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Abstract

Artifacts caused by respiratory motion of the patient dur-
ing data acquisition in the field of emission or computed to-
mography require respiratory gating in order to track and
correct these artifacts. In this paper, we present a sys-
tem that uses Time-of-Flight (ToF) technology to compute
a three-dimensional estimate of the respiratory motion of a
patient. The work is characterized by three key contribu-
tions. The first is the employment of ToF sensors. Using
ToF sensors it is feasible to acquire a 3D surface model of
the chest and abdomen of the patient at frame-rates greater
than 15 Hz. The second contribution is an algorithm to de-
rive a surface representation which enables the estimation
of the 3D respiratory motion of the patient. The proposed
data-driven algorithm models the chest and abdomen three-
dimensionally by fitting distinct planes to different regions
of the torso of the patient. The third contribution is the pos-
sibility to derive a sub-millimeter accurate signal by ob-
serving the displacement of each plane. Our ToF modeling
approach enables marker less, real-time, 3D tracking of pa-
tient respiratory motion with sub-millimeter accuracy.

1. Introduction

Physiological motion in emission or computed tomogra-
phy leads to a reduction of overall image contrast and a loss
of sensitivity. A reduction in lesion detection, loss of ac-

curacy in functional volume determination and more diffi-
cult activity concentration recovery are the consequencesof
the associated blurring. Widely accepted approaches utilize
respiratory gating: Only data acquired during a certain res-
piration state is used for the computation of 3D reconstruc-
tions. Upto eight respiration states have proven to delivera
good trade-off between temporal resolution and noise in the
3D reconstructions [11].
Furthermore, adaptive radiotherapy of lung cancer requires
a breathing signal to enable the computation of 4D-CT mod-
els. Based on these data radiation delivery can be tracked or
gated.

2. State of the Art

Current methods to acquire or compute a breathing sig-
nal are:

1. Spirometry: measurement of the amount (volume)
and/or speed (flow) of air that can be inhaled and ex-
haled.

2. Markers are placed on the skin of the patient. The
position of the markers is tracked [8, 3].

3. Acquisition of stereoscopic imagesof torso and com-
putation of 3D torso surface points. Derivation of vol-
umetric information from the surface [10].

4. Hybrid techniques [7].
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Figure 1. Left: ToF camera MESA Imaging GmbH. Right: ToF
camera PMDTec GmbH.

It is worth noting that method 3 is the only published
method which is contactless and which enables the distinc-
tion between abdominal and thoracic breathing at a framer-
ate of 5 Hz. The method is equivalent to spirometry and pro-
vides drift-free volume information, which is not the case
for spirometry.
We propose an alternate method which is also contact-less
and therefore more closely related to method 3 than to meth-
ods 1 or 2. We suggest a system based on the emerging ToF
(Time-of-Flight) technology. ToF sensors provide a direct
way for acquiring 3D surface information of objects with a
single all-solid-state ToF camera by measuring the time of
flight of an actively emitted optical reference signal in the
infrared spectral range [2]. More recently, applications like
obstacle detection [9], gesture recognition [5][6] and auto-
motive passenger classification [4] are using ToF sensors.
Currently, ToF cameras are also on their way to become a
component of consumer electronics. Therefore, a decrease
of production costs for ToF sensors due to mass production
can be expected in the near future. As ToF sensors pro-
vide data at rates higher than 15 Hz, they are suitable for
real-time imaging. Examples of available ToF cameras are
shown in Figure 1. The 3D data available of a scene ob-
served with a ToF camera is a 3D point cloud. As each 3D
point corresponds to a pixel of the sensor matrix a triangu-
lation of the 3D point can be derived trivially. The distance
estimation of a point is accomplished by measuring the time
of flight of an optical reference signal emitted by the camera
and reflected by the scene. Besides the 3D information for
each pixel an intensity value corresponding to the reflected
amount of the reference signal is available. These intensity
values are normally encoded as grey values and can be used
to provide a texture for the 3D surface reconstruction. A
schematic overview of the ToF principle and an example of
the data available from ToF cameras is given in Figure 2.
We investigated the possibilities of extracting a breathing
signal from these 3D data and to distinguish abdominal and
thoracic breathing based on these information.

Figure 2. Left: ToF principle (R..distance,c..speed of light,
τd..travel time of impulsePopt). Right: 3D closed surface re-
construction of human hand.

