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Abstract

The advances in scanner technologies over the past years and a growing number of
modalities in medical imaging result in an increased amount of patient data. The
physicians are faced with an overwhelming amount of information when compar-
ing different scans. Therefore, automatic image processing algorithms are necessary
to facilitate everyday clinical workflows. The present work focuses on automatic,
statistical image registration approaches and applications in epilepsy diagnosis and
shape-based segmentation.

Registration algorithms based on image intensity statistics are currently state-of-
the-art to automatically compute an alignment between multi-modal images. The
parameters, however, are sensitive to the input data. In the present work, we study
the mutual influences of these parameters on the intensity statistics and present data-
driven estimation schemes to optimize them with respect to the input images. This is
necessary to register large sets of images both accurately and reliably. The presented
evaluation results, which are based on a database with an established gold standard,
confirm that individually optimized parameters lead to improved results compared
to standard settings found in literature.

Besides spatial accuracy, the reduction of the computation time for the registration
is equally important. In this thesis, we present an approach to reduce the search
space for the optimization of a rigid registration transform by a nonlinear projection
scheme, which is closely related to the concept of marginalization of random variables.
Within each projection, a disjoint subset of the transform parameters is optimized
with greatly reduced computational complexity. With a good choice of the projection
geometry, the search space can be separated into disjoint subsets. In the case of rigid
3-D image registrations, the nonlinear projection onto a cylinder surface allows for
an optimization of the rotation around the cylinder axis and a translation along
its direction without the need for a reprojection. Sub-volume registration problems
are supported by fitting the projection geometry into the overlap domain of the
input images. The required objective functions are constrained by systems of linear
inequalities and solved by means of constrained, nonlinear optimization techniques.

A statistical framework is proposed to measure the accuracy of the registration al-
gorithms with respect to manual segmentation results. The aforementioned concepts
of the data-driven density estimators are adopted for the estimation of spatial densi-
ties of the segmented labels in order to model the observer reliability. The accuracy
of the spatial registration transform is measured between the estimated distributions
of the segmented labels in both input images using the Kullback-Leibler divergence.

The proposed algorithms are evaluated by a registration of a database of mor-
phological and functional images with an established gold standard based on fiducial
marker implants. Applications are presented for the subtraction of single emission
computed tomography scans for epilepsy diagnosis, where the intensity distributions
are estimated for both the task of the registration and the normalization of the images.
Finally, the registration is utilized for shape-based image segmentation to establish a
model for the variability within a collective of segmented training shapes.



Übersicht

Erzielte Fortschritte in der Technologie und den Aufnahmeverfahren medizinischer
Geräte in den letzten Jahren führen zu einer merklichen Zunahme von Patienten-
daten. Die Ärzte werden mit einer Vielzahl an Informationen konfrontiert, wenn
es darum geht, verschiedene Aufnahmen miteinander zu vergleichen. Deshalb ist es
nötig, automatische Algorihmen zur Verarbeitung der Daten in die klinischen Abläufe
zu integrieren. Die vorliegende Arbeit beschäftigt sich mit der automatischen, statis-
tischen Bildregistrierung und Anwendungen in der Epilepsie Diagnostik und der form-
basierten Segmentierung.

Registrierungsalgorithmen, die auf Bildstatistiken beruhen, sind derzeit aktueller
Stand, um örtliche Zusammenhänge zwischen multi-modalen Bilddaten automatisch
zu berechnen. Hierfür ist in einer praktischen Realisierung eine Vielzahl an Pa-
rametern nötig. Die entsprechenden Werte hängen von den Eingabedaten ab. In
dieser Dissertation werden die Zusammenhänge und gegenseitigen Einflüsse dieser
Werte auf die Bildstatistik untersucht und datengetriebene Verfahren vorgestellt,
um optimale Werte bezüglich der Bilder zu ermitteln. Dies ist notwendig für die
robuste und genaue Registrierung von großen Datenmengen. Die vorgestellte Eval-
uation der Methoden, basierend auf einer etablierten Datenbank mit vorhandenem
Goldstandard, bestätigt, dass die automatisch ermittelten Parameterwerte zu einer
Verbesserung führen verglichen mit Werten, wie sie standardmäßig in einschlägiger
Literatur gefunden werden können.

Neben der räumlichen Genauigkeit ist auch die Laufzeit der Algorithmen von
Bedeutung. In dieser Arbeit wird ein Ansatz vorgestellt, der den Suchraum für
eine starre Registrierungstransformation durch nichtlineare Projektionsschemata re-
duziert. Das Konzept ist eng verwandt mit der Marginalisierung von Zufallsvariablen.
In jeder Projektion kann eine Untermenge der Transformationsparameter mit stark
reduziertem Berechnungsaufwand optimiert werden. Die Wahl der Projektionsge-
ometrie spielt eine Rolle bei der Separierbarkeit des Suchraums. Im Falle von starren
Bildtransformationen in 3-D erlaubt die nichtlineare Projektion auf eine Zylinderober-
fläche die Trennung in eine Rotation um die Zylinderachse und eine Translationskom-
ponente entlang des Zylinders. Während der Optimierung dieser Untermenge sind
keine zusätzlichen Projektionen aus dem hochdimensionalen Raum nötig. Subvolu-
men Probleme lassen sich über eine geeignete Einpassung der Projektionsgeometrie
in den Überlappungsbereich der Bilder erfassen. Die dazugehörigen Zielfunktionen
werden durch eine Optimierung mit Nebenbedingungen gelöst.

Zusätzlich wird ein statistischer Ansatz vorgestellt, um die Genauigkeit von Reg-
istrierungsalgorithmen bezüglich manueller Segmentierungen von medizinischen Ex-
perten zu erfassen. Die erläuterten Konzepte der datengetriebenen Intensitätsstatis-
tik können hierfür angepasst werden. Es werden örtliche Dichtefunktionen für die
segmentierten Daten geschätzt, um die Variabilität der Beobachter zu integrieren.
Die Genauigkeit der Registrierung kann anschließend durch ein Abstandsmaß zwis-
chen den Dichten erfasst werden, das auf der Kullback-Leibler Divergenz beruht.

