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Abstract. In this article we present a subtraction imaging approach for
the assessment of difference in the cerebral blood flow between intra- and
inter-ictal SPECT images of epilepsy patients. The workflow consists of
a rigid, automatic image registration of the SPECT images, an intensity
normalization, and an alignment of the differences with an MRI. For the
registration, the statistical measure of normalized mutual information is
applied. The probability density estimation is sensitive to the input data,
the sampling approach, and the kernels applied for Parzen-windowing.
An adaptive scheme to estimate the required parameters is mandatory,
because the system has to work reliably for a large number of images. We
propose data-driven estimation techniques for a B-spline Parzen-window
density estimation that is adapted to the variation within the random
measures by an anisotropic binning approach. The optimal kernel widths
are determined by a log-likelihood estimation.
The approach has been integrated into a commercially available software
and applied to a collective of 26 epilepsy patients. Results are presented
for a blind evaluation study with physicians from the Department of
Nuclear Medicine of the University Hospital in Erlangen. The results
show a good correlation of 81% between the certain outcomes of the
proposed workflow and the standard procedure.

1 Introduction

In epilepsy surgery planning, inter- and intra-ictal SPECT images are acquired
between epileptic seizures and closely afterwards. The goal is to find the location
of the seizure onset by comparing the cerebral blood flow (CBF) inferred from the
images. Standard side-by-side visual assessment techniques are not ideal, because
the patient position and orientation may have changed between the acquisitions,
and the images lack a normalization to standardized intensity values (e. g. as
Hounsfield units in CT).

In [1], we introduced a workflow for SPECT epilepsy imaging. The basic idea
is to use image subtraction similar to digital subtraction angiography (DSA) in
order to visualize the differences between both images. The subtraction image
then depicts changes in the CBF between both acquisitions. In order to be able
to perform a difference operation on two SPECT images, we have to compensate



for patient motion and variations of the tracer uptakes between the acquisitions.
A previously acquired MRI is integrated into the workflow and used to spatially
localize the differences. In this article, we refine the concepts of the prior work
and extend the registration, as well as the intensity normalization, by automatic,
data-driven density estimation techniques.

The similarity measure used in the registration of the SPECT images has to
be invariant to intensity variations, changes in blood flow activity, and structured
noise. We apply normalized mutual information (NMI) [2] and use parameters
that are adapted to the input data. This principally concerns the discrete prob-
ability density functions (PDF), which are computed by a novel, quasi-adaptive
Parzen-window estimator based on cubic B-spline kernels. Structured noise in the
background is handled by an automatic determination of background thresholds
for both images, which can afterwards be reused within the intensity normal-
ization. After the registration, we relate the intensities between both images by
fitting an affine model into the joint PDF. The final result of the workflow is a
subtraction image that can be fused with an MR scan.

We have applied the algorithm to a collective of 26 epilepsy patients and the
results of the proposed workflow have been evaluated in a blind study.

2 Related Work

The workflow, presented in Hahn et al. [1], is based on the application of sub-
traction methods in the context of SPECT imaging. Other approaches make
use of statistical parametric mapping, for example Chang et al. [3] and McNally
et al. [4]. Their methods, however, require collectives of norm patients in order
to identify those variations that are due to the epileptic disease. Koo et al. [5]
proposed settings for the visualization of subtraction results in order to achieve
a good correlation in the detection of the focal spots with other, well established
techniques.

Image similarities can be modeled in a statistical framework. Here, the inten-
sity values are regarded as random measures of an unknown distribution. Using
nonparametric density estimation, efficient PDF estimators can be realized by
a discretization of the Parzen-window technique [6, 7]. The density estimation
is based on the work by Viola [8] and Hermosillo et al. [9]. Knops et al. [10]
and Katkovnic and Shumulevich [11] investigated the effects of the kernel width
parameter on the estimator and showed that state-of-the-art, isotropic binning
is outperformed by adaptive techniques. Depending on the sampling pattern,
numerical problems arise in the discretization of the estimator, as described by
Maes [12] and Pluim et al. [13]. Thévenaz et al. [14] proposed quasi-random
sampling based on Halton sequences in order to overcome these problems.

