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Abstract. This paper presents an overview description of ER-Force,
the RoboCup Small Size League team from Erlangen, Germany. The
current hard- and software design of the robots, the vision system and
strategy software are described. Furthermore upcoming changes and im-
provements will be outlined.

Fig. 1. ER-Force robot from 2008



1 Introduction

This paper describes the RoboCup Small Size team ER-Force from the Univer-
sity of Erlangen-Nuremberg. The team was founded in September 2006 on the
initiative of two students who formerly participated successfully at RoboCup
Junior competitions. The goal was to create a interdisciplinary research project
involving students from computer science, mechatronics and electrical engineer-
ing. To keep the team together and to foster robotics in Erlangen we decided in
2007 to found a non-profit association called ”Robotic Activities Erlangen e.V.”.
This association was since engaged in many robot-related activities including the
founding of two new Robot Junior teams at high schools in Erlangen. In 2007
we successfully participated at the RoboCup German Open in Hannover, Ger-
many and ranked fourth. We also successfully qualified for the RoboCup 2008
in Suzhou, China but could not participate due to the high travel costs. At
the RoboCup German Open 2008 in Hannover, Germany we achieved a second
place, our best result so far. Our current goal is a successful participation at the
RoboCup 2009 in Graz, Austria.

The following sections describe the various components of our current Small
Size team ER-Force, including new developments and planned extensions. The
team consists of six robots (including one spare), a vision system to localize
the robots on the field and a strategy module. The robots are completly remote
controlled by the offboard computer software. The hardware and firmware archi-
tecture of the robots will be described in section 2. The vision system will then
be explained in section 3 followed by the strategy module in section 4. Finally we
give a conclusion about the new developments we would like to test at RoboCup
2009.

2 Robot Architecture

The design of our 2009 robots is shown in Fig. 2. This year we put even more
emphasis than before on a weight saving construction. The six robots are iden-
tical in construction and the chassis consists of laser-milled aluminum plates
connected with angle brackets. The lower part of the chassis contains the motors
with wheels, the kicker with capacitor and the dribbler, while the upper part is
completely reserved for the electronics. The robot design is fully rule compliant
and has a maximum diameter of 175 mm and a maximum height of roughly 100
mm. The robot covers less than 20% of the ball along its z-axis projection at all
times.

2.1 Drive

To allow for an optimal mobility the ER-Force robots use an omni-directional
drive-system (see Fig. 2). It is similar to other Robocup Small Size teams like
[1], but uses only three wheels.



Fig. 2. CAD drawing of the new ER-Force design

Fig. 3. Omnidirectional aluminium wheels

The three wheels were custom built to provide optimal grip in the rota-
tion direction and minimal resistance in any other direction (see Fig. 2. Each
wheel is driven by a DC motor (Maxon A-max 22) with integrated planetary
gear, where the motor speed is controlled using a pulse-width-modulated signal
(PWM-signal). The actual speed of the wheels is monitored using quadrature
encoders attached to the motor shafts. This information is used to adjust the mo-
tor PWM-signal to achieve the desired wheel speed using a proportional-integral
(PI) controller which is running on a microcontroller at a control loop speed of
100 Hz. This system will be further improved using a cascaded controller and a
yaw rate sensor.

2.2 Kicker

Electric solenoid kickers are very common in Robocup Small Size teams [1].
To avoid the high voltages and large capacitors involved in such a system we
evaluated a pneumatic kicker in our 2008 design. This kicker consisted of 4 air
tanks, a pneumatic cylinder and an electronic valve. The system was pressur-
ized to a maximum of 20 bar before each game with an external compressor.
With a full tank this system could shoot at a speed of up to 5 m/s. However
the design turned out to be too unreliable, as the high pressure often caused a
loss of air or broken hose connections. In addition the poor shooting capabilities



did not satisfy our expectations. For this year an electric solenoid kicker is un-
der development, which consists of a high voltage capacitor with a capacity of
4900µF and the solenoid kicker itself with a resistance of 1.5Ω. The capacitor
is charged by a step-up charging circuit to a voltage of up to 200 V. To activate
the kicker a Power MOS-FET is used to drive the high current and voltage load.
The new system is currently capable of shooting the ball at a speed of up to 7
m/s. For reliable ball detection the new kicker will also use a light barrier. A
chip-kicking device using the same capacitor but a second solenoid is currently
in development.

