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ABSTRACT

The evaluation of tumor growth as regression under therapy is an important clinical issue. Rigid registration
of sequentially acquired 3D–images has proven its value for this purpose. Existing approaches to rigid image
registration use the whole volume for the estimation of the rigid transform. Non-rigid soft tissue deformation,
however, will imply a bias to the registration result, because local deformations cannot be modeled by rigid
transforms. Anatomical substructures, like bones or teeth, are not affected by these deformations, but follow a
rigid transform. This important observation is incorporated in the proposed registration algorithm. The selection
of anatomical substructure is done by manual interaction of medical experts adjusting the transfer function of
the volume rendering software. The parameters of the transfer function are used to identify the voxels that are
considered for registration. A rigid transform is estimated by a quaternion gradient descent algorithm based
on the intensity values of the specified tissue classes. Commonly used voxel intensity measures are adjusted to
the modified registration algorithm. The contribution describes the mathematical framework of the proposed
registration method and its implementation in a commercial software package. The experimental evaluation
includes the discussion of different similarity measures, the comparison of the proposed method to established
rigid registration techniques and the evaluation of the efficiency of the new method. We conclude with the
discussion of potential medical applications of the proposed registration algorithm.

Keywords: Mono-modal Registration, Rigid Registration, Voxel Intensity, Similarity Measure, Transfer Func-
tion, Unbiased Estimation, Gradient Descent, Optimization

1. INTRODUCTION

Virtually all registration techniques that make use of voxel similarity measures have been successfully applied to
single subject serial studies and there exist several surveys of rigid medical image registration, i.e. in Brown,1

Elsen et al.,2 Hajnal et al.,3 Hill et al.,4 Maintz et al.5 or Woods et al..6 Our approach provides an improvement
in regard to the registration of images that feature significant non-rigid soft tissue deformations in anatomical
regions of interest. Especially in computed tomography (CT) and magnetic resonance imaging (MRI), tissue
can be identified by its intensity value in the according grey value image. Thus different classes of tissue can
be quantified by appropriate transfer functions. The modification of given voxel similarity measures allows to
consider only specified tissue for registration. We will show an implementation and integration of the unbiased
rigid registration using transfer functions into a clinical environment and present the improvements in comparison
to commonly used approaches which administer the whole image information. This application can be used to
identify and visualize longitudinal dependent tissue deformations in serially acquired CT images before (e.g. the
lymphoma patient seen in figure (fig.) 1(a)) and after the treatment (fig. 1(b)). The checkerboard fusion image
(CFI) clearly demonstrates the significant impact the large tissue deformation has on the standard registration
approach, such as the inadequate alignment of the cranial bones in fig. 1(c). In contrast, the CFI in fig. 1(d)
shows the unbiased rigid registration using a transfer function for osseous structure resulting in an enhanced
alignment of the images. Furthermore, as the results of the rigid registration can be used either independently
or in combination, the presented approach offers advanced starting points for further computations, such as
non-rigid registration techniques.
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(a) (b) (c) (d)

Figure 1. Significant non-rigid tissue deformation in two slices of sequentially acquired 3D CT images in the lymphoma
area before 1(a) and as a result of the treatment 1(b). The CFI slices of the rigidly registered 3D image using the whole
image information 1(c) and the presented approach1(d).

Scale Space Index Image Scaling Factor Gaussian Variance Cluster Field Size Cluster Size
0 1/16 16 1x1x1 32
1 1/8 8 1x1x1 16
2 1/4 4 2x2x2 16
3 1/2 2 2x2x2 16
4 1 − 2x2x2 8

Table 1. Parameter settings for images up to 512 × 512 × 512 voxels with the according cubical cluster sizes (in voxels
as well). Scale space index 4 corresponds to the last registration using the original un-scaled image resolution.

2. METHODS

The algorithm mainly consists of three parts: the registration preprocessing, the optimization that implies
the computation of the modified similarity measures and the registration post-processing. In our approach, a
hierarchical scale space representation of the images is employed, in order to reduce computation time as well as
to increase the accuracy of the registration result.

