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Abstract. An open issue in the use of hybrid PET / MRI scanners
is the attenuation correction of the PET image. In order to solve this
problem, we propose to perform a nonrigid registration of an atlas CT
image with the MRI. The registered atlas CT contains the information
about the tissue densities necessary for the attenuation correction.
In multi-modal, nonrigid image registration, the correspondence between
the intensity values is not known a priori. Statistical, multi-modal dis-
tance measures determine this correspondence during the registration
solely from the intensity distributions. Without the incorporation of prior
knowledge this may lead to wrong results, such as the alignment of the
skull with brain tissue, or the skin with fat surrounding the skull. There-
fore, we propose a novel, PCA-based regularization of the nonrigid reg-
istration. This limits the possible registration results to morphologically
plausible deformations. The model is constructed such that it is invari-
ant to global translations in the registration. Thus, the registration is
less dependent on the initial, rigid preregistration.
Results are presented on a database of 18 CT datasets for the training
of a PCA deformation model. MR images of the same patients have
been rigidly registered with the corresponding CT datasets, which are
used as ground truth for the tests. The evaluation is performed using a
leave-one-out cross-validation by registering an atlas onto the total of 38
MRI datasets and comparing the deformed atlas with the ground truth
CT of the patient. Results indicate a better performance of the proposed
approach compared to the standard. On average, the mean squared error
is decreased by 18% and the sensitivity for correct soft tissue and bone
alignment is increased by 4%.

1 Introduction

The advent of hybrid scanners, for example the combination of PET (Positron
Emission Tomography) and CT (Computed Tomography) imaging within one
machine, has brought many new possibilities to the field of medical imaging,
such as the invention of highly specific tumor markers. However, the superior



tissue contrast and the large variety of different sequences offered by MRI make it
desirable to replace the CT with an MRI (Magnetic Resonance Imaging) scanner
in such hybrid systems. Although there are still technical difficulties to overcome,
first combined PET / MRI scanners for acquisition of the human head have
already been built, and it is only a matter of time until they enter the market.

One of the difficulties to overcome in PET / MRI hybrid scanners is the
attenuation correction of the PET image. In PET, the aim is to measure the
concentration of a radioactive marker within the patient body. The quantity
that the machine can actually measure is the radiation emitted by the tracer.
The rays are attenuated by the anatomical structures while traveling through the
human body. Therefore, it is necessary to provide an attenuation map for each
acquisition in order to perform an attenuation correction of the dose measured
in the PET image. The map can be created, for instance, from a CT, where
the relation between the intensities within the image and the tissue densities is
known.

The values measured by MRI, however, are not related to the attenuation,
therefore, no straightforward solution is currently available for the attenuation
correction in case of a hybrid PET / MRI scanner. In the following, we propose
a method based on the registration between an atlas CT and the MRI image.
The deformed atlas image then replaces the missing CT of the patient and can
be used for the attenuation correction.

The multi-modal, nonrigid registration, which is used to perform such an at-
las registration, offers many degrees of freedom in the spatial domain. It is more
difficult than the mono-modal registration, because the relation between the im-
age intensities is not known a priori. This may lead to mis-registrations where
a low value for the distance measure indicates a good alignment of the images,
however, the deformation may not be correct in the physical and morpholog-
ical sense. Hence, we propose a novel regularization of the nonrigid registra-
tion process that incorporates prior knowledge in terms of a deformation model.
This morphologically-based regularization utilizes a PCA (Principal Component
Analysis) of the previously acquired deformation fields computed from CT im-
ages of a collective of patients. These registrations performed within the CT
modality use a sum-of-squared differences similarity measure. The intra-modal
registrations are, in our experience, better conditioned than the multi-modal,
nonrigid registrations between CT and MRI. The result of this learning phase is
an atlas CT, together with a model for the variations within the deformations.
This prior knowledge is used to constrain the registration between the MRI of
the hybrid scanner with the atlas CT to penalize morphologically improbable
deformations.

This article is organized as follows. First, we introduce related work regarding
the attenuation correction, morphological models in image registration, and the
nonrigid registration. The methods provide information about the registration,
distance measures, and the model generation. In the final section we present a
leave-one-out cross-validation of 18 CT images used for the atlas CT creation
and applied to MR images, and discuss the results.