The structured noise within reconstructed medical images often poses prob-
lems to the registration, as the algorithm tends to align not only the interesting
image content, but also the background noise. Some authors have tried to elim-
inate this problem by using intensity thresholds within the joint PDF [15, 16],
or by masking the background region of the images [17]. Although this removes
all influences of the background, mis-registrations with the background regions
are partly or entirely disregarded.



3 Methods and Materials

This section is organized as follows. After a brief summary of the similarity mea-
sure for the registration in section 3.1, we present in part 3.2 an adaptive binning
scheme that is used to re-quantize the image intensities for a given number of
histogram bins. Based on a similar scheme, we describe in section 3.3 the auto-
matic detection of the intensity thresholds for the background, which is assumed
to contain structured noise. The density estimation is subject of part 3.4, where
the efficient Parzen-window discretization using histograms is presented. The
density estimation techniques are used for the registration, and afterwards, for
the normalization of the SPECT intensities, as described in section 3.5.

3.1 Normalized Mutual Information

In an automatic, intensity-based image registration, a distance measure D is
used as an objective function for the alignment between a reference image R
and a template image T . For a spatial transform Φ : R

3 7→ R
3, which consists of

rotation and translation parameters in our case, the term TΦ is used to refer to
the transformed template image:

TΦ(x) = T (Φ(x)) (1)

During the registration, we search for an optimal transform Φ̂ that minimizes
the distance measure:

Φ̂ = argmin
Φ

D[R, T , Φ] (2)

Distance measures based on image intensity statistics are widely used for multi-
modal registration tasks and also for single modalities where the intensities are
not normalized, for example the SPECT image pairs in our application. Based
on Shannon’s theory [18], the information content within the images is measured
using the entropies of the marginal PDFs pR and pTΦ

, and the joint PDF pR,TΦ
:

H(R) = −

∫

R

pR(r) log pR(r) dr (3)

H(TΦ) = −

∫

R

pTΦ
(t) log pTΦ

(t) dt (4)

H(R, TΦ) = −

∫

R2

pR,TΦ
(i) log pR,TΦ

(i) di (5)

where r, t, and i = (r, t)T are intensity random measures of R and T . In the
following, we make use of the normalized mutual information (NMI) [2], which is
less variant to overlap effects than the common mutual information, which was
introduced by Wells et al. [19] and Maes et al. [20]:

DNMI[R, TΦ] = −
H(R) + H(TΦ)

H(R, TΦ)
(6)

Here, DNMI is written as a distance measure, i. e. smaller values indicate a better
result.



A common technique to estimate the intensity PDFs is Parzen-windowing.
In a one-dimensional case with n random samples x1, x2, . . . , xn, the Parzen-
window PDF estimator yields [7, 21]:

pλ,n(x) =
1

n

n
∑

i=1

Kλ(x − xi) , (7)

with Kλ being the kernel PDF of width λ. Unfortunately, this approach has a
high computational complexity and the storage requirements needed for large
numbers of samples are high. If the random samples are discretized into a his-
togram, a discretization error is introduced on the one hand, but on the other
hand, a lot of computations can be saved. The non-parametric estimator then
resembles the behavior of a mixture model with as many components as bins.
The n samples are stored in a discrete histogram hn with b bins (b > 1). Here,
hn(xi) provides the fraction of samples that fall into the bin corresponding to
xi. p̂λ,n is the discretized PDF estimator that differs from pλ,n in (7) by the
application of histogram binning:

p̂λ,n(cj) =
b

∑

i=1

hn(ci)Kλ(cj − ci) = (hn ⋆ Kλ) (cj) ≈ pλ,n(cj) , (8)

where cj is the intensity value corresponding to the center of the j-th bin, and
‘⋆‘ the convolution operator. We assume in the following, that p̂λ,n is an approx-
imation of its continuous counterpart, as indicated in (8).

3.2 Adaptive Binning Scheme

In data-driven approaches that estimate the optimal kernel width, one can ob-
serve that the result is directly related to the uncertainty within the data. Due
to the discrete nature of histograms, this uncertainty is reflected by a varying
smoothness or degenerations. Estimators using constant kernel widths cannot
distinguish between regions of high and low certainty within one histogram.
Therefore, several authors suggest making this parameter spatially variant. A
disadvantage of adaptive, anisotropic kernel widths is the increased computa-
tional complexity for both the estimator and the formulation of its derivatives.
In medical imaging, this increase in complexity is prohibitive. In addition, the
efficient evaluation scheme (8) cannot be applied to estimators with varying ker-
nel sizes. Therefore, we propose a trade-off in favor of a higher computational
efficiency.