2.1. Registration Preprocessing

Scaling and Gaussian filtering are applied to images, allowing the computation of approximated rigid transforms
Ti in the prior stages, with i ∈ {1, ..., N} being the number of the according scale space. In order to receive the
final transform T , the registration is applied to the high resolution images with the final scale space approximation
TN as input transform. The whole process can be further accelerated by making use of a clustering approach
to reduce the large amount of computation needed for the intensity similarity measures. We have adopted the
approach of Althof7 to 3D images and with an adequate clustering, results can be acquired faster without losing
their accuracy. A typical clustering configuration for the registration is shown in table 1. The configuration can
be changed without compilation of the application, thus the program is scalable to the growing computational
power of processing units. As the registration transform gets more accurate with higher scale space level, i.e.
with better image resolution, the cluster sizes can be down-scaled, which results in an additional performance
gain compared to fixed cluster sizes.

2.2. Optimization

We have implemented and modified several commonly used similarity measures in order to support transfer
function values at the voxel positions TF (voxel), see equation (eq.) 1. If the voxel position is outside the overlap
domain (see also appendix A) a default intensity value can be specified that is neutral to the registration, e.g. the
minimal image intensity. The physician can interactively define the intensities through choosing an appropriate
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piecewise linear transfer function within the medical application. Thus the physician can interactively adapt the
transfer function and precisely choose the tissue that has to be registered.

t(voxel) =
{

TF (voxel) : voxel ∈ Ω, with Ω being the overlap of the images
Idefault : otherwise, where Idefault is a predefined intensity value (1)

Eq. 1 can be adapted to inverse, concatenated ranges as well as to non-linear transfer function values. We have
implemented and tested several standard similarity measures. Among them are the widely used intra modality
measures sum of squared and absolute differences, the mutual and normalized mutual information, correlation,
cross correlation, normalized cross correlation, the ratio image uniformity and the histogram of differences. See
section A for the mathematical definition of the implemented measures.

The optimization of the transform T on the basis of image intensity similarity measures is performed with
a quaternion gradient descent algorithm on a 7 dimensional (7–D) parameter space P ⊂ R7. Each parameter
set specifies a position p in P . In order to avoid the search for the best step-size into the descent direction as
practiced in some versions of the algorithm, like the steepest gradient descent (e.g. in Venkataraman8) or in
derivatives which use less restricting step-size criteria (e.g. Armijo9 criterion), we developed an approach that
approximates the step size based on the angle between the last and the current gradient. The mechanism acts
like a castigator on the step length if the angle is large and like a benefactor if the angle is small. It can be
expressed using a weight function w (eq. 2) that is directly proportional to the scalar product of the function
gradients at the kth and the k−1th parameter set. In our empirical experiments, we achieved good results using
the weight function given in eq. 3.

w(∇f(pk),∇f(pk−1)) where ∇ being the 7–D gradient, (2)

w(x, y) =
1
2

xT · y√
||x|| · ||y||

+ 1 ||...|| being the Euclidean norm (3)

Computation time can be saved by approximating a descent step size that is not necessarily the steepest
descent but lets the algorithm firmly converge towards the optimum. Therefore less evaluations of the similarity
measure are needed, which is the most expensive part regarding the computational effort. The parameter search
process can then be formulated as the iterative update of the position p from iteration k to k +1, see eq. 4. The
compact version of the optimization method is given in algorithm 1.

pk+1 = pk − λ · ∇f(pk) · w(∇f(pk),∇f(pk−1)) (4)

Algorithm 1 Gradient-Based Optimization
Require: εf ≥ 0;λ 6= 0; δ > 1;nmax > 0
1: k ← 1
2: initialize p0, p1

3: while ||∇f(pk)|| > εf and k < nmax do
4: approximate the step size factor: w∗ ← w(∇f(pk),∇f(pk−1))
5: while f(pk − λ · ∇f(pk) · w∗) worse than f(pk) do
6: w∗ ← w∗

δ
7: end while
8: pk ← pk − λ · ∇f(pk) · w∗

9: k ← k + 1
10: end while
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2.3. Registration Post-processing

Given the optimized parameter position specified by the final transform T the image B is re-sampled and
interpolated to the new spatial position. Several techniques of image combination can then be applied to
visualize the registration result. The fused images can be visualized with advanced, in medical systems already
available, volume rendering graphics hardware that is capable of rendering at least two high resolution images
at the same time. The images shown in this article were created by checkerboard fusion of the fixed and the
transformed moving image and by image subtraction. In order to evaluate our implementation in clinical practice,
the algorithm has been integrated into a commercial software package10 that is commonly used in hospitals and
has a high recognition value for physicians. One of the main goals of the project was the formation of a robust,
user-friendly applicable and fast enough version of the algorithm to persist in the clinical environment (fig. 2).