Vorgestellte Algorithmen werden anhand einer Datenbank mit morphologischen
und funktionalen Bilddaten evaluiert. Die Genauigkeit der Transformation bes-
timmt sich hierbei aus dem Abstand von implantierten Markern. Eine Anwen-
dungsmöglichkeit der Methoden findet sich in der Subtraktion von SPECT (Single



Emission Computed Tomography) Aufnahmen für die Epilepsie Diagnostik. Hierbei
werden die aufgeführten, statistischen Verfahren im Rahmen der Registrierung und
der Normierung der Bilddaten verwendet. Abschließend wird die Registrierung für
die Generierung eines Formmodells zur Segmentierung eingesetzt.
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Chapter 1

Introduction

Scanning the human body with a variety of imaging devices has become a vital part
of various clinical applications. Improvements of the acquisition technologies result
in a growing amount of data. The physicians not only have to analyze thousands of
image slices taken throughout the human body, they also have to combine information
from different modalities. Each of these imaging devices has its specific field of
application. Among the most important acquisition technologies that are used in the
clinics nowadays are computed tomography (CT), C-arm computed tomography for
X-ray angiography imaging (AX), fluoroscopy, magnetic resonance imaging (MRI),
positron emission tomography (PET), single photon emission computed tomography
(SPECT), and ultrasound (US). Patients may undergo several scans with a single or
multiple imaging techniques throughout the treatment. Until a few years ago, the
physicians had to compare the printout films using light boxes. This method requires
the physician being able to mentally fuse the scans because the patient’s position and
orientation usually differs between the scans and the films are not registered.

In general, medical image registration has to support the physician by trans-
forming the images into a common coordinate system. The computation of spatial
relations between corresponding tissue provides the link between the different tech-
nologies and allows to make a diagnosis based on several acquisitions and modalities.
At first glance, this theoretical statement of the registration problem may look rather
simple, as we “just” have to compute the correspondences between two images. Every
radiologist may well be able to succeed in this task, but in practice, finding a good
solution without the need for manual interactions is very complex. Challenges arise,
for instance, from differences in the multi-modal image content, noise, or patient
movements.

The present thesis focuses on methods for statistical image registration and deals
with applications of the techniques in 3-D/3-D multi-modal rigid registration, epi-
lepsy diagnosis, and shape-based segmentation. The entire registration is based on
three parts: the transformation, the optimization, and the similarity measure. The
choice of the transform, whether parametric or non-parametric, has a high impact
on the computational complexity. Within the optimization, the algorithm adapts the
transform to achieve an optimal similarity measure between the images. Therefore,
this measure is the driving force of the entire approach. Techniques based on intensity
statistics are currently state-of-the-art for the automatic registration of multi-modal
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2 Chapter 1. Introduction

images. We briefly summarize pitfalls when it comes to an implementation and pro-
pose data-driven schemes to estimate a set of optimal parameters that are necessary
to achieve both robust and accurate measurements. Additionally, we introduce a
novel scheme for the decomposition of the parameter space for a rigid registration
and propose a model for the evaluation of registration techniques.

1.1 Contributions

The present thesis deals with methods for statistical image registration, more precisely
with the estimation of intensity statistics for multi-modal similarity measures, opti-
mization aspects and a statistical evaluation of both parametric and non-parametric
algorithms. As we follow up on ideas that have been proposed earlier in this field of
research, the following listing briefly summarizes our main contributions:

• We propose an automatic, data-driven approach for the estimation of a set of
implementation parameters for statistical similarity measures. The parameters
are optimally adapted to the registration data.

• Current projection-based optimization techniques for rigid transforms are lim-
ited to 3-D applications and lead to 2-D registration subproblems that cannot
be further decomposed. We present a novel projection scheme that allows a
complete decomposition of the parameter search space. We propose a non-
linear projection scheme to split the high-dimensional parameter space into
subproblems of only one parameter. The related optimization problems for
these subspaces can be solved efficiently due to the low computational com-
plexity. The results are iteratively combined to establish a solution for the
high-dimensional parameters.

• There are currently only few established evaluation techniques for non-parame-
tric registration algorithms. We present a framework that is based on manually
selected, anatomical labels. It incorporates a statistical model for the observer
reliability and yields a quality measure, which may be used as a registration
benchmark for both parametric and non-parametric registration algorithms.

• We propose an application of rigid and non-parametric registration techniques
in epilepsy diagnosis. The combination of the two types of algorithms reduces
the registration error for SPECT brain images, even if there are significant
variations in the blood flow measurements.

• Image segmentation based on prior knowledge requires a statistical model of
the shape variation. We apply registration techniques to find correspondences
within the training data that are used to compute the principal modes of varia-
tion. The standard sum of squared differences similarity measure is extended by
a shape curvature term to incorporate surface properties into the registration.
An application of active shape models for the segmentation of kidney from CT
images is utilized to compare the registration to a standard approach for the
computation of the shape statistics.
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Some chapters of this thesis contain material that has been published or submitted
to conference proceedings and journals. The following list specifies these articles:

[1] D. A. Hahn, V. Daum, J. Hornegger, W. Bautz, and T. Kuwert. “Difference
Imaging of Inter- and Intra-Ictal SPECT Images for the Localization of Seizure
Onset in Epilepsy”. In: E. C. Frey, Ed., IEEE Nuclear Science Symposium and

Medical Imaging Conference, pp. 4331–4335, IEEE Nuclear & Plasma Sciences
Society, Honolulu, HI, USA, October 2007.

[2] D. A. Hahn, V. Daum, and J. Hornegger. “Automatic Parameter Selection for
Multi-Modal Image Registration”. 2009. submitted to IEEE Transactions on
Medical Imaging.

[3] D. A. Hahn, V. Daum, J. Hornegger, and T. Kuwert. “Data-Driven Density
Estimation applied to SPECT Subtraction Imaging for Epilepsy Diagnosis”. 2009.
submitted to MICCAI 2009, Workshop on Probabilistic Models for Medical Image
Analysis.

[4] V. Daum, D. A. Hahn, and J. Hornegger. “A Nonlinear Projection Scheme for Fast
Rigid Registration”. In: E. C. Frey, Ed., IEEE Nuclear Science Symposium and

Medical Imaging Conference, pp. 4022–4026, IEEE Nuclear & Plasma Sciences
Society, Honolulu, HI, October 2007.

