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Abstract. We present a new method for planning the optimal next view fora
probabilistic visual object tracking task. Our method usesa variable number of
cameras, can plan an action sequence several time steps intothe future, and allows
for real-time usage due to a computation time which is linearboth in the number
of cameras and the number of time steps. The algorithm can also handle object
loss in one, more or all cameras, interdependencies in the camera’s information
contribution, and variable action costs.
We evaluate our method by comparing it to previous approaches with a prere-
corded sequence of real world images.

From K. Franke et al.,Pattern Recognition, 28th DAGM Symposium, Springer, 2006, (pp. 536–545).

1 Introduction

This paper describes an enhanced method for selecting a sequence ofoptimal sensor
actionsfor a probabilistic state estimation system. The optimal actions are those that
minimize the expected uncertainty of the state probabilitydistribution function, mea-
sured by the expected state entropy. We apply this method forview planning in an object
tracking task. In this task, the sensor actions affecting the view are the camera zoom set-
tings. However, this method is not restricted to zoom planning. It can also handle other
camera actions, such as panning, tilting or translation, and is equally applicable to other
active state estimation tasks.

A large amount of research in the area of view planning existsfor object recognition
tasks [1–3], in which the active selection of views directlyreduces the uncertainty in
classification. For active object tracking many works involve the changing of zoom set-
tings [4–6]. However, these methods keep the size of the object in the images constant,
as opposed to minimizing the uncertainty of the estimate of the object position. Previ-
ous work in uncertainty reduction includes [7], in which a subset from a set of sensors
is chosen to meet certain threshold criteria. A more generalapproach is followed in [8],
where actions are chosen which maximally reduce theexpected entropyof the object
position in space as a measure of positional uncertainty.

Previous work [9] has extended this approach to optimize a sequence of actions for
view planning. This extension allows variable action costs, such as occur due to limited
camera zoom motor speeds, to be incorporated into the optimization. Potential object
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loss is dealt with by evaluating each possible sequence of object visibility in avisibility
tree (see section 2 and Fig. 1). A subsequent improving work [10] aimed to address
several shortcomings of this method, such as the inability to efficiently handle an object
visible in only a subset of the cameras, with the use of thesequential Kalman filter. By
applying a visibility tree to each camera separately, the computational cost is linear in
the number of cameras, and partial visibility can be handled.

The main problem with the still remaining visibility tree isthat its size, and therefore
the computation costs for view planning, are still exponential in the number of time
steps. In this work, we propose a new method, which flattens this visibility tree, thus
achieving linear runtime.

We test our approach with a prerecorded image sequence from up to three cameras.
This sequence is scaled with a variable scale factor to simulate a changing focal length,
while allowing several algorithms to be compared independently on the same data.

This paper is organized as follows: The next section reviewsthe current state of
view planning for active object tracking and describes the notation used in this work.
Section 3 details the method of visibility tree linearization to reduce computation time.
Section 4 covers the experiments, comparing the previous methods to our new one. The
last section summarizes and concludes this paper, and listspotential future work.

2 Kalman filter and action selection

Tracking an object in 3D is defined as a state estimation problem, which we solve with
the well-known Kalman filter [11], extended to handle sensoractions. To accommodate
the non-linear nature of the observation functions involved, we use theextended Kalman
filter [12, 13], although this distinction is not relevant for thiswork.

The (extended) Kalman filter estimates the state of a discrete-time dynamic system.
At time t, the state is described in the state vectorqt ∈ IRn. The cameras generate an
observationot ∈ IRm from the state. The state change and observation equations are

q
t
= f(q

t−1) + w , ot = h(q
t
, at) + r (1)

wheref (·) ∈ IRn is the state transition function andh(·, ·) ∈ IRm the observation
function, based on the cameras’ projection function.w andr are normal error processes
with zero mean and covariance matricesW andR.

For active object tracking, the observation function also contains anactionparame-
ter at ∈ IRl, which combines all influences on the observation process, such as zoom-
ing, panning, tilting, or translating the camera. For this work, we focus on zoom plan-
ning as the camera action. The action is performedbeforean observation is made.

Given the noise terms, the state must be estimated each time step. Specifically, we
must calculate the state probability distributionp(q

t
|〈o〉t, 〈a〉t), given the sequences

of all observations〈o〉t and all actions〈a〉t taken up to, and including, timet. Within
the Kalman filter framework, this distribution is assumed tobe a normal, or Gaussian,
distribution.