Instead of determining different kernel widths for an equidistantly spaced his-
togram, the image intensities are initially sampled into a histogram of varying
bin widths. The corresponding bin centroids define a quantization characteristic,
which can be used to map the input intensities to re-quantized output values.
These, in turn, can be represented with an equidistantly spaced histogram. A
density estimation on this re-quantized intensity space then does not have to
account for different bin widths of the histogram and the convolution-based esti-
mator (8) can be applied. The nonlinear mapping is computed as a preprocessing



step in the beginning, which means that it has to be computed only once for each
image, but requires a distance measure that is invariant to this type of intensity
transform, a property that is fulfilled by DNMI (6).

In order to distribute the bin centers for the initial histogram with a minimal
quantization error, we apply an approach introduced by Lloyd [22] and Max [23].
It minimizes the noise power N for a specific number of bins by an iterative
refinement of the bin center locations. The spatial region of the i-th bin within
the domain of the random variable is defined by the interval [li−1; li] with the
centroid ci. The noise power of the re-quantization with respect to the signal
PDF p(x) is:

N =

b
∑

i=1

∫ li

li−1

(ci − x)2p(x) dx . (9)

Lloyd [22] proposed a fixed point iteration scheme to numerically minimize (9)
with respect to the bin intervals and centroids. Again, p(x) is unknown, but can
simply be exchanged by the histogram of the entire image with full intensity
resolution, or a suitable Parzen-window estimator.

3.3 Background Threshold Detection

Tomographic, medical images are the result of discrete, modality-specific re-
construction methods that are based on physical measurements. In practice,
these measurements are affected by detector noise and many physical effects,
which may impair the reconstruction result. Problems for image registration
algorithms especially arise from structured noise in the reconstructed images.
Thévenaz et al. [17] presented a robust technique to distinguish between the
object and background region within an image. They used the aforementioned
Max-Lloyd quantization algorithm on a low pass filtered version of the image.
Combined with the filtering, the algorithm computes the bin widths for a dis-
crete histogram of two bins. The boundary between these two bins is assumed
to separate intensities in the background from object values. The authors used
the algorithm to determine the background region within PET images. We ap-
ply the background values to down-weight the corresponding region within the
joint PDF – instead of thresholding it – in order to reduce the influence of the
background and the contained noise. The background thresholds are also used
for the intensity normalization 3.5.

3.4 Density Estimation

Very common choices for the kernel PDF Kλ are the Gaussian or cubic B-
spline [24, 25]. Using a cubic B-spline B yields the following Parzen-window ker-
nel KB

λ :

KB

λ (x) =
1

λ
B

(x

λ

)

(10)

The B-spline function is commonly defined recursively by the Cox-de Boor re-
cursion formula, however, in the case of degree three, the kernel may be written



as a non-recursive function:

KB

λ (x) =















1

λ

(

4

3
− 2 |x|

λ
+ x2

λ2 − |x|3

6λ3

)

, if |x|
λ

∈ [1, 2[

1

λ

(

2

3
− x2

λ2 + |x|3

2λ3

)

, if |x|
λ

∈ [0, 1[

0 , otherwise

(11)

KB

λ can be discretized either by sampling of the kernel values or recursive fil-
tering. This specific window function has some advantages over, for instance, a
Gaussian: it has a local support and fulfills the partition of unity constraint [26].