2 Related Work

A very recent survey of PET / MRI attenuation techniques can be found in
[1]. Usually, the employed methods are categorized into segmentation- or classi-
fication-based approaches. In segmentation-based correction, the intensities of
the MRI image are directly transformed into an attenuation map. Using an
atlas for the correction, an atlas CT is transformed into the space of the MRI to
provide the tissue densities. In addition, combined methods can be applied that
first perform an atlas registration and use additional knowledge from the atlas
to improve the results of a classification approach [2].

Statistical morphological constraints in image registration have already been
employed. Wang and Staib [3] describe a method that generates a sparse PCA-
based model on a set of boundary points that they use to constrain the dense
nonrigid registration. Kim et. al.[4] construct a dense PCA-based deformation
model from registrations with a standard registration approach. The model is
used to generate a large set of sample images which are then compared to the ref-
erence image in order to find a good starting position for a standard registration
approach. An alternative to a simple PCA model is proposed by Xue and Shen
[5]. They, instead, use a wavelet PCA that has the advantage to also capture
very local and fine grained deformations. Nevertheless, the model is only used
for an initial registration followed by an unconstrained nonrigid registration.

In this work we focus on a nonrigid, nonparametric atlas registration of a
CT dataset with MRI, similar to the approaches presented in [6, 7]. As distance
measure we employ the mutual information (MI), based on the works of Vi-
ola [8] and Hermosillo [6]. As regularization term we employ a curvature term
introduced by Fischer and Modersitzki [9].

3 Methods

In the following, we present the applied nonrigid registration framework 3.1 that
is used both to generate the atlas CT, and to register the MRI with the atlas
CT. In section 3.2, we describe the applied intensity distance measures, which
are used as objective functions for the registration. The regularization of the
registrations is based on the curvature of the deformation field 3.3, which is then
supplemented by the deformation model created with the PCA on the sample
deformation fields. The novel regularization approach is described in 3.4, followed
by the modeling of the translation invariance 3.5.

3.1 Nonrigid Registration Framework

In nonrigid, nonparametric registration the dense deformation field u is calcu-
lated between the spatial positions of each voxel. It is determined by minimizing
a distance measure D, which evaluates the quality of the match between the
moving image M and the fixed image F . Its optimization is subject to a smooth-
ness constraint S to ensure that the resulting deformation does not contain any



cracks, ridges, or folds. This constraint is usually incorporated as a penalty term
weighted by a parameter α ∈ R>0, i.e. lower values of α will result in a less
smooth deformation field, but a better match and vice versa. The optimization
of the distance alone is ill-posed and the addition of the smoothness constraint
is related to classical Tikhonov regularization [10]:

û = argmin
u

E(F,M,u) = argmin
u

D(F,Mu) + αS(u) (1)

Mu(x) = M(x − u(x))

The optimization problem is to find a minimizer for the functional (1) in the
space of all deformation fields U . If we assume that E is sufficiently smooth
and differentiable, and with appropriate boundary conditions, we can apply the
calculus of variations to find a minimizer û. For the direction v ∈ U of the first
variation, the Gâteaux derivative of (1) is defined as:

δE(F,M,u ◦ v) = lim
ǫ 7→0

E(F,M,u + ǫv) − E(F,M,u)

ǫ
=

dE(F,M,u + ǫv)

dǫ

∣
∣
∣
∣
ǫ=0

(2)
For the existence of a minimizer for (1), it is necessary that the Gâteaux deriva-
tive vanishes for all variations v: δE(F,M, û ◦ v) = 0. If U is assumed to be
a Hilbert space that defines a scalar product, the gradient of the functional
with respect to the optimal displacement vanishes, ∇UE(F,M, û) = 0, and the
minimizer is a solution to the Euler-Lagrange equations associated with this
problem:

∇UE(F,M,u) = ∇UD(F,Mu) + ∇US(u) (3)

As solver, we employ a Newton-type method that uses a numeric approximation
of the second derivative of D.

3.2 Distance Measures

For the mono-modal registration between the CT images, we apply the widely
known sum-of-squared differences measure. It is based on the assumption that
the intensities of corresponding tissue within the two images are equal, or differ
by noise at the utmost.