We use the following Kalman filter notation:̂q−

t and q̂
+

t are thea priori and a
posterioristate estimate means at timet. P−

t
andP +

t
are the covariance matrices for



the errors of thea priori anda posterioristate estimates. The extended Kalman filter
performs the following steps for each time-stept:

1. Prediction of the state mean̂q−

t
and covarianceP−

t
:

q̂
−

t
= f(q̂+

t−1) , P−

t
= F tP t−1F t

T + W (2)

2. Computation of the filter gainKt:

Kt = P−

t
Ht

T(at)
(
Ht(at)P

−

t
Ht

T(at) + R
)−1

(3)

3. State update with the observationot:

q̂
+

t
= q̂

−

t
+ Kt

(
ot − h(q̂−

t
, at)

)
, P +

t
(at) = (I − KtHt(at))P−

t
(4)

F t andHt(at) denote the Jacobians off (·) andh(·, ·) at q̂+

t−1 andq̂
−

t
respectively,

to account for non-linear functions. SinceHt(at) depends on the selected actionat,
the a posterioristate covarianceP +

t
does, too. If no valid observationot is made at

time t, the update step cannot be performed andq̂
+

t
, P +

t
are equal tôq−

t
, P−

t
.

Since we are interested in obtaining the most information about the state, we need to
determine the optimal actiona∗

t
where the uncertainty is lowest. In [8], this is achieved

by finding the action where theentropyof the a posteriori probability distribution
p(q

t
|〈o〉t, 〈a〉t) is minimal. As this is a normal distributionN (q̂+

t
, P +

t
), the entropy

is equal tolog
(
|P +

t |
)

up to constant terms and factors. These constants can be ignored
during optimization. The entropy depends on the covarianceP +

t , and therefore onat,
butnot onot. This allows to determinea∗

t
beforemaking an observation.

The problem of visibility in object tracking is also addressed in [8]. An observation
ot, containing the position of the object being tracked in eachcamera, is only valid if
the object is ineverycamera’s field of view. We refer to anot ∈ IRm lying outside of
the field of view as anon-visible observation. The probabilityw that the object lies in
the field of view of all cameras can be calculated from the predicted observation for
any actionat by integrating the probability density of the observation over the camera
sensor. The expected entropy for an action is then the weighted combination of the
entropies for each case of visibility, or for optimization purposes

a∗

t
= argmin

at

(
w · log

(
|P +

t
(at)|

)
+ (1 − w) · log

(
|P−

t
|
))

(5)

This action selection has been extended to a sequence of future actions in [9]. For
a sequence,w is extended to avisibility tree, which is a binary tree in which each
branching represents a visible or non-visible outcome. Theentropy for each possible
sequence of visible or non-visible observations is calculated and then summed up by
walking up the tree again.

An example of such a tree for two time steps is shown in Fig. 1. In this example,
each node represents one of the two possiblea posterioricovariance matrices. Light
nodes are the predicted result of a visible observation, dark nodes of a non-visible one.
In each time step, the probabilities of visibility or non-visibility are given by thew and
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Fig. 1.The visibility tree for two time steps. The calculation starts at the top at timet. The nodes
represent possiblea posterioricovariance matrices for subsequent time steps. Light nodesare
the result of a visible observation, dark nodes of a non-visible one. See the text for a deeper
discussion of the visibility tree.

(1−w) terms (note thatw2 6= w3). The total expected entropy is the weighted sum of the
four entropies based on the four final covariances. The covariances are tagged with the
visibility sequence they resulted from. For example,P +−

t+2 is obtained by first assuming
a visible observation (+) followed by a non-visible one (−). The final expected entropy
for this example is (ignoring constant terms):

w1w2 log
(
|P ++

t+2|
)

+ w1(1 − w2) log
(
|P +−

t+2|
)

+ (1 − w1)w3 log
(
|P−+

t+2|
)

+ (1 − w1)(1 − w3) log
(
|P−−

t+2|
)

This action selection can also be performed with thesequential Kalman filter[12].
The sequential Kalman filter is a sequential evaluation method of the standard Kalman
filter, in which the sensors are processed in sequence. This method is equivalent to pro-
viding each sensor with its private Kalman filter and can be used when the observation
noise for each sensor is uncorrelated. Thea posterioridistribution of one sensor’s filter
is used as thea priori distribution for the next. Fig. 2 gives an overview of the sequen-
tial state estimation process. The advantage of the sequential Kalman method is that the
visibility is no longer determined by the object being in thefield of view of all cameras;
partially visible observations can also be handled by skipping a camera’s filter if the
object is not visible.

The disadvantages are that the sensor noise must be uncorrelated between sensors
for the sequential Kalman filter, and that the result may depend on the order in which
the sensors are processed. While the traditional Kalman filter with linear prediction and
observation models does not depend on the order of the sensors, the extended Kalman
filter obtains the JacobiansF t andHt(at) by deriving at the current state estimate.
Since this state estimate is affected by the observations from previous sensors, the Jaco-
bians will differ if different sensors are processed beforehand. However, this difference
is comparable to the differences encountered in the Jacobians in the non-sequential ex-
tended Kalman filter, where the Taylor expansion is also performed on the current best
estimate instead of the true state, and is usually ignored.

