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Abstract

Light field reconstruction is still mostly limited to static
scenes or is only applicable to dynamic scenes using so-
phisticated and costly hardware. In contrast to that, our
contribution describes a system which allows the recon-
struction of a light field of a scene including one or more
rigidly moving objects using only one hand-held camera.
By separating automatically tracked feature points into dif-
ferent objects, structure-from-motion algorithms can be ap-
plied for each object. The extension to long image se-
quences is done iteratively and the dynamic light field
is created by merging the individual reconstructions and
quantizing the object poses into distinct time steps.

For rendering purposes, an extension of the Unstructured
Lumigraph is introduced which uses confidence maps to
mark scene background, visible and invisible object poses.

1 Introduction

The light field [8] and the lumigraph [4], respectively, are
by now well-established techniques for image-based ren-
dering [1, 5]. They are especially well suited for reproduc-
ing images of real scenes or objects. For this purpose, the
light field model usually consists of a collection of images
or an image sequence of the scene from different viewing
angles, along with the intrinsic and extrinsic camera param-
eters for each image.

Very often image data is acquired by mounting a cali-
brated camera on a gantry or robot arm which is moved
around the object. However, using a hand-held camera
for recording the required image sequences is cheaper and
more flexible, although the camera pose information will
not be available as easily. Structure-from-motion tech-
niques, such as factorization methods, and camera calibra-
tion have to be applied to obtain the camera parameters [5].

So far, the light field was mostly restricted to the repro-
duction of static scenes. Allowing movement or deforma-
tion of objects in the scene adds a lot of complexity to the
tasks of acquiring, storing and rendering images from the
light field. Light fields which are variable in time are often
referred to as dynamic light fields.

∗This work was funded by the German Research Foundation (DFG)
under grant SFB 603/TP C2. Only the authors are responsible for the
content.

In this contribution we address the problem of dynamic
light field acquisition considering only one hand-held cam-
era, one or more rigid but permanently moving objects in
the scene, and long image sequences of more than 100
frames. In addition to that, we propose a new rendering
algorithm for the resulting light field which allows using all
input images simultaneously for rendering each time step.

Object segmentation, camera pose and scene reconstruc-
tion are done using a multibody segmentation algorithm by
Kanatani [6, 7] and a factorization [9] for each object. Since
these algorithms are only applicable for rather short image
sequences, we incorporate the multibody segmentation into
the method proposed by Heigl [5], which extends an ini-
tial reconstruction of a short subsequence to long image se-
quences.

In order to create a complete dynamic light field model
the independent reconstructions for each object are regis-
tered with each other and “time” steps of object motion are
identified by a vector quantization of the relative camera po-
sitions. Different time steps of the final light field are ren-
dered by creating mask matrices, the so-called confidence
maps, which suppress the use of image areas showing the
object at wrong time steps.

The applications of light fields range from augmented re-
ality to medical imaging. In endoscopic, minimally inva-
sive surgery [12] for instance, a light field of the operation
site allows the physician to view the area of interest from
any viewpoint without strain to the patient. But since the
surroundings during an operation are not static, modeling
by dynamic light fields would be appropriate. The method
proposed here could, e. g., be used to model the movement
of surgical instruments for light field reconstruction during
an operation.

Only few articles have been published on the topic of
dynamic light fields. The Light Field Video Camera [13]
captures moving scenes from different viewing directions
using 128 synchronized cameras. The rendering of dy-
namic light fields from this data was described in [3]. A
method for reconstructing a dynamic light field from im-
ages of a single camera is introduced in [10]. Here, dif-
ferent movement steps are recorded one after another and
registered with each other afterwards. In [1], the time steps
for a dynamic light field are defined manually and rendered
similarly to [10].

We will demonstrate the applicability of our method on



Figure 1: Two images of the crawler example sequence.
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Figure 2: Features tracked on the crawler object.

three example image sequences of 139 to 200 frames, each
showing a different moving object in front of a static back-
ground. The proposed combination of new and known tech-
niques covers for the first time the complete process of re-
constructing a dynamic, multibody light field from a single
input sequence, as well as its visualization.