A necessary requirement for the implementation of the estimator is the spe-
cification of λ. Unfortunately, this parameter is dependent on the data, i. e. the
values and the number of the random samples. In order to get an optimal PDF
estimator, it is necessary to apply data-driven estimation techniques. A leave-
one-out estimator is usually plugged into a log-likelihood function with respect
to the kernel width in order to measure how good it resembles the missing data.
Let pj

λ,n−1
be the estimator after deleting the j-th sample. The resulting log-

likelihood objective function then yields [27]:

L(λ) =

n
∑

j=1

log pj
λ,n−1

(xj) . (12)

An optimal value λ̂ for the kernel width maximizes L

λ̂ = argmax
λ

L(λ) . (13)

To optimize (13), it is necessary to search for a zero crossing of the derivative of
(12) with respect to λ. The problem can be solved using an iterative, nonlinear
optimization scheme, e. g. Newton’s method. The derivatives of L with respect
to λ are:

∂

∂λ
L(λ) =

n
∑

j=1

1

p̂j
λ,n−1

(xj)

∂

∂λ
p̂j

λ,n−1
(xj)

∂2

∂2λ
L(λ) =

n
∑

j=1

−
1

(

p̂j
λ,n−1

(xj)
)2

(

∂

∂λ
p̂j

λ,n−1
(xj)

)2

+
1

p̂j
λ,n−1

(xj)

∂2

∂2λ
p̂j

λ,n−1
(xj)

(14)

For the B-spline kernel function KB

λ , the derivatives of the estimator yield:

∂

∂λ
p̂j

λ,n−1
(xj) =

b
∑

i=1

hj
n−1

(ci)
∂

∂λ
KB

λ (xj − ci)

∂2

∂2λ
p̂j

λ,n−1
(xj) =

b
∑

i=1

hj
n−1

(ci)
∂2

∂2λ
KB

λ (xj − ci)

(15)



Similar to the kernel function (11), we formulate the derivatives of KB

λ for three
cases.
Case 1: |x|

λ
∈ [1, 2[

∂

∂λ
KB

λ (x) =
1

λ2

[

2|x|

λ
−

2x2

λ2
+

|x|3

2λ3
− λKB

λ (x)

]

∂2

∂2λ
KB

λ (x) =
2

λ3

[

−
2|x|

λ
+

3x2

λ2
−

|x|3

λ3
− λ2

∂

∂λ
KB

λ (x)

] (16)

Case 2: |x|
λ

∈ [0, 1[

∂

∂λ
KB

λ (x) =
1

λ2

[

2x2

λ2
−

3|x|3

2λ3
− λKB

λ (x)

]

∂2

∂2λ
KB

λ (x) =
2

λ3

[

3|x|3

λ3
−

3x2

λ2
− λ2

∂

∂λ
KB

λ (x)

] (17)

Case 3: |x|
λ

/∈ [0, 2[

∂

∂λ
KB

λ (x) =
∂2

∂2λ
KB

λ (x) = 0 (18)

The equations (15) are again convolutions with the partial derivatives for the
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Figure 1. Convolution kernels for the kernel width estimation using a B-spline window
function K

B
λ printed for a kernel width λ = 1. The kernel function, the first derivative,

and the second derivative with respect to λ are plotted within the locally supported
region.

kernel width of the Parzen-window kernel. Due to its local support, the spline
kernel is very suitable for an implementation of the log-likelihood optimization
using a discrete convolution operator and the kernel functions shown in Figure 1.
The multivariate density kernel width estimation is realized analogue to the 1-D
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Figure 2. (a) Parzen-window log-likelihood function for a B-spline kernel K
B
λ cross-

validation and an estimation of 100 samples drawn from a normal distribution with
λ = 4. (b) Shows the corresponding first and second order derivative with respect to
λ.

case and the 1-D kernels can be applied subsequently to each dimension of the
histogram, because the multivariate B-spline kernel is separable. Figure 2 shows
example curves that can typically be observed for the log-likelihood optimization
of the kernel width. In this example, the width of a cubic B-spline kernel has
been adapted to 100 sample values drawn from a Gaussian distribution with
mean zero and a variance of 4.

3.5 Intensity Normalization

As mentioned above, for a correct interpretation of the differences between the
SPECT images, the intensities have to be normalized to a common intensity
range. This is necessary due to different acquisition times and changes in the
overall tracer uptake within the human body. We model the mapping by an
affine intensity transform similar to the proposals of Liao et al. [28]. In order to
be invariant to the intensities of the background, we restrict the affine mapping
to the region of the joint PDF above the background thresholds, i. e. the proba-
bilities for joint intensities each belonging to intensities corresponding to brain
tissue. The thresholds are determined using the approach described in section
3.3. The components of the intensity mapping are computed by linear regression
within the joint PDF. This leads to an affine intensity transformation and, in
the ideal case, a clustering at the diagonal entries of the joint PDF after the
mapping.