The sequential Kalman filter is used for multi-step action selection in [10]. Each
camera action is optimized independently by the method of [9], on the assumption that
changing the zoom level in one camera will not influence the information gained in



Fig. 2. The sequential Kalman filter. Each camera adds its observation to the state estimate in
sequence. Thea posterioristate estimate of the last camera is transformed to thea priori estimate
of the first camera on the next time step.

another camera. This sequential multi-step action selection still uses the visibility tree
from the original multi-step method. Partial visibility (in some, but not all cameras) is
handled explicitly during tracking and implicitly in the optimization process.

However, this gives rise to another problem. During the action planning step, the
predicted uncertainty is calculated by the contribution ofa single camera, disregarding
the others. In the Kalman filter’s update step (equations (3)and (4)),P +

t
is derived

from P−

t
using only the observation function of this single camera. This leads to an

overestimation of thea posterioricovariance in the planning phase, which results in an
overly cautious action planning. This omission can be rectified by including the effects
of the other cameras onP +

t . However, to avoid another visibility dependency and keep
the visibility tree small, these other cameras must follow actions which are assumed to
guarantee an observation, which still overestimates the covariance during planning.

3 Linearization of the visibility tree

For the multi-step multi-camera sequential Kalman filter, as seen in Fig. 3, the output
of each individual filter during tracking (such as the one marked in the figure) becomes
the input of the next one. This output is the probability density of the state estimate at
this time, with the observation of this camera embedded if itwas visible, and skipped
if it was not. For view planning, this means that each individual filter hastwo possible
outputs which need to be considered, with covariance matricesP +

t
andP−

t
, since the

expected state mean is the same in both cases.
The previous methods have handled these with a visibility tree, as detailed in the

last section. Spanning a visibility tree for the full sequential filter is prohibitive, since
the size of the tree is exponential in the number of cameras and time steps. The so-
lution which uses the sequential Kalman filter reduces this complexity somewhat by
optimizing actions for each camera separately. However, the visibility tree size is still
exponential in the number of time steps, and the expected covariance is overestimated,
as mentioned previously.

The visibility tree can be flattened by closely looking at thetwo probability distri-
butions that can result in one time step. The two resulting distributions are Gaussian



Fig. 3. The sequential Kalman filter during multi-step evaluation.The output of one individual
filter becomes the input of the next filter in the same time stepor the first filter in the next time
step (after the state transformation, not shown here). The dashed circle marks one individual filter.

distributions and differ only in their covariances,P +

t
andP−

t
, but not in their means,

as the expected mean does not depend on the visibility in the view planning step. Since
we know the probabilityw ∈ [0, 1] that one of these two distributions will be the actual
output, we can consider them to be two components of a mixturedistributionM,

M = w · N (q̂+

t , P +

t ) + (1 − w) · N (q̂+

t , P−

t ), (6)

which describes the expected distribution of the state after performing actionat. Since
this is an unimodal distribution, we can approximate it by a new Gaussian distribution
with the same covariance. As known in statistics, the covariance matrix ofM is:

P ◦

t
= w · P +

t
+ (1 − w) · P−

t
(7)

Therefore, our approximating Gaussian is of the formN (q̂+

t
, P ◦

t
).

This distribution can now be used as an estimate of the resulting state probabil-
ity distribution after visibility is considered. Note thatthe Gaussian distribution is an
approximation of the mixture distribution, with same mean and covariance, but with
different density functions.

The benefits of this approach are obvious. Since each individual filter in a multi-
step multi-camera now only results in a single output distributionduring view planning
as well, the effects of an action can now be calculated in linear timein the number of
cameras times the number of time steps. This can be seen in Fig. 3, which is now equally
valid for the view planning process. Since the actions are optimized for all cameras at
the same time, this approach also fully handles dependencies in the actions of different
cameras, unlike the previous sequential method which used aseparate optimization.

Although the entropy of the final expected distribution, based onlog
(
|P ◦

t+k
|
)
, dif-

fers from the actual expected entropy, thebehaviorof the system is close enough such
that the optimal action can be searched for. This can be seen in the next section, where



object

calibration pattern

Fig. 4. The views of the test setup from all three cameras at the same time. The colored bottle is
tracked as it turns on the turntable. The calibration pattern is used to initially calibrate all cameras,
it is not used during tracking.

several approaches are compared on the same data. The behaviour is visible when com-
paring the original single-step approach to the one based onP ◦

t+k
: both approaches are

very similar when no visibility problems are encountered.

4 Experiments

We test our new method on a recorded video sequence, shown in Fig. 4. Three cameras
take a high-resolution image of the scene, consisting of an object moved by a turntable.
The cameras are calibrated to a global coordinate system with the calibration pattern,
which is not used for the tracking process. The object is tracked with a color histogram
tracker [14].