DSSD(F,Mu) =
1

|Ω|

∫

Ω

(Mu(x) − F (x))
2

dx (4)

with Ω being the spatial domain of the overlap between F and Mu.

Distance measures based on image intensity statistics are widely used for
multi-modal registration tasks. Based on Shannon’s theory [11], the information
content within the images is measured using the entropies of the marginal PDFs



pF and pMu
, and the joint PDF pF,Mu

:

H(F ) = −
∫

R

pF (f) log pF (f) df (5)

H(Mu) = −
∫

R

pMu
(m) log pMu

(m) dm (6)

H(F,Mu) = −
∫

R2

pF,Mu
(i) log pF,Mu

(i) di (7)

where f , m, and i = (f,m)T are intensity random measures of F and M . In the
following, we make use of the MI, which was introduced by Wells et. al.[12] and
Maes et. al.[13]:

DMI(F,Mu) = −MI(F,Mu)

= H(F,Mu) −H(F ) −H(Mu)

=

∫

R2

pF,Mu
(i) log

pF,Mu
(i)

pF (f)pMu
(m)

di (8)

Here, DMI(Mu, F ) is written as a distance measure, i.e. smaller values indicate
a better result.

3.3 Curvature Regularizer

The choice of a suitable smoother depends on the type of application. Common
regularization techniques are based on Dirichlet, elasticity, fluidal, and higher
order functionals. Among the latter ones, curvature regularization is an approach
that features some advantages for medical image registration [14]:

SCURV(u) =

∫

Ω

|∆u|2 dx . (9)

This regularization term does not penalize affine transformations and leads to
smooth displacement fields.

3.4 PCA Regularization

To generate the proposed morphological model, a series of mono-modal regis-
trations is performed on CT images. The images are rigidly aligned, before a
nonrigid registration is employed, which yields the training deformations. The
mono-modal is considered to be more robust than the multi-modal registration,
especially as one has to deal with less local minima during the optimization. For
n input images, the resulting sample deformation fields wi with i = 1, . . . , n are
then used to extract the mean deformation and the principal modes of variation



by means of a PCA.

w̄ =
1

n

n∑

i=1

wi

W = ((w1 − w̄), . . . , (wn − w̄))

WWT vi = λivi

s.t. |vi|2 = 1

(10)

where w̄ denotes the mean, and WWT the covariance matrix of the deforma-
tion. The Eigenvalue / Eigenvector decomposition of WWT (10) is performed
as described in Murase and Lindenbaum [15]. The resulting Eigenvectors vi

form an orthonormal vector space, which is an important property for the fol-
lowing article. Choosing the m components with the largest Eigenvalues λi and
arranging them in a matrix V our model consists of the components w̄ and
V = (v1, . . . ,vm). Using this model, the registration energy (1) is then supple-
mented by an additional regularization term P, which enforces the result to be
close to the model space.

min
u

E(F,M,u) = D(F,Mu) + αS(u) + βP(u)

P(u) =
1

s

(
u −

(
w̄ + VVT (u − w̄)

))2

=
1

s

(
(I − VVT )(u − w̄)

)2

(11)

where β is again a weighting factor that governs the strictness with which the
morphological model is applied, and s is a normalization factor equal to the
number of voxels in the images. In P(u), we measure the squared difference
between u and its projection onto the PCA model. Thus, P(u) quadratically
penalizes a deviation from the model. For the optimization, the derivative of the
new energy term P is calculated as

∇UP(u) =
2

s
(I − VVT )T (I − VVT )(u − w̄)

=
2

s
(I − 2VVT + VVT V

︸ ︷︷ ︸

=I

VT )(u − w̄)

=
2

s
(I − VVT )(u − w̄)

(12)

The identity VT V = I is due to the orthonormality of V. The calculation of
∇uP is thus very closely related to calculating P itself, which saves a lot of
computational complexity.

3.5 Translation Invariance

For the generation of the model, as well as its application, the datasets were
aligned by a rigid registration. This is a necessary step for the usage of PCA



models, because they are, in general, dependent on a consistent initial position-
ing. Even though the used rigid registration performed very well, it did not
always yield consistent results in the translational alignment. This is mostly due
to the variation in the data for inter-patient registration cases. For example,
when the facial bone between two datasets matches very well, the rigid registra-
tion will tend to align it, and, if the back of the skulls is morphologically similar,
the rigid registration is likely to match this part best. The rotation did gen-
erally not suffer from these problems. A successful nonrigid registration might
incorporate these inconsistencies into the deformation model, which then leads
to problems later in the application stage.