4 Results

The proposed method has been applied to a collective of 26 epilepsy patients
and assessed by physicians. Each patient underwent the standard diagnostic
procedures, and, from the patient charts, the location as well as the number of
the focal spots were known. The images have been anonymized within the clinics



and handed blinded to us. The subtraction images were then generated with the
proposed workflow and randomly ordered into a set of evaluation protocols. For
the registrations, the number of bins has been computed automatically using
a threshold for the quantization error of 0.05%. The number of samples has
been 10% of the overlap domain, and at least 10.000 for lower resolutions in
the multi-level optimization. No misregistrations were encountered during the
experiments. Based on a fusion of the subtraction image with the corresponding
MRI, the physicians had to specify the locations and the number of the focal
spots, their certainty, and a rating of the image quality. No additional data was
provided for the evaluation. The results of two physicians from the Department
of Nuclear Medicine, University Hospital Erlangen, showed a good correlation
of the proposed method with the conventional procedure. On an ordinal scale
ranging from very uncertain, uncertain, certain to very certain, 45% of the results
from the subtraction workflow were classified as certain. The observers reached
a correlation value of 81% for correctly locating the focal spot in those cases.
In the uncertain cases, still 53% of the focal spots have been located correctly.
The overall image quality was rated good on an ordinal scale between very bad,
bad, good, and very good. The intra-observer variability was 88% for the results
computed from two evaluation passes.

An example for the density estimation and the normalization, using an affine
model, is shown in Figure 3. Resulting subtraction images fused with the corre-
sponding MR images are presented in Figure 4.

5 Discussion

In this article we have presented data-driven parameter estimation techniques
for the Parzen-window estimation of intensity distributions, which are required
for statistical image similarity measures. The proposed algorithms have been
integrated into a normalized mutual information registration and applied to align
intra- with inter-ictal SPECT images of epilepsy patients. After the registration,
the estimated densities are used for the intensity normalization between the two
SPECTs in order to allow for an image subtraction. The difference image is then
fused with an MRI to spatially localize the focal spots.

Regarding the evaluation, in the cases where the physicians indicated a high
certainty, the results showed a high correlation with the standard evaluation
method. In cases of low certainty, an inspection of the subtraction results revealed
no failure of the algorithm, but instead often showed several weak focal spots
that gave no clear information about the seizure onset. This might lead to the
conclusion that the diagnosis of these patients with only the SPECT images
is generally uncertain also in the standard approach. An evaluation based on
real ground truth data (i. e. results from surgery) would be necessary to confirm
this. Please note that only the difficult cases are undergoing a further analysis
using multiple SPECT and MR images. A major advantage of the presented
algorithm is the low amount of time that is required for the physician to assess
the patient data in the beginning of the diagnosis. This suggests to combine the
approach with the standard procedure, giving the physician a good indication
of interesting regions within the data.
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Figure 3. The figures show the joint PDF of two input SPECT images (a) before, (b)
after the registration, (c) with the model fitted into the joint PDF without background
content, and (d) the joint PDF after applying the intensity normalization. The figures
also show the diagonal through the histogram space (solid red line), the fitted affine
model (dashed red line), and the threshold region for the background (solid blue line).

(a) (b)

Figure 4. Two example patients taken from the collective. The images show the
SPECT subtraction image fused with the corresponding MRI.
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14. Thévenaz, P., Bierlaire, M., Unser, M.: Halton sampling for image registration
based on mutual information. Sampling Theory in Signal and Image Processing
7(2) (2008) 141–171

15. Rohlfing, T., Beier, J.: Improving reliability and performance of voxel-based reg-
istration by coincidence thresholding and volume clipping. In Hawkes, D.J., Hill,
D.L.G., Gaston, R., eds.: Proceedings of Medical Image Analysis and Understand-
ing 99, King’s College (1999) 165–168



16. Rohlfing, T.: Multimodale Datenfusion für die bildgesteuerte Neurochirurgie und
Strahlentherapie. PhD thesis, Technical University Berlin (2000)
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