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Abstract. Magnetic resonance imaging is one of the most important
imaging modalities. However, local magnetic inhomogeneities of the coils
system and susceptibility effects can cause severe problems for post-
processing of the data sets and medical diagnostics. In literature, these
artifacts are called signal inhomogeneities caused by a bias field. The
approach proposed in this article presents a new regularizer for an en-
tropy based method to correct these signal intensity artifacts. In con-
trast to most state-of-the-art methods, our approach introduces a-priori
knowledge about the used data sets. The additional knowledge about the
images is stored in histograms. It can be computed from either an at-
las or previously acquired images. Furthermore, it can be automatically
approximated from the histogram of the given image. The bias field is
modeled by bi-cubic splines. In order to estimate a bias field approxima-
tion, each node defining the bias field model, is iteratively optimized. As
distance measure a combination of the entropy within the images and to
regularize the computation of the bias fields, the Kullback Leibler dis-
tance to the reference histogram is used. First, the proposed approach
was evaluated using simulated brain images. Furthermore, the algorithm
was tested on real T1 weighted data sets acquired in clinical routine;
thus, the volumes included lesions and other pathologies. The results
show, that using a-priori knowledge as additional regularization can en-
hance the robustness of bias field correction algorithms. Compared to
Homomorphic Unsharp Masking, our approach increased the SNR by up
to 3.7 db.

1 Introduction

MRI is the preferred imaging modality of the brain due its excellent soft tis-
sue contrast. Susceptibility effects and local inhomogeneities of the coils sys-
tem on the other hand can influence signal intensity values. This means, that
a single tissue class might have different intensities within a single volume. In
general, intensity inhomogeneities have no significant influence on medical di-
agnostics, but automatic segmentation and quantification methods will fail as
these heavily depend on the observed image intensities. In the last decade several
algorithms to correct these inhomogeneities (bias field, gain field) in MRI im-
ages have been developed [1]. In the following the most widely used approaches
are summarized. Basically there are two types of methods: classifying and non-
classifying approaches. For each pixel all methods assume a multiplicative bias



field yi = xi · bi + ni, where yi is the observed image intensity, xi is the ideal
image intensity and bi is the bias field value. The additive noise ni is neglected
in general.

The quality of the correction of classifying methods is highly related to the
segmentation results they provide. If a reliable segmentation was possible, the
resulting bias fields are estimated very accurately. A drawback of these methods
is, that they cannot be generalized to other body regions or sometimes even to
different pulse sequences. Ahmed et al. [2] present a bias field correction method
based on a segmentation using a modified fuzzy c-means approach. In [3] the bias
field is estimated by modeling the brain intensities by a mixture of Gaussians.
The mixing parameters as well as the bias field are approximated using the
expectation maximization algorithm.

Non-classifying methods are more general and usually faster. However, the
resulting bias field is not as precise as the estimated bias field of classifying
approaches. In general non-classifying bias field correction methods require ad-
ditional assumptions about the shape of the bias field, like smoothly varying
intensity inhomogeneities. Furthermore, most approaches rely on the assump-
tion that all tissue classes are homogeneously distributed in the MRI image.
Simple methods for intensity correction are fitting a polynomial surface to the
image intensities and frequency domain filtering. These approaches are directly
derived from the mentioned assumptions. Based on this Axel et al. propose a
method called Homomorphic Unsharp Masking (HUM)[4]. Sled et al. propose
a nonparametric method for automatic bias field correction (N3) that relies on
image statistics [5] only. The histograms of images affected by bias fields are
smoothed, as intensities of a single tissue class are spread. Consequently, the
entropy of the images is increased. In [6] Salvado et al. a method is introduced
that relies on the minimization of the entropy of the images. In this article we
introduce an extension to Salvado’s method [6] that utilizes prior knowledge
about the shape of the probability density functions of the data sets to increase
the robustness of the algorithm.

2 Methods

2.1 Entropy Minimization

Salvado’s method [6] bases on the assumption that the observed images are
composed by an ideal image corrupted by signal inhomogeneities, that can be
approximated using a bi-cubic spline model. As the observed image contains in-
formation of both signal components, the entropy of the corrected image has to
be smaller than that of the observed image. The correction approach iteratively
estimates a bi-cubic spline model that minimizes the entropy in the corrected
image. A regularizer has to be introduced into the optimization process, as oth-
erwise a trivial solution will be found.

The initial bias field estimation is based on a least-squares approximation
with a two-dimensional polynomial. A fourth order polynomial was used. After
that a bi-cubic spline interpolator is set up with a node spacing of d. The initial



bias field is used to initialize the nodes of the interpolator by evaluating the
polynomial B at the node locations of the interpolator.

The optimization itself is performed by a golden section search and parabolic
interpolation. The entropy is computed using

EΩ = −
gmax∑

l=gmin

hΩ [l] log (hΩ [l]) , (1)

where hΩ is the histogram of the active region Ω of the image Y . The histogram
has a binning resolution of half a gray level value and serves as an estimate of the
real probability density function (pdf). gmin and gmax are the minimal/maximal
possible gray values of the image. The bias field is obtained by evaluating the
estimated bi-cubic spline at each image position.