[5] M. Spiegel, D. A. Hahn, V. Daum, J. Wasza, and J. Hornegger. “Segmentation of
kidneys using a new active shape model generation technique based on non-rigid
image registration”. Computerized Medical Imaging and Graphics, Vol. 33, No. 1,
pp. 29–39, 2009.

1.2 Document Overview

The present thesis is structured into three parts: background information on medical
image registration, theory, and applications. The first part presents clinical applica-
tions that require image registration and describes some of the main challenges when
the algorithms have to be incorporated into a clinical workflow. It contains back-
ground information of the registration methods, the similarity measures, and the re-
lated mathematical formulations. The theoretical work is comprised of an automatic
parameter estimation approach for statistical similarity measures, projection-based
registration, and an evaluation scheme for registration results. Within the applica-
tions part, we present applications of the proposed methods to 3-D/3-D registration of
multi-modal data, SPECT difference imaging for epilepsy diagnosis, and shape-based
segmentation. The thesis concludes with an outlook and a summary. In the appendix,
we describe an implementation of the projection scheme on graphics hardware.
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Chapter 2

Clinical Applications

When images are acquired from a patient using a single or multiple scanning modali-
ties, image registration is required to enable the fusion of the data and, thus, provide
the physician with additional information. In this context, we use the term fusion to
indicate that the data is visualized within the same coordinate system after the regis-
tration, and an overlay is displayed to the user with variable transparency. Especially
for functional modalities, a fusion with the corresponding CT or MR image may fill
the morphological gaps and provide anatomical information. Figure 2.1 shows an
example for a CT-PET image fusion for screening in lung cancer. Using only the CT,
a small lung nodule with a high tracer uptake in the PET image could have easily
been overseen. The combination of CT with PET or SPECT is commonly used in

(a) (b) (c)

Figure 2.1: Example for an image fusion after registration of (a) a CT and (c) a PET
image during a screening for metastases in lung cancer. The (b) fusion image provides
the information about the function and the anatomical location of the lesion.

the clinics to locate lesions in cancer screening or also tissue inflammations. In ad-
dition, hardware registrations can be achieved by combining different modalities into
one scanner. Recent innovations in hybrid scanning technologies led to PET-CT,
SPECT-CT and PET-MR devices that are mitigating into clinical practice. With
these, the patient does not have to be repositioned to acquire both scans, which
basically eliminates the need for a retrospective, rigid registration. Studies report
increased diagnostic accuracy using these devices, for example up to 30 percent for
the nodal staging of thyroid carcinoma with SPECT-CT [Schm 08]. Results may lead

7
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to the conclusion that the registration problem is solved by the invention of hybrid
scanners, but retrospective registration techniques are still required. Although two
modalities are combined within one device, the acquisition processes can be very dif-
ferent: PET, for instance, requires much longer scanning times than CT and effects
due to respiration or other movements may lead to inaccuracies. The field of clini-
cal usage is still limited for hybrid devices, and, additionally, there can hardly be a
combination of devices for all necessary applications.

The following chapter presents some exemplary clinical applications that require
different techniques of retrospective medical image registration, moreover, the usage
of hybrid scanners does not yield substantial advantages. The requirements vary with
the clinical purpose, therefore, it is necessary to determine a suitable transformation
model and to choose an appropriate similarity measure with respect to the input
images.

2.1 Radiation Therapy

Radiation therapy may be applied as part of a cancer treatment to reduce malignant
tissue by the medical use of ionizing radiation. The goal is to destroy the cancer
cells while sparing the healthy tissue surrounding the lesion. A clinical system has to
provide a planning phase for dose calculations, support for radiation field adjustments,
and an optimization of the distributed radiation. The calculations are largely based on
3-D CT data acquired before the treatment. During a treatment session, which may
take up to 30 minutes, the patient and the lesions may move because of voluntary and
involuntary actions, e. g. respiration or bowel motion [Bucc 05]. 2-D X-ray projection
images can, for instance, be acquired with a C-arm system during the treatment and
registered with the 3-D planning data to readjust the radiation device [Muac 06].
The registration result can then be used to compensate the motion and “follow” the
lesion with the beam during the respiratory cycle [Muac 07]. Benefits for the patient
are faster radiation sessions compared to gating, less damage to healthy tissue, and
also a reduction of harmful radiation, as the malignant tissue can be destroyed more
precisely.

2.2 Follow-Up Patient Studies

In clinical, longitudinal studies, in which patients are monitored to identify the pro-
gress or the influences of the treatment on the disease, follow-up image acquisitions
are often used to conduct quantitative measurements. An example is the analysis of
subsequent CT scans of the brain to study the ventricular change during Alzheimer’s
disease [Leon 89]. Registration is necessary to relate the baseline with the follow-up
images at the different acquisition times, which is not trivial for large-scale, longitudi-
nal MR data sets. The number of required transformations grows exponentially with
the number of images contained in the study, and the algorithms must be adapted
to achieve results within reasonable computation times [Csap 07]. In order to achieve
accurate measurements, the registration algorithm has to account for rigid move-
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ments, deformations of anatomical structures, loss or gain of weight, different states
of respiration, digestion, or also tissue that has been removed by surgery.

2.3 Reconstruction

The importance of 3-D and higher dimensional medical imaging is steadily increasing,
which demands for suitable reconstruction techniques. In several imaging modalities,
the reconstruction is based on series of 2-D projections that are acquired at different
angles around the patient. Between subsequent scans, it is likely that the patient
moves unintentionally, which is a major problem for slow imaging techniques, like
PET or SPECT [Tsui 00]. In CT, the problem can be alleviated by accelerating the
acquisitions with a large number of parallel slices being acquired in one rotational
sweep, which already allows for detailed reconstructions of the beating heart. AX
acquisitions are often required during interventions, but usually take longer than a
CT scan. The motion of the heart and the lungs, due to breathing or other small
movements, are large enough to result in reconstruction artifacts that may be visu-
ally distracting. For the reconstruction of 3-D cardiac images, multiple sweeps are
usually performed and projections close to the desired heart phase are retrospectively
selected for a reconstruction. Image registration provides an alternative, as it allows
the incorporation of the deformation of the beating heart into the reconstruction to
enhance the image quality by a substantial reduction of motion blurring [Prum 06]. If
the spatial relations between projections from different heart phases are established
by image registration, the number of required sweeps can be reduced while retaining
the image quality. In addition, less dose has to be applied to the patient.

