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Abstract

 

—In this paper, we present a system for statistical object classification and localization, which applies
a simplified image acquisition process for the learning phase. Instead of using complex setups to take training
images in known poses, which is very time-consuming and not possible for some objects, we use a hand-held
camera. The pose parameters of objects in all training frames, which are necessary for creating the object
models, are determined using a structure-from-motion algorithm. The local feature vectors we use are
derived from wavelet multiresolution analysis. We model the object region as a function of 3D transforma-
tions and introduce a background model. Experiments made on a real data set taken with a hand-held camera
with more than 2500 images show that it is possible to obtain good classification and localization rates using
this fast image acquisition method.
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INTRODUCTION

For many tasks, the recognition of objects in
images is very useful, sometimes even necessary.
Possible applications in this area are, for example,
face recognition [3], localization of obstacles on the
road with a camera mounted on a driving car, service
robotics [12], and so on. The learning process in
most object recognition systems begins with the
image acquisition of all possible object classes in
many known poses. In the laboratory environment,
the images can be taken with a special setup like a
turntable with a camera arm (Fig. 1, left).

In real problems of object recognition in images, it
is much easier to record the objects using a hand-held
camera (Fig. 1, right). For this reason, we propose a
new approach for object recognition, where the image
acquisition is done in this way. The goal of our algo-
rithm is to optimize the training process with respect to
execution time and ease of image acquisition while still
getting satisfying classification and localization rates.
The poses of the objects in all training frames are com-
puted using a structure-from-motion algorithm [5]. The
whole learning process is therefore independent of
environment assumptions, but we have to deal with an
additional training inaccuracy.

Two main approaches exist to solve the problem
of object recognition in images: the model- and the
appearance-based methods. The model-based sys-
tems use a segmentation step to extract features of
objects [6]. The appearance-based approaches com-
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pute the feature vectors directly from pixel intensi-
ties in the images [3, 10]. There are appearance-
based systems that use one global feature vector for
the whole image (e.g., eigenspace approach [2]),
and those that use more local feature vectors (e.g.,
neural networks [8]). In the present work, local fea-
ture vectors with two components are applied,
which are computed with a wavelet multiresolution
analysis [7] and statistically modeled by density
functions.

In the next section, we introduce the pose parameter
reconstruction using a structure-from-motion algo-
rithm, which yields the training pose parameters
needed for object modeling. Then, the system for statis-
tical object recognition is presented. After that, we
describe experiments and discuss the results. We close
our contribution with a conclusion.
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Fig. 1.

 

 Left: turntable with camera arm. Right: hand-held
camera.
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POSE PARAMETER RECONSTRUCTION

Suppose an image sequence is given which was
taken by moving a hand-held camera around an object
and showing it from different directions (Fig. 1, right).
In order to train the object recognition system, it is nec-
essary to estimate internal and external object pose
parameters for all frames. The internal pose parameters
denote two translations and a rotation inside the image
plane. The external pose parameters are two rotations
outside the image plane and a translation along the opti-
cal axis of the camera. Only four of these six pose
parameters, internal translations 
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, are used in our experiments;
therefore, only the computation of these parameters
will be explained in the following.

The first step is to compute a 3D reconstruction of
the camera motion and scene structure using a struc-
ture-from-motion algorithm [5]. This requires the
knowledge of point correspondences in the images,
which are retrieved by feature detection and tracking as
explained in [11]. By applying a factorization method,
in this case, the paraperspective factorization intro-
duced by Poelman and Kanade [9], the camera motion
parameters, and 3D point positions corresponding to
the tracked 2D features are reconstructed for a rela-
tively short initial subsequence. The results are refined
by a nonlinear optimization as proposed in [4]. The
remaining camera and point positions are estimated by
a similar optimization image by image, a method which
is explained in detail in [5].

At this point, the cameras are given as projection
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era intrinsic parameters, and 
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 denote the rota-
tion and translation of the camera. The object recogni-
tion system, on the other hand, requires an entirely dif-
ferent parameter representation. Therefore, the
parameters are transformed as follows. First, the origin
of the coordinate system is translated into the center of
mass of the object . Since the object was placed on a
black background, the feature tracking algorithm is
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only able to track features on the object itself. Thus, the
centroid of the reconstructed 3D points is used as an
approximation to the center of mass of the object. The
calculated translation is applied to all camera and 3D
point positions.