2.2 Histogram-based Regularization

In order to increase the robustness a histogram-based distance measure that
rates the similarity of the corrected histogram to a previously computed reference
histogram is introduced. We chose the Symmetric KL-Divergence

D̂KL(pY , pR) =
∫

t

pR(t) log
pR(t)

pX̃(t)pR(t)
dt +

∫

t

pX̃(t) log
pX̃(t)

pR(t)pX̃(t)
dt (2)

as similarity measure with pR(x) being the reference pdf and pX̃(x) being the
pdf of the corrected image.

The objective function is a combination of both measures with a parameter
α that defines the influence of the measures:

OEH = (1− α)EΩ + αDKL, (3)

where EΩ is the entropy, DKL the approximated KL-Distance.
Note that these two measures still have to be computed on their own his-

tograms: The entropy is calculated on the local histogram of region Ω whereas
DKL is always based on the global histogram.

The parameter α has to be chosen carefully, as the two measures cover dif-
ferent ranges which depend on parameters like the binning resolution for the
histograms or the input image size. In general the KL-Divergence yields larger
values than the entropy.

Combining both measures allows us to get rid of the regularizer proposed
by Salvado [6] and replaces it with a robust histogram-based distance measure.
However, an additional parameter α is introduced which has to be chosen care-
fully. Since the measures work on different histograms, there are little synergies
that can be used for optimization. This makes the computation time considerably
worse compared to the ”single-measure” approaches. A further problem of this
approach is how to acquire a reference histogram. There are three possibilities:

1. From reference data (e. g. an atlas)
2. From an image with a similar tissue distribution which is known to be bias

field free
3. Generated from the histogram of the disturbed image



3 Results

3.1 Simulated MR Brain data sets

Data: First, the proposed method was evaluated using simulated MR brain im-
ages provided by the McConnell Brain Imaging Centre (BIC) of the Montreal
Neurological Institute, McGill University [7]. All used volumes had a slice thick-
ness of 1mm and a resolution of 181×217 pixels. The reference images are taken
from undisturbed data without noise and bias field but inheriting partial vol-
ume effects. The distorted T1 and T2 images show 3% noise and signal intensity
inhomogeneities of 40%. The PD images have 3% noise and a linear bias field
with a strength of 50%.

Evaluation Method: As a quality measure we use the signal-to-noise ratio
(SNR) and peak signal-to-noise ratio (PSNR) between the true bias field and
the approximated bias field. The measures are defined as

SNR = 10 log10

( ∑N
i=1 b2

i∑N
i=1(bi − b̂i)2

)
and PSNR = 10 log10

(
Nb2

max∑N
i=1 (bi − b̂i)2

)
.

The signal to noise ratio is based on the ratio between noise energy and signal
energy. The values bi denote the reference bias field intensities and b̂i are the
values of the approximated bias field. Negative values indicate that the noise
power exceeds the signal power. PSNR is based on the ratio between the maximal
image power b2

max and the mean square error (MSE). For evaluation all bias
fields were scaled, such that the mean intensity value of the estimated fields
corresponds to the mean value of the true bias field.

Results: The correction results of the proposed method were compared to
Homomorphic Unsharp Masking (HUM). As only one image was available for
each acquisition protocol, the reference histogram had to be estimated from the
observed image. Using HUM a SNR value of sHUM,T1 = 14.88 db, sHUM,T2 =
17.27 db and sHUM,PD = 19.07 db and a PSNR value of pHUM,T1 = 17.42 db,
pHUM,T2 = 19.70 db and pHUM,PD = 22.78 db. The results for the proposed
histogram-based entropy optimization are sHR,T1 = 17.79 db, sHR,T2 = 19.63 db
and sHR,PD = 19.29 db and a PSNR value of pHR,T1 = 20.34 db, pHR,T2 =
22.06 db and pHR,PD = 23.01 db.

3.2 MR data sets from clinical routine

Data: The T1-weighted volume had a resolution of 208 × 256 × 19 with an
isotropic in-plane resolution of 0.86 mm2, 7.2 mm slice thickness and TE =
14 and TR = 510 ms. The images were acquired during clinical routine on a
Siemens Symphony 1.5 T MR scanner at the clinics for diagnostic radiology at
the University of Erlangen.

Evaluation Method: As the bias fields of the data sets were not known, the
results were presented to several experts in order to judge the quality of the
correction result. This was done by presenting the images pairwise. The expert
had to evaluate which of the presented image he prefers. At this the evaluator



did not know which image was the original and which was corrected by HUM,
the entropy optimization approach introduced by Salvado [6] and the proposed
extension.

Results: In total all methods for bias correction increased the image qual-
ity. However, the difference between the different evaluated algorithms was not
as big as for the artificial images. There a several reasons for this. First, many
physicians are used to the intensity distorted images; thus, they prefer images
with slight intensity inhomogeneities. Moreover, only clearly visible differences
can be judged by the experts. Using the SNR and PSNR measures, small differ-
ences, that can affect segmentation algorithms for instance, can be measured as
well.

4 Summary

In this article we presented an extension to Salvado’s method [6] for bias correc-
tion basing on entropy optimization. The new regularizer increases the robust-
ness and the applicability of the method. Hence, it is possible to use the method
on a broad variety of problems. The experiments on simulated MR brain images
show, that the proposed method outperforms other state-of-the-art methods like
HUM. How to compute the reference images is still an open research topic. In
this article we used filtering techniques to generate the references from the his-
tograms of the disturbed images.
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