Figure 2. The registration plug-in that works on two input images and that supports eight different similarity measures,
three interpolation strategies, the common rigid body registration approach and the application of transfer functions for
the unbiased rigid registration.

3. RESULTS

In order to analyze the accuracy of the registration high resolution 3D medical data sets (512x512x200 voxels)
were transformed with known parameter sets and used as input data in order to compare the proposed method
to established rigid registration techniques. As the position of the patient who will be scanned sequentially with
a medical acquisition system is limited to certain ranges, estimated parameters were chosen for the transforms.
It is shown that the results of the proposed approach are equivalent to those of well established techniques for
artificial test images without non-rigid deformations and even better for sequentially acquired real data sets with
non-rigid deformations. In practice, sequential images are likely to feature non-rigid tissue deformations (see fig.
1) which imply a bias to established algorithms. The presented technique has been applied to such sequentially
acquired CT images of tumor patients. The evaluation of the registration results in this case is no longer possible
using only the pure values of the similarity measures as the registration of certain tissue classes is likely to
produce different overall image similarities. Visual assessment was done regarding the matching of the tissue
structure contours using the CFI technique and difference imaging. The amount of information contributed by
the registered tissue class to the fused image is minimal as these structures diminish in the difference image with
the degree of alignment. This can be seen in the images of fig. 3 where the teeth are misaligned in the common
approach due to the featured non–rigid soft tissue deformation resulting from therapy. The overall alignment
could be improved by our unbiased registration using a transfer function that excludes the mentioned soft tissue.

In scans featuring non-rigid deformations, like intestinal motion in fig. 6 or motion of the respiratory system
and the heart in fig. 4(a), the application of rigid registration is limited. However, it can be applied to those
structures which are not affected by these deformations. Compared to the common approach the registration of
the spine alone, as well as the registration of osseous structures improved the results in the mentioned data sets.
A more detailed view of a region of interest is given in fig. 5.
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(a) (b)

Figure 3. Fig. 3(a) shows a better overall alignment due to the usage of a transfer function for the presented approach
that excludes the soft tissue from the registration process. In contrast, the difference image between the fixed and the
registered re-sampled moving image resulting from the common approach can be seen in fig. 3(b).

The efficiency of the proposed method was rated on basis of the computation time with respect to the
implemented standard approach. Applying the parameter set of table 1, the registration was performed with an
accuracy of 1e-8 for the parameter positions and a maximum of 100 iterations for each of the pyramidal scale
space steps. The resulting computation times for the different methods used with various similarity measures
are given in table 2. The speed was evaluated on a 2.0 GHz AMD mono processor system with 1.3 GByte main
memory.

Method SAD SSD CC RIU EHD MI NMI
Common [s] 204.94 163.73 140.40 55.77 45.93 76.11 49.49
Unbiased [s] 136.37 175.43 97.77 37.37 26.39 76.17 40.90

Table 2. The table shows the computation times of the algorithms in seconds for the different similarity measures. The
times incorporate the optimization and the resampling of the images at each scale space step, i.e. from the start to the
approximated rigid transform.