2.4 Challenges

The mentioned clinical applications all have specific requirements that a registration
technique has to fulfill. In practice, challenges arise from the need to provide reliable
and accurate registration results for various modalities, changes in image quality,
different fields of view, varying resolutions, and a huge number of images. Implemen-
tations of registration algorithms usually need quite a few engineering variables that
have to be specified. Unfortunately, these values are often dependent on the data
and influence each other. We are convinced that this is a major reason why various
research groups report partly contradictory, empirical proposals for these values. A
single, empirically determined parameter configuration that is optimal for all input
data cannot be found. Additionally, numerical issues regarding the discretization of
the mathematical formulations have to be examined, otherwise the result may be
biased towards a wrong solution and, therefore, unreliable. Another criterion, which
is more important for clinical usage than research, is the time needed for the compu-
tation of the spatial transform. For a rigid registration, a runtime of more than five
seconds is no longer tolerated, and non-parametric deformations have to be computed
in less than a minute. These problems are discussed in more detail in the theoretical
part of this thesis.



10 Chapter 2. Clinical Applications



Chapter 3

Registration Methods

The main purpose of image registration is to find spatial relations between two or
more images. These relations then provide the necessary information about corre-
spondences between the images’ content. They can be mathematically expressed
using a spatial transform Φ : Rn 7→ Rm, where n is the dimension of the first image,
which we call reference image R : Ω(R) 7→ R, and m the dimension of the related
image, the so-called template image T : Ω(T ) 7→ R. Ω(R) ⊂ Rn and Ω(T ) ⊂ Rm are
the bounded domains of the reference and the template image, respectively. In this
thesis, we focus on registration problems of two images that have the same number of
dimensions, i. e. n = m. The storage format of medical images – usually given in the
Digital Imaging and Communications in Medicine (DICOM) standard [NEMA 09] –
describes images as a lattice within the discrete image domain with intensity val-
ues provided at each lattice point together with spatial locations in the scanner’s
coordinate system. The application of spatial transformations requires means of in-
terpolation to assess intensity values between the discrete image grid. We formulate
the direction of the transformation from the reference to the template domain, the
interpolated intensities at the corresponding locations are described using the term
TΦ:

TΦ(x) = T (Φ(x)) . (3.1)

During the registration, a similarity measure D : Ω(R, TΦ) 7→ R between the two
images is minimized with respect to the spatial transform Φ. Only the bounded region
is taken into account that contains information from both images, i. e. Ω(R, TΦ) =
Ω(R) ∩ Ω(TΦ). The general objective function for the optimal transform Φ̂ is then:

Φ̂ = argmin
Φ

D[R, TΦ] . (3.2)

Depending on the type of transformation, registration algorithms are commonly di-
vided into parametric and non-parametric classes [Mode 04]. Some authors prefer
the partitioning into rigid and non-rigid algorithms, however, this distinction is a
bit vague, as there exist both parametric and non-parametric transformations that
are non-rigid. As the formulation of the general objective function is basically the
same for all parametric registrations, we favor the first type of distinction and briefly
summarize some of the most popular parametric and non-parametric approaches in
the following.

11
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3.1 Parametric Registration

Several surveys presented in literature cover a wide range of parametric registra-
tion approaches. Examples can be found, for instance, in Brown [Brow 92], Elsen
et al. [van 93], Hajnal et al. [Hajn 01], Hill et al. [Hill 01], and Maintz et al. [Main 98].
These parametric registration algorithms restrict the degrees of freedom (DOF) in the
transformation by an inherent regularization, as only a restricted set of spatial rela-
tions is described by a parameter vector a. The subject for all parametric registration
optimizations is the parameter vector that defines the optimal transform:

â = argmin
a

D [R, TΦa
] . (3.3)

Common types of parametric transforms that are applied in image registration are
rigid, affine, and B-spline registrations. The rigid transform only allows for rotations
R ∈ Rn×n, with R being an orthonormal matrix of det(R) = 1, and translations
t ∈ Rn:

ΦR
a(x) = Rx + t . (3.4)

For clinical usage, the rigid registration has the advantage that the image content
is not modified and results can be verified easily by the physicians. The accuracy
of the algorithms is assessed using established evaluation strategies based on a gold
standard of implanted fiducial markers (see Chapter 7).

The affine transform extends the DOF by adding individual scalings and also
shearing within the linear transformation matrix A ∈ Rn×n, with det(A) > 0:

ΦA
a(x) = Ax + t . (3.5)

Medical images typically contain information about the extent of the voxels, the im-
age origin, and the orientation of the coordinate system within the storage format.
An affine transform between images is, therefore, useful to correct scale or skew inac-
curacies of the scanner geometry. For general clinical applications, affine registrations
do not yield major advantages over rigid ones, as both types of transforms cannot
account for more complex soft tissue deformations. However, it is used in practice
for image corrections due to scanner-related inaccuracies, and for approximate align-
ments of brain images from different subjects [Hajn 01]. An additional application is
the compensation of gantry tilt, which may be realized using an affine transform.

Both rigid and affine registrations are often not sufficient to describe motions
within the human body between acquisitions or between different subjects. B-spline
approaches provide more DOF, while maintaining a high amount of control due to
their local support, which yields also a high degree of computational efficiency. The
deformation may be modeled using a control grid that defines the B-spline coefficients.
The result is a smooth and Cd−1-continuous transformation, with d ≥ 1 being the
spline degree [Ashb 99]. Following the notation of Rueckert et al. [Ruec 99] and Ino
et al. [Ino 05], the cubic B-spline transformation in 3-D is defined by a discrete grid
of control points C of size nx×ny×nz and a uniform spacing of δ, which depends on
the desired strength of the deformation. The physical spacings between the control
points are usually chosen large in the beginning and reduced during the course of
the iterative optimization scheme. Large spacings but few control grids allow for
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larger deformations in the beginning of the optimization. The deformation becomes
increasingly local with a reduction of the control grid spacing and more control points.
The coordinate vector x = (x, y, z)T specifies a position within the image grid and
(i, j, k)T denotes the corresponding index of the control grid:

ΦBS
a (x) = x +

3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)Bn(w)C(i+ l, j +m, k + n) . (3.6)