The prerecorded images allow several view planning methodsto be compared on
the same data. However, this precludes the effect of the camera zoom on these images,
unless we simulate this zoom on the original images. The original images are 640 by
480 pixels, but the tracking process uses images of size 320 by 240 pixels. To obtain
this size reduction, and simulate the camera zoom, we scale and crop the original image
by an amount which depends on the associated zoom level. Whenfully zoomed in, the
transformation only crops a 320 by 240 pixel image from the center of the original.
As the zoom level decreases, the cropped region becomes larger and is subsequently
scaled to the correct size. When fully zoomed out, the original images are only scaled,
no cropping occurs. Using such a reduced image size ensures that, even when fully
zoomed in, no upsampling artifacts occur.

The advantages of multi-step view planning have been detailed in [9] and [10]; no
detailed comparison to single-step planning will be made here. We will focus primarily
on a direct comparison between the previous planning method(cf. section 2), which
used separate optimization, and the newly proposed one (cf.section 3).

We test both systems on the same data, as detailed above. Eachplanning system
recommends the next view for the tracking system in the form of a set of actions. The
optimal action set is planned with the global optimization technique of Adaptive Ran-
dom Search [15], evaluating a total of 400 separate action sequences per time frame.
Each action sequence contains the next actions for each camera for the next time steps.
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with three cameras plotted for image numbert. Shown are the
plots for no planning, planning 4 steps ahead using the old, independently optimizing method,
and the new proposed method.

In our experiments, we planned one to four steps ahead with upto three cameras, so
each action sequence contains up to 12 separate zoom settings.

Fig. 5 shows the entropy of the object position during the tracking process by mea-
suringlog

(
|P +

t
|
)
. Note thatP +

t
is the result of the actual tracking phase, and not a re-

sult from the view planning. However, the view planning influences the tracking results
both positively (by providing zoomed in views, reducing theentropy) and negatively
(by zooming in too far, causing object loss and raising the entropy). This experiment
uses three cameras. The plots show the results for unplannedtracking, planning 4 steps
with the independent optimization, and 4 steps with the new method.

Both planning methods result in an uncertainty, measured bythe entropy, which is
lower than when no zoom planning is used. But it can clearly beseen that the orig-
inal approach with separate optimization still results in ahigher uncertainty than the
new approach. Since the expecteda posterioricovariance is overestimated, the actions
planned by this system are not as aggressive as those calculated with the new system.
The new system plans views which are zoomed further in, whichlowers the entropy, in
many cases by quite a large amount. Only in a few cases (near image numbers 72 and
142) do these zoom levels prove overconfident, resulting in short object losses and a
higher entropy than the original approach.

Fig. 6 compares the new multi-step approach, looking 4 time steps into the future, to
the single step approach. The experiments are the same as in Fig. 5. Both plots are very
similar, showing that the behaviour of the view planning using the combined covariance
P ◦

t+k
is very close to the original behaviour, if at times slightlyworse due to the more

cautious approach of multi-step planning. The most notabledifferences occur around
image numbers 101 and 153 in the right half of the plot. The object starts moving out of
the field of view of one or even several cameras. The single step planning is caught off
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with three cameras plotted for image numbert. The single-step
planning method and the new proposed multi-step method for 4time steps are compared.

Table 1. Computation time. Shown are the average computation times for evaluating a single
action sequence for one to four time steps, two and three cameras, with the old and the new
method. All times in ms.

Time steps planned old method new method
two camerasthree camerastwo camerasthree cameras

1 step 0.115 0.173 0.095 0.124
2 steps 0.390 0.597 0.163 0.224
3 steps 0.945 1.457 0.247 0.333
4 steps 2.055 3.022 0.293 0.431

guard by this, resulting in object loss and large spikes in the uncertainty. The multi-step
approach is able to predict the object loss better and avoidsthese spikes.

Another important aspect is the comparison of running times. The running times
per frame for several different cases are given in table 1. Note that while the original
algorithm required exponential time per frame (yet was linear in the number of cameras
due to the independent treatment), the new approach is aboutlinear in the number of
time steps as well. All times are in milliseconds on a PentiumIV processor at 2.66 GHz.

5 Conclusion

We have presented a new approach for multi-step multi-camera view planning for object
tracking, based on the method of entropy minimization. Thisapproach runs in linear
time in the number of cameras and time steps. It can incorporate action costs through
the evaluation of several time steps into the future. It is capable of handling a variable
number of cameras, partial visibility, and interdependence in the camera actions. The



general nature of this approach allows it to be applied to a wide variety of active state
estimation problems outside of visual object tracking.

Additional work will focus on expanding the action space to also allow camera pan
and tilt motions. Another topic is the combination of view planning for tracking with
view planning for other tasks, such as object reconstruction or object recognition.
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