2.3 Dribbler

The dribbler system in our current robots is placed above the kicking device (see
figure 2). Its purpose is to allow ball handling consistent with the Small Size
League rules, e.g. driving backwards with the ball. It consists of a rubber coated
bar driven by a small DC motor (Maxon A-max 19). This bar was designed to
exert backspin on the ball and keeping it in position. The current dribbler design
proved to be insufficient, as the rubber bar failed to exert enough force on the
ball. The bar is currently not mounted at an optimal height due to construction
restrictions and will be replaced by a better design.

2.4 Controllers

Our current robots are using three microcontrollers. An ARM7 receives the com-
mands from the radio module, runs the controller loop, and generates the PWM
signal. The encoder signals are evaluated by an ATmega8, which is connected
to the ARM7 via an SPI bus. Our new solenoid kicker is actuated by another
ATmega8 located on a different board. In order to provide a clean and consistent
interface to the different controllers in use, we wrote a library that encapsulates
hardware specific features such as PWM-signal generation or bus communica-
tion.

2.5 Radio Communication

After our strategy module (described in chapter 4) found the new destination
positions for the robots, the relative movement speed (in robot-local coordinates)
is calculated, and sent via USB to the radio sender. The sender has an ARM7
microcontroller which simply receives the data from its USB interface and sends
it to the robots using an NRF24L01 radio transceiver. The generated radio
packets have a variable size of 4 to 24 bytes, depending on the actual commands
sent.

3 Vision System

As latency is one of the main aspects in the RoboCup Small Size League, the
vision system has to be highly optimized. Our two cameras generate a datastream



of about 80 MB/s in which colors have to be segmented and objects have to
be found and tracked. This is done by a parallelized algorithm running under
GNU/Linux on an Intel Core 2 Quad CPU. An overview of the processing steps
involved in the vision system can be seen in Fig. 4.
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Fig. 4. Overview of the vision system

3.1 Image Acquisition

Our vision software captures images from two AVT Guppy cameras mounted
above the field. They are connected to a desktop PC via FireWire IEEE 1394a
and deliver one frame every 25ms (40Hz). 4.8mm lenses are used in order to get
a view of the entire field from a height of 4m.

3.2 Bayer Decoding

The captured images are coded in an 8-bit Bayer pattern, which has to be
decoded before we can search for colors. To achieve this we use two different
methods, both from libdc1394. At first the entire image is decoded with a bilinear
filter, which is very fast but provides poor results especially on edges. After
objects have been found that need to be identified (i.e. our own robots) we
decode the area of interest again using the AHD filter (see [2]), which provides
better results, but is much slower than the bilinear filter.

3.3 Color Segmentation

In order to find the objects (ball and robots) in the camera images a color seg-
mentation is needed. In the previous years we have used a simple YUV-based
range comparison to detect the colors. If the color of a pixel (in YUV color space)
is inside a specified range, it is believed to be of a certain color. This turned out
to be insufficient, because it could not handle simple relations between the color
components. Therefore a new approach was implemented. A look-up table is



Fig. 5. Raw camera image

used to categorize each pixel as yellow, blue, orange, or other. This table is gen-
erated before the game by a Lua script [3] which compares the relations between
the RGB components.

The script for the ball could look like this:

if r > 1.3 * g and r > 2.0 * b and r > 75 and b < 60 then
setColor(r, g, b, orange)

end

To remove outliers and to close gaps different morphological filters (opening
and closing) are then applied for each color. Afterwards connected regions are
found and the center of each region with a suitably chosen minimum size is trans-
formed into global field coordinates as described in the following paragraphs.

3.4 Distortion Correction

The images from our cameras are affected by a radial barrel distortion due to
the wide field of view of our lenses (see Fig. 5). To correct this distortion a
scaling of the image positions pimage towards the image center cimage has to be
performed:

pcorr = cimage + s ·
(
pimage − cimage

)
(1)

To improve the performance and to reduce the latency of the vision system
this correction is only done for each robot or ball position found in the color
segmentation step and not for the entire image. The scaling factor s depends on



Fig. 6. Color segmentation

R, which is the distance of the point pimage from the image center normalized to
the image size. It is calculated using a polynomial displacement function, which
models the barrel distortion:

s = a ·R4 + b ·R2 + c (2)

R =
||pimage − cimage||

||cimage||
(3)

The parameters a, b, and c have to be estimated either manually or automat-
ically. As the radial distortion is a property of the camera optics, the correction
parameters remain static when repositioning the cameras and have to be esti-
mated only once. So far the parameters have been estimated manually using
the field lines in a distortion corrected image (see Fig. 7). An automatic estima-
tion using a test pattern (similar to [4]) is currently under development and will
provide more exact parameters.