The relations between the indices are given by i = ⌊x/δ⌋ − 1, j = ⌊y/δ⌋ − 1, k =
⌊z/δ⌋ − 1. The cubic B-spline basis functions Bl, l = 0, 1, . . . , 3, are evaluated at
u = x/δ−⌊x/δ⌋, v = y/δ−⌊y/δ⌋, and w = z/δ−⌊z/δ⌋. The parameter vector a for
the transformation contains the points of the control grid:

a = ( C(1, 1, 1), C(2, 1, 1), . . . , C(nx, ny, nz) ) . (3.7)

For a uniformly distributed control grid, the basis functions are:

B0(u) =
1

6
(1 − u3) (3.8)

B1(u) =
1

6
(3u3 − 6u2 + 4) (3.9)

B2(u) =
1

6
(−3u3 + 3u2 + 3u+ 1) (3.10)

B3(u) =
1

6
u3 . (3.11)

Medical applications include, for instance, breast image registration [Ruec 99], atlas
generation [Kybi 03], and correction of respiratory motion [Bai 09].

3.2 Non-Parametric Registration

Compared to the previous class of registration algorithms, non-parametric techniques
allow to incorporate even more DOF and can be used to model nonlinear soft tissue
deformations. However, the results are far more difficult to analyze in a quantitative
way. The overlay visualization is no longer sufficient, as also the deformation has to
be investigated. Various approaches for non-parametric registration can be found in
the works of Rumpf, Miller, Modersitzki and co-workers [Dros 04; Clar 06; Chri 97;
Chri 96; Josh 00; Fisc 04; Mode 04]. This section briefly introduces the variational
framework that we applied for non-parametric registration tasks. It is based on
the works of Hermosillo et al. [Herm 02b], Clarenz et al. [Clar 06], and Modersitzki
[Mode 04].

The main difference between parametric and non-parametric methods, in general,
is that the transformation is not restricted by a set of parameters in the latter case.
Instead, it is defined by a displacement field u : Ω(R) 7→ Rn:

Φ(x) = x − u(x) . (3.12)

Again, the aim of the optimization is to compute a transform that is optimal regard-
ing (3.2), but the minimization of only the measure without any constraints on the
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deformation is an ill-posed problem. Especially for medical images, the transform has
to be physically meaningful, for example cracks and foldings within a displacement
field rarely have a physical correspondence within real soft tissue deformations. One
way to address this problem is to add a regularization energy S to (3.2) and minimize
the resulting functional J : U 7→ R with respect to an admissible displacement field
from the set of all deformations: u ∈ U . S is often called a smoother because it is
a measure of the regularity – or vaguely the smoothness – of u. The mathematical
meaning of the term smoothness is eventually determined by its actual formulation
as a regularization energy term.

There exist various ways to incorporate the regularization term into the registra-
tion functional [Clar 06]. In techniques related to classical Tikhonov regularization
[Tikh 77], an additional energy is added to the functional. Thus, the smoother penal-
izes irregular displacement fields and enables a stable numeric optimization [Mode 04].
Another class of regularization is comprised of gradient flow approaches that use the
regularization energy to compute a smooth path from the initial guess to the min-
imizer of the functional. Examples for such iterative relaxation techniques can be
found, for instance, in the work of Thirion [Thir 98], Clarenz et al. [Clar 06], and
Henn et al. [Henn 02]. Also mixtures between classical Tikhonov and iterative regis-
trations are used in some applications [Dros 04].

In relation to classical Tikhonov regularization, the constrained energy functional
yields:

J [u] = D[R, TΦ] + αS[u] , (3.13)

with α ∈ R>0 being a positive weighting factor for the smoothness constraint. The
optimization problem becomes more complex, because we now have to find a mini-
mizer for the functional in the space of deformations:

û = argmin
u∈U

(D[R, TΦ] + αS[u]) . (3.14)

If we assume that J is sufficiently smooth and differentiable, and with appropriate
boundary conditions, we can apply the calculus of variations to find a minimizer û.
For the direction v ∈ U of the first variation, the Gâteaux derivative of (3.13) is
defined as:

δJ [u,v] = lim
ǫ7→0

J [u + ǫv] − J [u]

ǫ
=

dJ [u + ǫv]

dǫ

∣
∣
∣
∣
ǫ=0

. (3.15)

For the existence of û it is necessary that the Gâteaux derivative vanishes for all
variations v: δJ [û,v] = 0. If U is assumed to be a Hilbert space that defines a
scalar product, the gradient of the functional with respect to the optimal displace-
ment vanishes, ∇UJ [û] = 0, and the minimizer is a solution to the Euler-Lagrange
equations associated with this problem. Due to the nonlinear nature of the similarity
measure, finding a closed form solution for (3.14) is usually impossible. Therefore,
the functional has to be minimized numerically with a suitable optimization scheme.
In a gradient descent method, for instance, the displacement field can be iteratively
refined by stepping in the direction of the negative gradient until a convergence cri-
terion is met. The update rule for the displacement in the k-th iteration to minimize
the functional is:

uk+1 = uk − τk (∇UD[R, TΦk
] + α∇US[uk]) , (3.16)
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where τk is the stepsize and Φk the transformation using the deformation uk of the k-
the iteration. The existence of û depends on the nature of D. It has to be continuous
in u and bounded below [Herm 02a]. The choice of a suitable smoother depends on
the type of application. Common regularization techniques are based on Dirichlet,
elasticity, fluidal, and higher order functionals. Among the latter ones, curvature
regularization Scurv is an approach that features some advantages for medical image
registration [Fisc 03b]:

Scurv[u] =

∫

Ω(R)

|∆xu|2 dx . (3.17)

This regularization term does not penalize affine transformations and leads to smooth
displacement fields. A non-parametric registration with curvature regularization is
used to compute the displacement fields for the shape model generation in Chapter 9,
and for the correction of the global bias in rigid registrations of SPECT brain images
in Chapter 8.

We concentrate on the deformation model (3.12) throught the rest of this thesis.
This model is also called small deformation model, as it does not necessarily preserve
the topology in case of larger deformations. The regularization term is used to control
the degree of locality. In the case that larger deformations are expected, it may be
more suitable to choose a diffeomorphic deformation model. Examples for diffeomor-
phic registration algorithms may be found, for instance, in Christensen [Chri 01], Beg
et al. [Beg 05], Vercauteren et al. [Verc 07] or Ashburner [Ashb 07].

