar to the so called trail
in [7]. For every set Ci, we estimate the 3-D position xi by
the structure from motion algorithm of [7, Section 3] and
calculate a mean feature vector c̄i. The reference template
r is built using all of these 3-D points.

In contrast to point tracking methods, which are very
commonly used for 3-D reconstruction, the application of
the SIFT features has the advantage that it can be used for
both estimation of the reference template and initialization
of the object tracker. In principle, the initialization of the
tracker is similar to the calibration problem, as the 3-D
point model represents the calibration pattern and for every
point xi a mean SIFT feature c̄i has been calculated. After
the extraction of the SIFT features of the reference image,
the assignment of a feature vector c to the n-th model fea-
ture vector is done by

n(c) = argmin
i

d (c, c̄i) . (4)

In addition, assignments for which the Euclidean distance
exceeds the threshold ε of Eq. (3) are ruled out. We estimate
the initial object position µ(t0) for the image at time t = 0
using the POSIT algorithm [3], but in principle, more com-
plex techniques are applicable as well. This initialization
step is illustrated in Fig. 1.

4 Improving the Robustness

The change of appearance is an important challenge in tem-
plate matching approaches. One reason for those changes
are illumination variations. We apply a normalization of
the template’s intensity distribution using its mean and vari-
ance. This approach has been proven to be very efficient
with regard to robustness and computating time [4].

A second reason for appearance changes, and thus low
robustness of the tracker, are large external rotations. We
enhance the tracking system by training separate approxi-
mation matrices A for different views during runtime. Con-
sequently, the approximation matrix which has been calcu-
lated at the viewpoint with the external rotation most similar
to µ(t − 1) is used for estimating µ(t).

As described in the previous section, the initial pose pa-
rameters µ(t0) are estimated by the POSIT algorithm. For



3-D object model

Figure 2: A video sequence of 36 images is used for a 3-d
reconstruction of a toy-elk. The estimated 3-D object model
(dots) and the camera positions (pyramids) of the 36 images
are illustrated.

this, 2-D image points and their corresponding 3-D model
points are required. Although local SIFT features are well
suited for solving the correspondence problem, wrong as-
signments may occur and have to be taken into account. To
reject these outliers, the LMedS algorithm [12] is applied.

5 Experiments

Many experiments with real image sequences have been
performed to demonstrate that our proposed method leads
to highly accurate tracking results. For this paper, we cap-
tured a video sequence (35 images) of a toy elk from dif-
ferent views for model acquisition with a hand-held Sony
DFW-VL500 camera (resolution of 640 x 480 pixels). One
property of this object is that the surface is highly complex
and simple geometric models as in [8, 13] are ineligible.
The toy elk was placed on a black cloth to prevent the ex-
traction of feature points on the background. The SIFT fea-
ture point detector acquired 5495 feature points for the 36
images, consequently the average was 152.6 feature points
per image (minimum 125, maximum 176). After detection
of corresponding feature points (cf. Eq. (3)) and 3-D recon-
struction, a model consisting of 306 3-D points was created.
The computation time for calculating the SIFT features, de-
tection of correspondences and 3-D reconstruction was 49
seconds on a 2.4 GHz Intel Pentium 4 PC. The result is pre-
sented in Fig. 2 where the 3-D model, camera positions of
the corresponding 36 images, and one image of the image
sequence are shown.

For demonstrating the capability of the tracker, we re-
moved the black cloth and put some other objects into the
scene to prove that our approach is not affected by a clut-
tered background. The estimation of µ(t0) and initializa-
tion of the hyperplane tracker took about 3 seconds. This
value depends strongly on the number of detected feature
points, and the computation time decreases in case of sim-
ple scenes. Typically, the computation time is between 1
and 4 seconds. After initialization, the estimation of µ(t)
(cf. Eq. (1)) is very efficient, and allows processing of 30
frames per seconds. Additionally, we moved the camera as
well as the toy elk to different positions. Even in this case,
the back-projected point model (using Eq. (2)) remains on
the object. Some images of the whole sequence are pre-
sented in Fig. 3. We tested the presented approach success-

fully on other objects like cups, tetrapacks, tins, and books.
Without an adaption step (c.f. Sec. 4), an external rotation
of about 10 to 20 degrees is accepted by the tracker. The
approach of [15] is not affected by external rotation, but
lacks in real-time capability if all pose parameters have to
be calculated. In contrast to that, the hyperplane approach
is significantly more efficient in computing time and allows
a fast initialization using the SIFT object model.

As the initialization plays an important role in our frame-
work, we tested the efficiency of the pose estimation using
the SIFT object model. For this we acquired a model of a
package of juice and captured three image sequences each
with 100 images with homogeneous, slightly cluttered, and
highly cluttered background (Fig. 4). The pose was esti-
mated twice for every image as proposed in Sec. 3, the first
time using the LMedS and the second time not using it.
The median backprojection error of the matched model fea-
ture points for every pose estimation, which is in our point
of view a good quality measurement, has been calculated.
For easier comparison, all median backprojection errors for
one sequence have been ordered ascendingly. The aver-
age number of matched features in case of homogeneous
background is about 69 and in case of cluttered background
about 53. Even in the case of highly cluttered background,
it can be seen in Fig. 4 (d) that the backprojection error is
less than 1.5 pixels in about 80 percent of the estimations.
The second graph (e) shows the benefits of the LMedS al-
gorithm. It is clearly visible that this method enhances the
detection accuracy.

6 Conclusion

In this paper, we presented a model-based tracking algo-
rithm for estimating the object’s 3-D pose. This technique
is based on Jurie’s hyperplane approach [8]. We addressed
two problems, which arise using this method. The first
problem is model acquisition and the second one is the ini-
tialization of the tracker. Both issues are solved by using
local SIFT features [10].

A disadvantage of this approach is that model points
could leave the field of view because of strong external rota-
tion. This issue can be solved by using separate approxima-
tion matrices and regions which are related to visible points.
Another idea would be to track each point individually with
a point tracker like the Shi-Tomasi-Kanade tracker. Hidden
points have to be rejected in this approach as well. For de-
tection of these points, we plan to calculate a triangle net
for the object model and verify the visibility by ray-tracing.
The algorithm of [14] could be good starting point.
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Figure 3: Three images of a video sequence in which a toy elk was tracked with the adaptive 3-D hyperplane tracker. It
can clearly be seen that the points of the model are placed very accurately on the object, even if the appearance changes
drastically. Although the camera and the object are moved at the same time, the object is tracked successfully.
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Figure 4: Detection results for three test image sequences where a package of juice has to be detected in front of a homoge-
neous (a), slightly cluttered (b), and highly cluttered background. The median backprojection error of the model points are
calculated for every image and sorted in ascending order. The first graph (d) shows the quality of the pose estimation using
the LMedS algorithm for the three different background types. The second graph (e) illustrates the median backprojection
error of the “slightly cluttered” sequence (b) with and without application of the LMedS algorithm.
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