The external rotations in polar coordinates for the
training image 
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 can now be calculated easily, as
depicted in Fig. 2. For a given translation 
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) of the camera in world coordinates, the angle 
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and the angle 
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, as
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The internal translation is estimated by backproject-
ing the center of mass of the object into image coordi-
nates, i.e.,  = 
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, where  and  denote 
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 and 
in homogeneous coordinates.

STATISTICAL OBJECT RECOGNITION

At the beginning of the statistical modeling, we
select one of the training images for each object class as
a reference image. With the pose of an object in the
image 
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, we denote the 3D transformation (translation
and rotation) that maps the object in the reference
image to the object in 
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. In all of these images, feature
vectors are computed using a wavelet transformation
[1]. A grid with size 
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 is the scale of the
wavelet transformation, is laid over each training
image. At each grid point, a feature vector with two
components is calculated:
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coefficients. For each feature vector 
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, we define a
function that assigns it to the object or to the back-
ground:
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This function is interpolated using (
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) and
defined on a continuous domain (
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 denotes the
object area.

The computed feature vectors are interpreted as ran-
dom variables. Their components are modeled as nor-
mally distributed. The density function for the object
class 
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Fig. 2. Calculating θi and ϕi using the camera pose. The
camera is depicted as a pyramid with its tip being the optical
center and its base being the image plane.
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where Bκ comprehends the trained mean vectors µmκ
and standard deviation vectors τmκ of the feature vectors
cmκ. C is the set of feature vectors that belong to the
object.

After an object model is created for each object
class, the system is able to classify and localize objects.
The recognition algorithm is described by the following
equation:

(6)

For each pose hypothesis (φ, u), we determine the
set of feature vectors  that belong to the object area.
The parameters (κ, φ, u) with the highest probability p
are taken as the recognition results. More details on the
whole recognition system are given in [10].

EXPERIMENTS AND RESULTS

We tested our approach on a data set that consists of
eight objects, which are illustrated in Fig. 3.

In the training phase, sequences with more than 200
frames of each object class were taken with a hand-held
camera (Fig. 1, right), which accelerates the image
acquisition process compared to the common methods.
The recording of 200 training images of objects located
on a turntable (Fig. 1, left) takes about 20 min. Using
the hand-held camera, we get a video with 200 frames
in about 5 s. Next, we preprocessed the original images
by converting the 512 × 512 color images to gray level
images sized 128 × 128 pixels and created the object
models. The preprocessing of 100 training frames and
creation of one object model takes 27 s on a Pentium 4,
2.66 GHz.

For the recognition phase, we took eight image
sequences with about 120 frames on a homogeneous
background. The recognition time in 100 test images
amounts to 72 s for the 128 × 128 pixel images. The
classification rates as a function of the number of train-
ing images are presented in Fig. 4. A very good classi-
fication result (98.8%) with a relatively short execution
time (training of one object class, 38 s; recognition in
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100 test images, 72 s on a Pentium 4, 2.66 GHz) was
obtained using 140 training images.

The best localization rate amounts to 45.5% and was
obtained for 100 training frames.

CONCLUSIONS

In this paper, we presented an approach for the sta-
tistical object classification and localization of 3D
objects, where the image data acquisition was made
using a hand-held camera. This innovation accelerated,
simplified, and universalized the learning process com-
pared to most other object recognition systems. The
pose parameters of the training frames, which are
needed for creating the object models, were calculated
using a structure-from-motion algorithm. For robust-
ness of the system, we applied a statistical framework
which includes both object and background models.

In the experiments, we showed that it is possible to
get excellent classification and good localization rates
in a relatively short execution time.

Fig. 3. Used object classes. In the first row from left: cup,
toy fire engine, mouse, pen. In the second row from left: toy
passenger car, hole puncher, candy box, stapler.
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Fig. 4. Classification rate depending on the number of train-
ing images.
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Fig. 5. Localization rate depending on the number of train-
ing images. Evaluation criteria: 10 pixels (translations),
15° (rotations).
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In the future, we will work on the algorithm for pose
parameter reconstruction and the system for statistical
object recognition in order to improve the localization
rates.
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