To overcome these inconsistencies in the preregistration, we introduce a defor-
mation model in the following that is invariant to global translations, i.e. global
translations in a vector field will neither be learned nor penalized. In order to
do this, the global translation is removed from the training data. Nonetheless,
the global translation can still be incorporated by augmenting the PCA model
with additional basis vectors for the global translation.

Let the vector field u be organized in the components of the coordinate
system (x, y, z):

u = (u1, . . . , us
︸ ︷︷ ︸

x components

, us+1, . . . , u2s
︸ ︷︷ ︸

y components

, u2s+1, . . . , u3s
︸ ︷︷ ︸

z components

)T (13)

The calculation of the global translation t(u) can be written as a matrix vector
product:

e0 = (0, . . . , 0)T ∈ R
s

e1 =
1√
s
(1, . . . , 1)T ∈ R

s

bx =





e1

e0

e0



 ∈ R
3s by =





e0

e1

e0



 ∈ R
3s bz =





e0

e0

e1



 ∈ R
3s

B = (bx,by,bz)

t(u) = BBT u
(14)

where the vectors bx,by,bz describe a global translation along the corresponding
coordinate axis. They are mutually orthogonal and normalized to |b[x,y,z]| = 1.
Accordingly the model is generated with the modified samples

w̃i = wi − t(wi) (15)

= wi − BBT wi

and the mean of the modified samples

¯̃w =
1

n

n∑

i=0

w̃i (16)



The new sample vectors w̃i are therefore orthogonal to the vectors b[x,y,z] that
compose B.

BT w̃i = BT (wi − BBT wi)

= BT wi − BT B
︸ ︷︷ ︸

=I

BT wi

= 0 (17)

The regularizing term is adapted in the same way, by subtracting the global
translation t(u) from the current deformation field u before applying the PCA
model.

P(u) =
1

s

(
(I − VVT )(u − ¯̃w − t(u))

)2

=
1

s

(
(I − VVT )(u − ¯̃w − BBT u)

)2
(18)

=
1

s

(
(I − VVT )(I − BBT )(u − ¯̃w)

)2
(19)

=
1

s

(
(I − VVT − BBT )(u − ¯̃w)

)2
(20)

=
1

s

(

(I − ṼṼT )(u − ¯̃w)
)2

(21)

Ṽ = (ṽ1, . . . , ṽm,bx,by,bz)

The step from (18) to (19) is possible because ¯̃w is a linear combination of w̃i,
which means that ¯̃w is orthogonal to B (i.e. BBT ¯̃w = 0) due to (17). The same
argument can be applied to the step from (19) to (20): the components vi of V

are linear combinations of the training vectors w̃i and, accordingly, orthogonal
to the vectors b[x,yz] of B. Therefore, the product VVT BBT = 0. Essentially,
the whole process of eliminating the global translation in the calculation of P
yields a new basis Ṽ by augmenting the principal components V artificially with
the vectors b[x,y,z]. Note that Ṽ is still orthonormal, which allows the calculation
of the derivative of P exactly as in (12).

∇uP(u) =
2

s
(I − ṼṼT )(u − ¯̃w) (22)

4 Results

For an evaluation of the proposed approach, 18 CT datasets were used for the
training of the model consisting of the mean deformation and the first 10 compo-
nents of the PCA. The algorithm was then applied to 23 T1- and 15 T2-weighted
MRI scans from the same patients in a leave-one-out cross validation. Prior to
the experiments, the tables present within the CT images have been segmented
and ignored during the segmentation. The CT and MRI of the same patient
were rigidly registered in order to provide a ground-truth CT for every patient’s



MRI dataset. This rigidly registered, ground-truth CT was used, in combination
with the deformed atlas CT, to calculate objective quality measurements for the
nonrigid atlas registration results. All patient data was resampled to a common
volume size of 129 × 129 × 104 voxels and an isotropic spacing of 1.95 mm in
order simplify model generation and evaluation.