3.3 Similarity Measures

We have briefly summarized the theory of parametric and non-parametric registra-
tions, but a key aspect remains to be discussed in the following: the measure that is
used to determine the similarity between the images. Image similarity measures can
be coarsely divided into feature-based, intensity-based, and mixtures of both. Fig-
ure 3.1 illustrates a classification scheme for commonly applied similarity measures.
Feature-based measures require the specification of similar features within the two
images, for example by manual or automatic detection, or segmentation. Implicit ap-
proaches are calculated from voxel intensities and do not require manual interactions.
A mix of both strategies can be applied, for example if both the detected features
and the surrounding image intensities have to be incorporated into the registration
[Mode 03]. We provide the formulations for some measures in the following. Note
that the functions are denoted as similarities measures that have to be minimized for
an optimal alignment.

3.3.1 Feature-Based Measures

Feature-based similarity measures shift the registration problem from the intensity to
the geometrical domain. Points and surfaces are two examples for established types
of geometrical features. In a preprocessing step, which may consist of manual inter-
actions or an automatic segmentation, the features are selected based on the image
content. Ideally, the correspondences are known a priori, which greatly simplifies the
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Intensity Similarity
Measures

Direct Measures

SSD SAD CC NCC Non-Statistical
Measures

RIUPIU GM

Indirect Measures

Statistical
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Similarity Measures

Feature-Based
Measures

LM SURF

Figure 3.1: Coarse classification of image similarity measures into intensity and
feature-based approaches. (See the description in the text or in Appendix C for
the meaning of the abbreviations.)

optimization problem, as analytical solutions can be found for rigid and spline-based
registrations. If the preprocessing consists of an automatic extraction algorithm, the
problem of selecting corresponding features has to be solved in addition.

Landmark (LM) Registration

Anatomical landmarks are often used as point features for registration tasks. A com-
mon approach within current state-of-the-art registration applications requires the
physician to specify the location and correspondences of the points. The mathemat-
ical formalism to establish a transform that yields a least squares distance between
two sets of corresponding points is known as the orthogonal Procrustes problem. So-
lutions for the least squares fitting of two point sets using a rotation together with
a scaling factor and a translation have been established by Schönemann [Scho 66],
Arun et al. [Arun 87] and Horn [Horn 87]. Fitzpatrick et al. [Fitz 98] summarized
the methodology for the registration of automatically detected fiducial markers, which
have been implanted into the human skull, from images acquired with various modal-
ities. As the markers can be detected with a high accuracy, the authors used their
method as ground truth for comparisons of the target registration error (TRE) be-
tween rigid registration algorithms within their retrospective image registration eval-
uation project (RIRE) [West 97].

For rigid registrations, a standard solution is based on a singular value decompo-
sition (SVD) [Golu 96]. Let LR = {ixR}i=1,...,N be the set of N geometric landmarks
in the reference and LT = {ixT }i=1,...,N the corresponding points in the template
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image coordinate space. The problem is to find a rigid transform with a = (R, t)
that results in the minimal squared distance between the landmarks:

DLM[LR,LT ,ΦR
a
] =

1

N

N∑

i=1

‖ΦR
a(ixR) − ixT ‖2 . (3.18)

Given the mean points x̄R and x̄T of the point sets, a solution for R can be found
by computing the SVD for the outer product of the matrices XR and XT . The
reference matrix, with XR =

(
1x̂R, . . . ,

N x̂R

)
, consists of the demeaned reference

points ix̂R = ixR− x̄R denoted as column vectors. The corresponding matrix XT =
(
1x̂T , . . . ,

N x̂T

)
contains the demeaned template image points ix̂T = ixT − x̄T ,

respectively. The SVD yields:

M = XRXT
T = UΣV T (3.19)

R = V UT , (3.20)

where (3.19) is the SVD of the measurement matrix M . The translation is then
determined by the displacement of the rotated reference features to the template
mean:

t = x̄T − Rx̄R . (3.21)

If the correspondences between the point features are not known prior to the
registration, or if the features have been automatically detected independently by
an automatic extraction, an analytical solution cannot be found. Instead, iterative
schemes are usually applied to minimize the least squares problem, for instance,
using an iterative closest point algorithm (ICP) [Besl 92], or detecting the similarity
between feature points using neighboring image intensities [Huan 04; Hahn 06].

Point Features in Non-Parametric Registration

The problem of finding point-to-point correlations using non-parametric registration
algorithms requires, again, the solution of a least squares energy functional with addi-
tional constraints. Rohr [Rohr 01] applied thin-plate splines (TPS) and presented an
analytical solution that also incorporates an uncertainty measurement for the land-
marks. His energy functional is composed of a quadratic landmark registration error
together with a bending energy that is dictated by the spline. The according partial
differential equation (PDE) can be solved using a system of linear equations, which
yields the TPS-regularized deformation field. Modersitzki and Fischer [Fisc 03a] di-
rectly incorporated the quadratic landmark distance into their registration functional
and provided the corresponding Euler-Lagrange equations. If just the landmark en-
ergy is applied, the system is linear with respect to the smoother. The authors
mixed landmark constraints with an additional similarity term that is based on im-
age intensities to improve the registration quality in the neighborhood regions. As
the similarity measure between the intensities is nonlinear, this mix between point
distances and an intensity similarities results in a PDE that requires a nonlinear
optimization.
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Surface Registration

Surfaces within medical images are usually the result of the extraction of boundaries
between organs or different types of tissue using segmentation approaches. Com-
pared to landmarks, surfaces provide more information, however, the direct corre-
spondences between points located on the two related surfaces are commonly not
known. Therefore, the solution can no longer be computed by an analytical, linear
system of equations. Approaches for rigid surface registration usually make use of
an ICP algorithm between sets of discretely sampled points on the reference and the
template surface [Hill 01].