3.5 Camera Transformation

The corrected object positions need to be mapped to their corresponding real
field coordinates. This is realized by transforming them by a perspective pro-
jection matrix. The matrix is calculated according to [4] by solving a system of
linear equations containing the known relations between the field coordinates
and the image coordinates of four points (the corners of a field half). When-
ever the camera position or orientation changes, the image positions of these
points have to be selected either manually or automatically by a line detection
algorithm.



Fig. 7. Distortion corrected camera image with field lines

3.6 Identification and Orientation

After the positions of the ball and all robots on the field are known we have to get
the unique identification number and orientation of our robots. This information
is required to control the individual robots. To solve this task each robot carries a
plate containing a unique black and white pattern (see Fig. 1). The neighborhood
of the robot position is analyzed and a Hough Transformation [5] is used to find
the edges in the image, as shown in Fig. 8.

Fig. 8. Detecting lines using a Hough Transformation. In the left image, the detected
lines on the robot’s plate are shown, in the right image the corresponding intensities
in the Hough space.

In order to find the edges the image is first scanned radially around the robot
center for black/white transitions. The image coordinates of these positions are
then transformed into a Hough space. Each point in this space corresponds to
a line in the original image. The angle of the line and its distance to the origin
are the coordinates of the points in Hough space. Each point in the original
image corresponds to a sine wave in Hough space. Each point of this wave in



turn represents a single possible line through the original point (see Fig. 8 right).
After each possible edge point is transformed a search for maxima is performed
in the Hough space. These points with the highest intensities correspond with
high probability to edges and are used to identify the robots and to obtain their
orientation.

3.7 Tracking

As the ball may be occluded by robots or objects may not be found due to failures
in the color separation step (e.g. camera flashes), we need to track the position
of each object. This is currently implemented by using the position of an object
in the current frame and in the previous frame to estimate the velocity of the
object. If an object gets lost, then its last known position and velocity are used
to estimate the current position of the object. As this approach is not reliable
in some cases (e.g. occlusion) we are currently evaluating different approaches,
based on Extended Kalman Filtering and Particle Filtering.

4 Strategy Module

The strategy module of our team was initially a simple finite state machine. Un-
like several other teams we are currently working with a reinforcement learning-
based approach that determines the number and kinds of roles that are dis-
tributed in the game state under examination. In the future we plan to ”rehabil-
itate” the finite state machine in a much improved version and to reimplement
the machine learning unit towards the analysis of the opponent.

4.1 Overview

The artificial intelligence in the RoboCup Small Size team ER-Force is located
between the vision system and the motion control system. It communicates with
the vision subsystem and the motion control module via UDP. Our approach in
the 2008 system consisted of a simple finite state machine. A specified number
of offensive players tried to obtain the ball, pass and shoot at the goal. Referee
decisions switch the state immediately to corresponding referee states. While
this was a sufficiently effective strategy for the beginning, it did not perform
well against teams with an explicitly modeled artificial intelligence. In the past
months we tried a different approach: The behavior is modeled in three layers
that are executed one after another. They are able to overwrite or modify de-
cisions that are made by previous layers and are roughly inspired by Brooks’
subsumption architecture [6]. The involved layers are:

1. The strategy layer controls the behavior during regular gameplay. This in-
volves all play decisions like offensive and defensive actions. The process of
decision making is at this time done by the application of a reinforcement
learning approach.



2. The referee layer interferes if the game is stopped and handles the given
referee situation, like keeping the minimum distance to the starting point.

3. The collision avoidance layer modifies the commands from the other two
layers such that it complies with the general demand of obstacle avoidance.
It is implemented using the ERRT path finding algorithm [7].

The architecture of the first layer is described in more detail in the following.
Although it works much better than the simple finite state approach, we are
currently working on an improved architecture. This new approach is briefly
sketched in the last subsection of this chapter.

4.2 Strategy Layer

The decision making process starts with the feature extraction in the preprocess-
ing step. Afterwards a tactic is chosen that consists of several roles, and finally
the roles are assigned to the robots.

Preprocessing - The preprocessing provides the necessary data for the decision
making process. On one hand this involves an interpretation of the data, e.g. the
detection of the opponent’s goalkeeper or the robots’ distances to the ball in
order to estimate which team is in ball possession. Additionally, some features
are computed that describe the game state more precisely. These features are:

– Distribution based features: The position of the ball is expressed as a single
number between 0 and 2, since it is in one of three areas, either in front
of the own goal, in the middle of the field, or in front of the opponent’s
goal. Additionally, the distribution of a team is expressed as a single number
between 0 and 4 that encodes the number of robots in each half of the playing
field.