Regarding the choice of the α parameter, please note that our algorithm
operates in physical space and not on a unit square, or with a unit spacing.
Intensity values were also taken into account without any rescaling. The weights
for the regularizing terms can, therefore, differ from the values presented in
the related work. For the generation of the training deformations, the mono-
modal, nonrigid registration that uses the sum-of-squared-differences measure
was regularized with a weighting factor of α = 0.01. The multi-model registration
was driven by the MI distance measure and carried out with and without the
PCA regularization. With the PCA regularization enabled, the weighting factors
were chosen as α = 7 and β = 0.01. This choice represents a rather low value
for α and would result in very large local deformations without the additional
morphological regularization. An example of this setting is shown in Fig. 1. Here

(a) (b) (c)

(d) (e) (f)

Fig. 1: The images show results for a single example of (a) an MR and its corre-
sponding (d) CT image. The registration result with α = 7 and no PCA model
regularization is shown as (b) the deformed atlas CT and (e) the checkerboard
fusion with the ground truth CT. Corresponding results with the usage of the
prior knowledge can be seen in (c) and (f).

α = 7 was used with and without PCA regularization. The effect is clearly



visible, especially in the facial region, when comparing the registration results
with the ground truth CT. Accordingly, for the nonrigid registration without
PCA regularization, a much higher value for α is used in order to regain the
necessary stability. Empirically, we determined a value of α = 60 as a good
choice. Tables 1 and 2 present the results for the comparison between the two

Method Measure

MSE DistBO SE(ST) SE(BO) SE(ST,BO)

No PCA 25440.8± 7715.2 0.41± 0.25 84.8± 2.8 64.0± 11.4 81.2± 3.2

PCA 21297.9± 10466.7 0.25± 0.10 84.3± 3.6 70.8± 6.0 82.0± 3.2

Table 1: Results for the leave-one-out cross-validation on T1-weighted MRI data.
The values shown consist of the mean and the standard deviation for the cor-
responding measure calculated over all datasets. For mean squared error in
Hounsfield units (MSE) and the distance to the bone mask in mm (DistBO),
smaller values indicate better results. The sensitivity measures for segmented soft
tissue (SE(ST)), bone (SE(BO)), and the combination of both (SE(ST, BO)),
larger values are better.

Method Measure

MSE DistBO SE(ST) SE(BO) SE(ST,BO)

No PCA 29914.7± 17514.4 0.55± 0.46 83.3± 5.3 58.8± 13.3 79.0± 6.5

PCA 23966.4± 10371.6 0.31± 0.16 84.3± 5.0 66.4± 7.9 81.1± 5.3

Table 2: Results for the leave-one-out cross-validation on T2-weighted MRI data.
For a description of the values, see table 1.

approaches for T1- and T2-weighted MRI scans. The results of the registration
are compared with the ground truth CT of the patient, who was left out for the
cross-validation, based on a number of measures: The mean square error (MSE)
was calculated between the intensities of both images. Since especially bone
densities between different patients are usually not directly comparable, this
is only a coarse measure. To compensate for these differences, the CT images
are segmented into three classes for further comparisons: air, soft tissue (ST),
and bone (BO). Based on these segmentations the class-specific sensitivities for
soft tissue (SE(ST)), bone (SE(BO)), and the joint sensitivity (SE(ST,BO))
are calculated. A final measure (DistBO) is computed in order to provide a
quantitative measure of the spatial distance between the segmentations of the
bone. This measure determines the average euclidean distance between each pixel
segmented as bone in one image to the nearest pixel segmented as bone in the
other image. On average, the MSE measure for T1 and T2 data is decreased by



18% and the DistBO measure by 42% using the proposed algorithm. The overall
sensitivity for correct soft tissue and bone alignment is increased by 4%.

5 Discussion

In this article, we have introduced a novel, PCA-based regularizing energy. This
morphological term constrains the deformation to be close within the known
space of variability that is learned from a training set of deformations. We have
shown that this model is invariant to global translations and is able to compen-
sate for morphologically unreasonable deformations when other regularization
energies are reduced. The presented results indicate a better performance of the
proposed approach with respect to especially the MSE and the distance between
the bone segmentations. These two criteria are of special interest for the at-
tenuation correction, because the location of the bones has a high impact on
the corrected result. Except for the mean values of the soft tissue sensitivity,
the registration with the incorporation of the prior knowledge performed better
than the standard algorithm.
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