For non-parametric registrations, a level set shape representation may be applied,
which implicitly describes the surfaces and avoids the computation of explicit cor-
respondences between the surfaces. For example, Han et al. [Han 05] proposed a
similarity energy DSURF based on the signed Euclidean distances ΓR to the surface in
the reference and ΓT to the surface in the template domain, respectively:

DSURF[ΓR,ΓT ,Φ] =
1

|Ω(R, TΦ)|

∫

Ω(R,TΦ)

( ΓR(x) − ΓT (Φ(x)) )2 . dx (3.22)

The surfaces are implicitly represented as level set surfaces in the discrete image
domain, where each intensity in the curve image specifies the signed distance to the
zero level set.

3.3.2 Direct Voxel Intensity-Based Measures

Similarity measures that are based on the intensity values of the voxels are especially
suitable for fully automatic registration tasks. For each measure, a specific relation
between the image intensity values is assumed in order to define the maximal sim-
ilarity. In the following, we distinguish between two subclasses: direct and indirect
similarity measures. The direct measures require a functional relation between the
image intensities, whereas the indirect measures are calculated on basis of statistics
or preprocessed image content.

Sum of Squared Differences (SSD)

The SSD measure is based on the assumption that the intensities of corresponding
tissue within the two images are equal, or differ by noise at the utmost:

DSSD[R, TΦ] =
1

|Ω(R, TΦ)|

∫

Ω(R,TΦ)

(R(x) − TΦ(x))2 dx . (3.23)

Sum of Absolute Differences (SAD)

Outliers in the intensity domain have a quadratic influence on the SSD measure and
may, therefore, lead to inaccurate alignments. This may be the case, for example if
beam artifacts of metal implants are present [Hill 01]. These influences are reduced
if the absolute instead of the squared distance is applied, however, the function is no
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longer differentiable at the optimal position. Again, an equality between intensities
of corresponding tissue within the two images is assumed:

DSAD[R, TΦ] =
1

|Ω(R, TΦ)|

∫

Ω(R,TΦ)

|R(x) − TΦ(x)| dx . (3.24)

Cross Correlation (CC)

The rather strict assumption of equal iso-intensity surfaces, or level sets, within both
images is loosened by assuming a linear relation between the intensities. The position
of the optimum of the CC measure with respect to Φ is invariant to a scaling factor
between the image values:

DCC[R, TΦ] = −
∫

Ω(R,TΦ)

R(x)TΦ(x) dx . (3.25)

Normalized Cross Correlation (NCC)

An extension of the CC is achieved by modeling the intensity relation by an affine
transform, which yields the NCC measure:

DNCC[R, T ,Φ] =

= −
∫

Ω(R,TΦ)
(R(x) − µR) (TΦ(x) − µTΦ

) dx
√∫

Ω(R,TΦ)
(R(x) − µR)2 dx

∫

Ω(R,TΦ)
(TΦ(x) − µTΦ

)2 dx

µR =

∫

R

rpR(r) dr

µTΦ
=

∫

R

tpTΦ
(t) dt ,

(3.26)

with pR(r) and pTΦ
(t) being the probability density functions (PDFs) on the inten-

sities in the reference and the transformed template image. The mean values of the
reference and template image are defined by µR and µTΦ

, respectively. The intensi-
ties r of the reference and t of the template image are regarded as sample values of
random variables associated with the intensity information of the images within the
overlap domain Ω(R, TΦ) (see also Section 3.3.4).

3.3.3 Non-Statistical Indirect Measures

For some combinations of imaging modalities, direct similarity measures may of-
ten be sufficient. For example in CT images, the intensity values are normalized
to Hounsfield units (HU), and a direct correspondence between image content and
intensity values is established. Registrations between other modalities are more dif-
ficult, as the intensities are not normalized. Images from different MR sequences, for
instance, cannot be related to each other by linear functions, therefore, the similar-
ity is calculated on basis of derived intensity characteristics, such as ratio images,
partitions, or normal fields.
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Ratio Image Uniformity (RIU)

The RIU [Wood 92] measures the standard deviation of the ratio between the inten-
sities of the reference image and the transformed template image within the overlap
domain. The ratio between the images at a specific position within the overlap do-
main is:

IRIU(x) =
R(x)

TΦ(x)
, with x ∈ Ω(R, TΦ) and TΦ(x) 6= 0 . (3.27)

The mean ratio µRIU is computed using the PDF pRIU of the intensity ratios i:

µRIU =

∫

R

ipRIU(i) di (3.28)

DRIU[R, TΦ] =

√
1

|Ω(R,TΦ)|

∫

Ω(R,TΦ)
(IRIU(x) − µRIU)

2 dx

µRIU
, (3.29)

where µRIU 6= 0.

Partition Image Uniformity (PIU)

So far, the presented measures are only suitable for intra-modality or intra-sequence
registrations. In order to support also multi-modal data, the concept of ratios between
image intensities has been extended to ratios between iso-intensity sets (level sets) by
Woods et al. [Wood 93]. The PIU measures the deviation of locations on the level sets
of the reference image to corresponding intensities in the transformed template image.
It has been successfully applied to MR-PET registrations, however, the scalp in the
MR images has to be removed in a preprocessing step to adhere to the assumptions.
The definition requires the PDF pTΦ|R(x)=r of the template image at a reference iso-
value r, and the corresponding mean value µTΦ|R(x)=r:

DPIU
R [R, TΦ] =

∫

R

√
∫

Ω(R,TΦ)|R(x)=r

(
TΦ(x) − µTΦ|R(x)=r(r)

)2
dx

µTΦ|R(x)=r(r)
pR(r) dr . (3.30)

Gaussian Maps (GM)

The idea of using level sets within two images has also been applied by Droske
et al. [Dros 03; Dros 05] who assume that the morphology between the input im-
ages is very similar. They applied differential geometry to define a measure for the
deviation between corresponding level set surfaces. The distance between the mor-
phology is defined as the Lebesgue-measure between the image gradients:

DGM[R, TΦ] =

∫

Ω(R,TΦ)

g0 (∇xR(x),∇xTΦ(x),Cof(JΦ(x))) dx , (3.31)

where Cof(JΦ) is the cofactor matrix of the Jacobian of the transform and g0 is an
extension of the function g to avoid singularities that occur if normalizing zero-length
gradients directly, i. e. g0(x,y,A) = 0 if ‖x‖ = 0 or ‖y‖ = 0, and g0(x,y,A) =
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g( x
‖x‖

, y

‖y‖
,A) otherwise. An example function is given by g(x,y,A) = ‖(1I − xxT ) ·

Ay‖γ, with γ ≥ 1. DGM can also be thought of a measure for the length of the normal
vectors at the reference level sets projected onto the tangent space of the transformed
template level sets.