3. Methods

Our method requires the ToF camera to be rigidly
mounted in a way which brings the full torso of the patient
into the field of view of the camera. This implies a dis-
tance of approx. 60 cm–100 cm between ToF camera and
patient. Figure 3 shows the examples of the acquired 3D
reconstructions. The patient is assumed to be lying on an
approximately planar table. The main steps of the method
are the following:

1. Calibration : An image of the empty patient table is
acquired. A best-fitting plane is computed for the sur-
face of the patient table. This plane will be used for
segmenting the torso of the patient in subsequent pro-
cessing steps. In Figure 4 this is the plane with the
number1. We will term this planetable-plane.

2. Segmentation of the torso: If the patient is lying on
the table, his complete torso is segmented by rejecting
all points which are are more far away from the ToF
camera than the table-plane, i.e. which are behind the
table-plane from the viewpoint of the ToF camera.

3. Defining Regions-of-Interest (ROI): Two regions of
interest are defined. One for the chest region and one
for the abdomen. This step is necessary when setting
up the camera the first time in the therapy room or pos-
sibly when patients of significantly differing size are
treated (like kids and adults).

4. Derivation of multidimensional breathing signal:
The 3D points of each ROI are processed with a mean
filter of kernel size five to reduce the influence of noise
and subsequently a best-fitting plane is computed for
the processed 3D points of each ROI. Each best-fitting
plane is not infinite but limited by a bounding poly-
gon which is determined by the silhouette of the seg-
mented torso. The Euclidean distance of each best-
fitting plane to the table-plane constitutes one dimen-
sion of the breathing signal. Thus, for two ROIs (chest
and abdomen in this case) a two-dimensional breathing
signal is derived.
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Figure 3. Acquired ToF-data. Left: female person. Right: male
person.

Figure 4. Segmented patient body. Left: female person. Right:
male person. The colored planes are the clipping planes computed
after segmenting the torso.

Figure 5. Examples of derived breathing signals. Left: breathing
signal for the breast. Right: breathing signal for the chest. The
vertical axis represents the time in seconds. The horizontal axis
the distance in mm between table-plane and best-fitting plane for
the corresponding ROI (chest, abdomen).

4. Evaluation

Available ToF cameras have a z-resolution of upto 1 mm.
This accuracy is only reached under optimal lightning and
illumination conditions. Our approach derives the breath-
ing signal from best-fitting planes which are computed from
probably noisy 3D points. Nevertheless, the usage of best-
fitting planes increases the stability. To validate this fact a
rigid, non-deformablemodel of the human torso was subject
to the whole processing chain described in section 3. Thus,
the breathing signal of a completely non-breathing patient
was computed for varying viewing angles of the camera
(from perpendicular viewing angle onto the patient table
upto 30◦ viewing angle). The still observed breathing mo-
tion indicates the achievable z-resolution of the breathing
signal. Considering a time-span of 20 seconds the standard
deviation of the distance of best-fitting plane for the torso
and the table-plane was computed. The computed values

were always smaller than 0.1 mm, i.e. the z-resolution of
the breathing signal is about a factor ten greater than the
resolution of the original ToF camera data and respiratory
motion can be detected in the sub-millimeter range.
To validate the correctness of the computed breathing sig-
nal we computed for 13 patients the correlation coefficient
of the computed breathing signal with the breathing signal
delivered by an ANZAI belt AZ-733V[1]. The patient was
advised to breath with the chest when the ANZAI belt was
attached to its chest and advised to breath with the abdomen
when the ANZAI belt was attached to its abdomen. For the
experiments a ToF camera SwissRanger SR3100 was used.
The results are displayed in Figure 6. The smallest com-
puted correlation value was 0.7.

Figure 6. Evaluation results: Correlation coefficients between res-
piration signal computed from ToF camera data and respiration
signal delivered by ANZAI belt.

5. Conclusion

We presented a non-invasive non-contact method for ac-
quiring respiratory signals based on 3D point cloud surfaces
which are acquired with a ToF camera. We have validated
that the signal can be decomposed into abdominal and tho-
racic components and is significantly correlating with the
reference breathing signal acquired with an ANZAI belt.
The computational time for computing the respiratory sig-
nals does take approx. 25 ms on a 2.0GHz single core CPU.
Thus, the proposed method is real-time capable. By deriv-
ing the respiratory signal of a certain anatomical region like
chest or abdomen from best-fitting planes and not the origi-
nal 3D point clouds a z-resolution of 0.1 mm is achieved.
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