– A measure for the probability that the robot that currently holds the ball
may score a goal, based on the width of unprotected area between him and
the goal as shown in the example in Fig. 9. This is also computed for a
second attacking robot, in case that the robot who currently holds the ball
passes the ball over to this second attacker.

Although these features are only a very rough approximation of the game state,
they allow immediate offensive or defensive actions near the two goals. To keep
the feature space easily manageable we omitted features that further describe
the middle of the field.

Roles - The described decision unit assigns numbers to roles. These numbers
represent how many robots should fulfill a specific role. Available roles are

– goal defenders: robots that directly protect the goal
– field defenders: robots that try to intercept passes
– ball grabber: robot that runs for the ball



Fig. 9. Measure for the probability that the attacking robot might hit the goal: The
width of the unprotected corridor towards the goal is computed (green).

– attacker: robot that shoots at the goal (when in ball possession)
– pass player: robot that plays a pass (when in ball possession)
– dribbler: robot that dribbles (when in ball possession)
– runner: robot that assists offensive moves, e.g. to receive a passed ball

Decision - Depending on the team that currently controls the ball an offensive
or defensive role distribution, in the following referred to as tactic, is chosen.
This decision is made using a reinforcement learning approach, a well known
algorithm in machine learning research (see e.g. [8, 9]). Our notation roughly
follows [8]. In the following, we briefly outline the learning problem, our reward
function and the practical implementation. By using reinforcement learning, the
game is divided into discrete time steps i, the state space S, and the action
space A. At time t, let the state st ∈ S, the action at ∈ A and a reward for this
particular action rt. The aim is to learn a general behavioral rule, called policy,
π : S 7→ A that maximizes the cumulative reward function

V π(st) ≡
∞∑
i=0

γirt+i ,

where γ, 0 < γ < 1, values policies higher that lead to an earlier reward. One
big advantage of reinforcement learning is that the learning process needs no
supervision in the stricter sense, but only a reasonably chosen reward function
that can be applied during the game. We implemented the Sarsa(λ) algorithm [9]
to be able to apply this reward already during the game. Our reward function
evaluates to ±5 points, +5 if the ball is in the opposing half of the field and
−5 if it is in our own half. Additionally, a reward of ±1000 is applied for goals
for us or against us, respectively. As parameters, we have empirically chosen
γ = 0.8725, λ = 0.3 and as an additional learning step-size parameter for the
Sarsa(λ)-algorithm α = 0.375. Usually the best π is chosen. But to learn new
possibilities there is a 10% probability that a random (valid) role assignment is
chosen, and consequently the action at that belongs to reward rt is taken in the
next step. The decision unit is trained with a bootstrapping-inspired technique
through simulated games against other decision units. These sparring partners
either operate on the same principle or work with a different approach, e.g. the
older finite state machine by our team. It is also possible to modify the learned
behavior online during the game. Each chosen tactic contains roles for the team



like how many robots should stay on defense, and whether a robot that controls
the ball should dribble, play a pass or shoot at the goal. These roles are greedily
distributed among the robots according to their current positions.

4.3 Improvements

Although our current strategy is much better than the one we used in the last
year, it has its shortcomings. One point is its currently poor configurability,
and another point is the question, if we can do better with machine learning
if we were using it on the behavior of the opponent rather than the general
situation. In order to address these issues, we are currently working on the
following improvements:

– Outsource several configuration-related methods in the Lua scripting lan-
guage [3]. After our positive experiences with Lua for the color table gener-
ation we would like to extend its use to the strategy module.

– Return to the state machine? We are planning an upgrade of our finite state
machine approach. Resource-intensive tasks are in future as today written
in C++, but parts that are likely to be changed often are also added in Lua
because of its advantages when it comes to rapid prototyping and config-
uration. The new state machine should feature a cascade of smaller state
machines with partially randomized transitions. The machine learning part
should be transferred into a different domain and analyze the opponent’s
moves instead of the general game situation. We hope to have a system de-
veloped until June that combines the decisions of the finite state machine
with the prediction of the opponent’s moves.

5 Conclusion

We changed a lot on our robots in the past year and are eager to test them in a
competition against a large number of other teams. The shooting device is now
a solenoid kicker, the communication is improved and the artificial intelligence
is significantly further developed. Additionally, we have a full schedule of tasks
until RoboCup 2009 in order to present an innovative and pleasing to watch
robot soccer system.
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