4. SUMMARY

This article presents a new way of improving rigid registrations for sequential medical images featuring significant
non-rigid deformations. The negative side effects of such deformations can be significantly attenuated without
computational extra costs through modifying commonly used similarity measures. The physician can interactively
affect the registration by defining an appropriate transfer function for anatomical structures that are not affected
by non-rigid deformations in order to register sequential images more accurately. This approach has been
successfully applied to high resolution CT images of lymphoma patients. Several well known voxel intensity-
based similarity measures have been adapted to support the unbiased registration using transfer functions.
In comparison to well established algorithms our approach shows a better performance on sequentially acquired
images exhibiting non-rigid tissue deformations. For the assessment of the registration results by medical experts
several visualization techniques can be applied. However, a wider field of medical applications can be improved:
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In combined approaches, where a rigid body transform is used to approximate a starting value for a subsequent
non-rigid registration, the result could be achieved in a faster and more accurate way. Given the fact that in MRI,
the contrast of bones usually is very bad, CT-MRI inter-modality registration could be improved by selecting
tissue classes in the CT images that are also visible in the MR images and vice versa, thus increasing the accuracy
of the result. In DSA, the contrast agent is only visible in the fill image and therefore could be masked out by
setting an appropriate thresholding for the registration. Medical applicability is given for instance not only in
nuclear medicine, where tumor changes are visualized, but also in Ear Nose and Throat medicine or neurology.
The integration of the algorithm into a clinical environment allows the registration with user defined transfer
functions and the visualization of the registration results in a commercial volume renderer. The future work
concentrates on the acceleration and implementation of the described registration approach either by making
use of dedicated central processing unit instructions which operate on multiple data elements simultaneously or
by parallelizing and porting time critical parts of the algorithm onto graphics hardware.
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APPENDIX A. DEFINITIONS OF SIMILARITY MEASURES

In the notation used by Hajnal et al.3 the registration transform T represents the spatial mapping from the
coordinate system of image A to the corresponding coordinate system of the sequential image B, with xA, xB ∈ R3

being the voxel coordinates of image A and image B respectively (eq. 5) and contained within the image domains
ΩA and ΩB . As T maps only between coordinates, however, an enhanced transform T has to be introduced to
additionally interpolate the intensity values at arbitrary coordinate positions.

T : xA 7→ xB ⇔ T−1(xB) = xA,where xA ∈ ΩA and xB ∈ ΩB (5)
ΩT

A,B = Ω = {xB ∈ ΩB |T−1(xB) ∈ ΩA} (6)

T is only defined for the overlapping region of the images, the overlap domain Ω (eq. 6). A(xA) embodies
the image value at position xA of image A whereas BT (xA) stands for the (interpolated) image intensity value
of the transformed point xA in image B.

Cross correlation (C, eq. 7), correlation coefficient (CC, eq. 8) and the normalized cross correlation (NCC,
eq. 9) all show good results if the intensities of the images are linearly related. This class of measures has been
applied in digital image processing since the seventies and can be used for digital subtraction angiography (DSA)
as well, see Meijering11 or Hajnal et al..3

C =
∑

xA∈ΩT
A,B

A(xA)BT (xA) (7)

CC =

∑
xA∈ΩT

A,B
(A(xA)−A)(BT (xA)−B)√∑

xA∈ΩT
A,B

(A(xA)−A)2
∑

xA∈ΩT
A,B

(BT (xA)−B)2
(8)

NCC =

∑
xA∈ΩT

A,B
A(xA)BT (xA)√∑

xA∈ΩT
A,B

A2(xA)
∑

xA∈ΩT
A,B

(BT (xA))2
(9)
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The sum of the absolute differences (SAD, eq. 10) and the sum of squared differences (SSD, eq. 11) are applied
directly on the image intensity values and can therefore be used only in intra-modality image registration. In
the case of images containing small amounts of voxels that show significant intensity differences, i.e. CT images
with metal inlays, SSD is very sensitive. The effect of those outliers on the registration result can be reduced by
applying SAD instead.

SAD =
1
N

∑
xA∈ΩT

A,B

|A(xA)−BT (xA)| (10)

SSD =
1
N

∑
xA∈ΩT

A,B

|A(xA)−BT (xA)|2 (11)

The ratio image (R, eq. 12) is the basis for the ratio image uniformity (RIU, eq. 14) that can also be thought
of as a measure for the normalized standard deviation of intensity values in R. Although the method originally
has been applied to serial PET and serial MR registration it has been be successfully applied to the proposed
approach.

R(xA) =
A|ΩT

A,B
(xA)

BT |ΩT
A,B

(xA)
(12)

R =
1
N

∑
xA∈ΩT

A,B

R(xA) (13)

RIU =

√
1
N

∑
xA∈ΩT

A,B
(R(xA)−R)2

R
(14)

Histogram-based measures determine the degree of similarity between successive images not through the
actual differences or correlations of intensity values but rather by their relative frequency. The normalized
histogram of differences H can also be thought of as the probability for a certain intensity difference g ∈
[−G;G] ∈ Z with G being the largest possible grey value in the intensity image and δ(x, y) the Kronecker delta
function (see also Ref. 11).