2 Multibody Calibration

The starting point of the dynamic light field reconstruction
is an image sequence of a scene containing at least one per-
manently moving but rigid object in front of a static back-
ground. Two images of an example for such a sequence are
shown in Fig. 1, a toy crawler which moves in a circle on
a desk, while the camera is moved back and forth continu-
ously. In the following, the background will be considered
as another rigid object, since no distinction can be made a
priori between foreground and background. Thus, we as-
sume k objects, where k ≥ 2.

The following processing steps require the knowledge of
point feature correspondences between the images of the
sequence. The gradient-based feature detection and track-
ing method employed here is described in detail in [14].

The average number of frames in which a feature is
tracked may be quite low, possibly as few as 10 to 20. As
an example, the features found on the moving object in the
crawler sequence are plotted in Fig. 2. Usually, none of the
features is visible throughout the whole sequence. For seg-
mentation, i. e., assigning each feature to one object, and
reconstruction using factorization, the features have to be
visible in every frame, so that this approach is only practi-
cable for rather short subsequences. Therefore, the succes-

Find initial subsequence with max. number of
features
Segment features into k objects
Factorize initial subsequence for each object

Get next adjacent frame fi

Segment new features in fi, initialized with
known features
Triangulate features using known projections
Estimate camera parameters for each object

UNTIL every frame calibrated

Figure 3: Structure chart of the multibody calibration for
long image sequences

sive approach illustrated in the structure chart in Fig. 3 is
applied and will be explained in the following sections.

2.1 Segmentation and Factorization

For both the segmentation and the factorization process a
measurement matrix W is created by concatenating the im-
age coordinates of all feature points. As already mentioned,
this requires that all feature points are visible in all images.
Therefore, the first step is to automatically find the subse-
quence with the highest number of visible features.

The segmentation is based on the method by Costeira [2]
for factorizing scenes with independently moving objects.
Two extensions of this algorithm, proposed by Kanatani
[6, 7], significantly improve the robustness with respect to
noise and are applied here1. Segmentation and factorization
are performed in two separate, consecutive steps.

The underlying principle of the segmentation algorithm
is that W is of rank 4 in the perspective case for a static
3-D scene, and each additional moving 3-D object increases
the rank of W by up to 4. The objects are identified by
separating the subspaces of W and thus the features it is
composed of. For detailed descriptions of the algorithm we
refer to the literature [2, 6, 7].

Once the feature points on each object have been identi-
fied, the 3-D structure and camera positions relative to each
object are determined. For this purpose, a paraperspective
factorization method [9] is applied to each set of features,
followed by an iterative non-linear optimization step opti-
mizing in turn the camera pose and 3-D point positions [5].

2.2 Long Image Sequences

As shown in the structure chart in Fig. 3, three main steps
after determining the next frame are performed iteratively
to calibrate the remaining unknown cameras. First, all fea-
tures are selected which are visible in at least Fp calibrated
frames and which were not considered for the factoriza-
tion or the preceding iteration, where Fp is smaller than
the number of frames for the initial factorization. These are
also segmented using the above segmentation algorithm. In
order to increase the underlying amount of data, and thus
robustness, the already assigned features are used as well,

1The source code was kindly provided by the authors at
http://www.suri.it.okayama-u.ac.jp/e-program.html
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Figure 4: (a) Reconstruction results of the background of
the crawler scene. (b) Reconstruction and quantization of
the object into four time steps.

and the algorithm is initialized with the known segmenta-
tion to decrease the computational cost.

Secondly, the newly found and segmented points are tri-
angulated using the camera parameters of the respective ob-
jects. Features with a back-projection error above a thresh-
old are discarded as either erroneous or misclassified.

In the last step the camera pose of the new frame f i is es-
timated using the now known 3-D feature points. Every fea-
ture in fi which already has a 3-D correspondence is used
to estimate the correct camera parameters by minimizing
their back-projection error. The parameters are initialized
with the parameters of the preceding camera. As before,
the estimation has to be done for each object separately.