H(g) =
1
N

∑
xA∈ΩT

A,B

δ(A(xA)−BT (xA), g) (15)

Shannon-Wiener developed a measure as part of a communication theory in the 1940s, which is called entropy
(H, eq. 16) and which is based on the probabilities of random variables. H can also be used in image processing
to measure the relative frequency of differences leading to the entropy of the histogram of differences (HHD, eq.
17) that has to be minimized. Meijering11 stated that another measure, the energy of the histogram of differences
(EHD, eq. 18) performs comparably to HHD at reduced computational costs.

H = −
∑

i

pi log pi (16)

HHD = −
g∑

g=−G

H(g) logH(g) (17)

EHD =
g∑

g=−G

H2(g) (18)
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If image registration is regarded as the maximization of the amount of shared information that is given in two
images, it can also be thought of as trying to reduce the quantity of information contained in the combined image.
If two images are aligned correctly, corresponding structures will overlap and the information of the fusion image
is minimal, whereas in the non-aligned case, duplicates of anatomic structures will result in an increased amount
of information, as if two noses are present in the combined image. The Shannon-Wiener entropy, presented
in eq. 16, is a commonly used metric in signal and image processing and can be used to express the amount
of uniformity of random variables with given probabilities p1, p2, ..., pi. In the case of image registration, the
information that is contributed to the overlapping volume by each image, as well as the joint entropy, i.e. the
amount of information of the images combined, can be expressed by entropies. The joint entropy H(A,B) of the
images is minimal, if images A and B are most similar.

H(A) = −
∑

a

pT
A(a) log pT

A(a) (19)

H(B) = −
∑

b

pTB(b) log pTB (20)

H(A,B) = −
∑

a

∑
b

pTAB(a, b) log pTAB(a, b) (21)

A major drawback of H(A,B) as a measure itself is its strong dependency on T and the overlap domain Ω.
For instance, the measure could tend to maximize the overlapping of large structures of similar intensity values
and therefore lead to erroneous results if the starting point for the registration is poorly chosen. The solution
is provided by an approach that also considers the information which is contributed to the registration by each
of the images. It can be expressed by the entropies H(A) and H(B) (eq. 19, 20), where pT

A and pTB are the
marginal probability distributions of image A and the transformed and interpolated image B, respectively. The
measure that takes the altering marginal probabilities into consideration with respect to the current transform
is known as mutual information (MI, eq. 22) which can also be expressed in terms of the Kullback-Leibler
distance (see Wells et al.12 and Collignon et al.13). The MI is maximal for a transform T that makes image
A the best possible predictor for image BT within the overlap domain. It can be used for intra- as well as for
inter-modality registration but does not entirely solve the overlap problem. Studholme et.al.14 proposed the
usage of a normalized version, which is accordingly called normalized mutual information (NMI, eq. 23) and is
considered to be more robust than the standard MI with respect to Ω.

MI(A,B) = H(A) + H(B)−H(A,B) (22)

NMI(A,B) =
H(A) + H(B)

H(A,B)
(23)
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(a)

(b)

(c)

Figure 4. Fig. 4(a) shows a patient suffering from a tumor at the right dorsal thorax. The different registration methods
lead to the CFIs in fig. 4(b) with the result of the proposed method in the left frame. Obviously, the motion of the lung
and the heart cannot be addressed by a rigid transform, however, as an appropriate transfer function is applied (left of
fig. 4(c)), the region of the tumor can be registered more precisely.
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(a) (b)

(c) (d)

Figure 5. Zoom into the CFIs and difference volumes of lung tumor registration result of fig. 4. Fig. 5(a) shows the
better alignment as a result of the proposed approach in comparison to the rigid registration using all voxel intensities
(5(b)). Therefore, the difference image in fig. 5(c) features better information than the difference image using the common
registration approach in fig. 5(d).
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(a)

(b)

(c)

Figure 6. Alongside views of the 3D CFIs: the left CFIs result from the unbiased rigid registration with an appropriate
transfer function applied on the registration, the right ones from from the common approach. Figures 6(a), 6(b) and 6(c)
show different views on the same fused data set but with different transfer functions for the visualization (not used for
the registration). The misalignment of the anatomical structures in the right images are clearly visible at the boundaries
of the checkers.

Manuscript