These three steps are repeated for all remaining uncali-
brated frames. The next frame is chosen alternatingly to be
the one before or after the already calibrated subsequence.
The results of such a calibration can be seen in Figures 4(a)
and 4(b) for the background and the independently moving
toy crawler of the sequence of Fig. 1. The reconstructed
feature points on the respective objects are visualized as
white dots, while the camera poses relative to the back-
ground or the crawler, respectively, are depicted as pyra-
mids with their base towards the viewing direction.

3 Light Field Reconstruction and Rendering

In an earlier contribution on dynamic light fields [10], the
visualization was based on the assumption that different
time steps in scene motion are available. In our case, time
steps are equivalent to similar states of object motion. Thus,
the goal of reconstruction is to identify and combine images
with similar object positions and orientations to individual
time steps.

3.1 Time Step Identification

After calibration, the camera motion relative to each object
is available and can be used to infer the motion of the object.
This camera motion not only depends on the motion of the
object, but it also includes the motion of the camera itself.
In order to get the real motion relative to the object, the
camera’s own motion has to be eliminated.

Since no common world coordinate system is available,
the reconstruction for each object will differ from the oth-
ers by an arbitrary rotation, translation and scaling. This
issue has not been addressed in [2], but it was encountered
likewise for the dynamic light fields in [10].

The object containing the most features is selected as the
background of the scene. Assuming that the poses of the
first background camera P0,1 and the first camera of any
object Pi,1 are the same, any object camera can be trans-
formed to the background coordinate system:

P ′
i,j = Pi,jM

−1
i,1 M0,1 , (1)

where Mi,j is a 4 × 4 extrinsic camera parameter matrix
for object i and camera j. It is built from the rotation R i,j

and translation ti,j of the respective camera. A camera pa-
rameter matrix Pi,j is thus composed of

Pi,j = (Kj |03)Mi,j =

= (Kj |03)
(

RT
i,j −RT

i,jti,j

0T
3 1

)
.

(2)

Kj is the 3×3 intrinsic camera parametermatrix for camera
j.

The inverse transformation is applied to each (homoge-
neous) 3-D object point. The remaining scale factor is de-
termined by assuming that the 3-D points should be at the
same distance from the cameras. Therefore, the scaling is
calculated as the ratio between the distances of the centers
of mass of the 3-D point clouds of object and background,
and again applied to each camera and point.

Both background and object reconstruction are now in
the same coordinate system, although the transformation
may not be exact since the scaling is calculated only by
a heuristic measure. An accurate calculation of the scale
factor will be subject to future work. The object-relative
camera movement is now calculated as the transformation
between the positions of two corresponding cameras M0,j

and M ′
i,j , transformed back to the common coordinate sys-

tem by M0,1:

P ′′
i,j = (Kj |03)M0,1M

−1
0,j M ′

i,j . (3)

From these corrected camera matrices the similar object
positions are calculated by applying a vector quantizer to
the camera position vectors. The desired number of time
steps can be specified and the camera positions are grouped
around a codebook vector for each step, minimizing the
intra-class distance. An example for the resulting quanti-
zation is shown in Fig. 4(b) for the crawler sequence. Here,
the camera positions are subdivided into four time steps.

3.2 Rendering

By separating the resulting time steps into one static light
field each, the rendering can be done again like in [10] by
enabling the renderer to switch back and forth between the
light fields. However, this approach has the drawback that
only a fraction of the images can be used for each time step.

The new rendering technique we propose is based on the
Unstructured Lumigraph [1], but it is applicable to other
renderers as well. So-called confidence maps are calculated
for each image in the sequence and for each time step. They
contain information about which parts of an image are to be
used for which time step. The confidence map may contain
three different values, e. g., 0 for the foreground object if it
is invisible, 2 if it is visible, and 1 for all background pixels.
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Figure 5: Two images each of the phone (a, c) and head
(b, d) example sequences. (e) Phone and (f) head object
reconstruction and quantization of six time steps each.

Whether a pixel in an image belongs to the background or
the object is determined by the following procedure: The
segmented feature points in each image are connected by
a mesh using delaunay triangulation [11]. A triangle is as-
signed to a moving object if at least one of its vertices be-
longs to the object. Otherwise it is allocated to the back-
ground.

During rendering, contributions from different images
are weighted according to these confidence values. Thus, if
several images contribute to a rendered patch, pixels from
the object at a wrong time step are discarded, while pixels
from the object at the correct time step will always overlay
background pixels from other images. This ensures that for
rendering the background, all images can be used for every
time step, and a selection of images is only necessary for
the moving object. Rendering different time steps is done
by switching from one set of confidence maps to another.

4 Experiments

As examples for the reconstruction of long image se-
quences, three real sequences showing different moving ob-
jects in front of a static background were chosen. Beside
the crawler sequence of Fig. 1, the examples show a ro-
tating telephone arm (Figures 5(a) and 5(c)) and a person
turning his head from left to right (Figures 5(b) and 5(d)).
A prerequisite for the reconstruction to work is that enough
features are found on each object. The examples were se-
lected accordingly.

The total number of frames in the sequences ranged from
139 to 200, but the initial factorization was done on 10

sequence frames feat. bg feat. obj corr. obj
crawler 139 2117 1150 16.7
phone 145 2198 234 51.8
head 200 1172 718 88.1

Table 1: Some statistics on the example sequences: total
number of frames (2nd column), total number of features
on background (3rd column) and object (4th column), and
average number of point correspondences per feature found
on the object (5th column).

(crawler) to 35 (head) frames only, depending on the size
of the moving object. The total number of features assigned
to background and object can be seen in Table 1, as well as
the average number of point correspondences used on the
object. Each feature had to be visible in at least 8 frames to
be used for 3-D reconstruction.

The final result of the object reconstructions for each se-
quence are depicted in Figures 4(b), 5(e) and 5(f), respec-
tively. Here, the final camera path is visible which results
from deducting the camera’s own motion. The quantization
by camera position, as described in Sect. 3.1, is illustrated
by different shades for each “time” step.

Figure 6 shows four images rendered from the resulting
light fields for each of the three sequences, using the ren-
dering method introduced in Sect. 3.2. For all four images
of each sequence, the camera pose was the same, which
is reflected by the identical background in each image, but
the object was rendered for four different time steps, and is
thus at different positions. Note that the camera poses for
the rendered images were not part of the original sequence,
but chosen arbitrarily. For the crawler light field the image
sequence was subdivided into eight time steps, while the
other two light fields consist of six time steps each.

5 Conclusion

In this contribution we proposed a solution for reconstruct-
ing a dynamic light field of a scene including at least one
rigidly moving object. Prior to factorizing an initial sub-
sequence for the background and each moving object sep-
arately, a motion segmentation algorithm is applied to au-
tomatically acquired features. The calibration is extended
to the whole sequence by alternatingly triangulating and
segmenting additional features and calibrating new frames.
For the final light field the resulting 3-D reconstructions for
each object are merged into a common coordinate system
and a common scaling is approximated. The camera posi-
tions are then divided into different “time steps” of similar
camera positions. Rendering is done by masking the mov-
ing objects in the original images that belong to time steps
which are currently not observed using confidence maps,
while the static background is used from every image.

Although this method already constitutes an improve-
ment over an earlier system for dynamic light field recon-
struction [10], many further developments are possible. The
rendering quality is still limited by the precision of the ob-
ject segmentation in the original images. However, many
improved segmentation algorithms exist which are better



Figure 6: Rendered images for four different time steps of the crawler (top row), phone (middle row) and head sequence
(bottom row), seen from the same camera position.

suitable for this task than the currently used one. In recon-
struction, the next step will be to consider cases of disrupted
motion, disappearing and new objects. Calculating the true
scale factor between the different reconstructions of each
object remains an open problem.
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