A very similar approach was presented later by Haber and Modersitzki [Habe 06].
Instead of a function extensions, they applied a modified vector norm that yields
a differentiable distance between the normalized gradient fields. Both groups pre-
sented multi-modal registration examples, however, the examples were all taken from
morphological modalities.

3.3.4 Statistical Measures

Nowadays, similarities based on image intensity statistics are widely used for multi-
modal registration tasks. Unlike the direct and non-statistical examples mentioned
above, statistics of image intensities can also be used to measure similarities between
morphological and functional modalities. The statistics are defined by the marginal
and joint PDFs described in Table 3.1. In the statistical framework, the intensity

PDF Description
pR(r) 1-D PDF of reference image intensities r
pTΦ

(t) 1-D PDF of template image intensities t
pR,TΦ

(i) 2-D PDF of joint image intensities i = (r, t)

Table 3.1: Description of the PDFs required for the statistical image similarity mea-
sures.

values r and t are associated with probabilities on the collection of the intensities of
the images. r and t are regarded as random values with the associated PDFs pR(r),
pTΦ

(t), and pR,TΦ
(i). The PDFs all depend on the transformation Φ, as it determines

the amount of overlap between the spatial domains.

Correlation Ratio (CR)

Roche et al. [Roch 98] generalized the concept of NCC by measuring the functional
dependency between the two images. They decomposed the variance VAR [TΦ] of the
transformed template image into two opposite parts:

VAR [TΦ] = VAR [E [TΦ|R]] + VAR [TΦ − E [TΦ|R]] . (3.32)

The first part consists of the variance of the conditional expected value and measures
the prediction of TΦ by R. The second variance is a measure of the amount in TΦ that
is functionally independent from R. There are two reasons why the second part may
be low compared to the first one. First, there may be a strong functional relationship
between the two random variables, which yields a large variance of the conditional
expectation. In the second case, the variance in the random variable TΦ may already
be very small, e. g. if TΦ consists of only background. As the distributions of the two
random variables depend on the overlap domain, minimizing only the second part
of (3.32) would tend to solutions with a small overlap domain and, therefore, to a
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spatial disconnection of the two images. Instead, the authors suggested to minimize
it with respect to the total variance:

DCR[R, TΦ] =
VAR [TΦ − E [TΦ|R]]

VAR [TΦ]
. (3.33)

The following standard function definitions are used to compute the CR measure
[Herm 02a]:

µTΦ
=

∫

R

tpTΦ
(t) dt (3.34)

VAR [TΦ] =

∫

R

t2pTΦ
(t) dt− µ2

TΦ
(3.35)

pR,TΦ
(t|r) =

pR,TΦ
(i)

pR(r)
(3.36)

µTΦ|R(r) =

∫

R

tpR,TΦ
(t|r) dt (3.37)

VAR [TΦ|R] (r) =

∫

R

t2pR,TΦ
(t|r) dt− µTΦ|R(r)2 (3.38)

VAR [TΦ − E [TΦ|R]] =

∫

R

VAR [TΦ|R] (r)pR(r) dr . (3.39)

Mutual Information (MI)

Based on Shannon’s theory [Shan 48], the information content within the images can
be measured using the following entropies that require the marginal PDFs pR and
pTΦ

, and the joint PDF pR,TΦ
:

H(R) = −
∫

R

pR(r) log pR(r) dr (3.40)

H(TΦ) = −
∫

R

pTΦ
(t) log pTΦ

(t) dt (3.41)

H(R, TΦ) = −
∫

R2

pR,TΦ
(i) log pR,TΦ

(i) di . (3.42)

Wells et al. [Well 96] and Maes et al. [Maes 97] applied the mutual information,
which was originally developed as a measure between the input and output of a
communication channel, to determine the similarity between two images:

DMI[R, TΦ] = − (H(R) + H(TΦ) −H(R, TΦ)) . (3.43)

The formulation in (3.43) incorporates the overlap domain between the images. An-
other formulation without the restriction to the overlap domain is used in Wells
et al. [Well 96], who embedded the images content within an unlimited background
domain and circumvented an explicit overlap requirement.

MI measures the lack of statistical dependence between the intensity distributions
pR and pTΦ

. In the case of an ideal alignment, the statistical dependence between
the two distributions is maximal. Note that, as well as in the case of the other
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measures, DMI is a similarity measure that has to be minimized for a better alignment.
Interestingly, the joint entropy H(R, TΦ) alone does not provide sufficient information
for a correct alignment, similar to the variance measure for the functional relation
in the CR. The global optimum found by optimizing only the joint entropy can be
far from the desired position and may refer to, for instance, a good overlap between
the background regions. The marginal entropies are necessary to avoid registration
results where only background parts are aligned and the remaining image content is
mapped outside the overlap domain.

Normalized Mutual Information (NMI)

Since its introduction into the field of medical image registration, MI has been suc-
cessfully applied in various applications and is proposed in a large number of articles
about multi-modal registration. However, it can sometimes be strongly dependent on
the overlap domain between the images. If the background is extended with respect
to the object, the probability for object elements in the image domain decreases.
The joint entropy increases accordingly, but the peak of the MI at the position of
correct alignment is flattened because no new object information is gained. The
NMI helps to compensate this effect by dividing the marginal entropies by the joint
entropy [Stud 99]:

DNMI[R, TΦ] = −H(R) + H(TΦ)

H(R, TΦ)
. (3.44)

This does not mean that the NMI is invariant to the overlap domain, but it is less
sensitive to changes of the amount of overlap than the original MI.
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Chapter 4

Statistical Similarity Measures

The field of applications for non-statistical similarity measures in medical applica-
tions is limited. The physicians usually have tough time schedules and the clinical
workflows need algorithms that require very few user interactions. Nonetheless, the
registration results have to be reliable, accurate, and computed within a very short
time – usually in just a few seconds. Fully automatic approaches are preferred to
registrations requiring user interactions. Basically all of the aforementioned, non-
statistical approaches have limitations when applied to multiple modalities, however,
an implementation for clinical usage has to support a plurality of images from vari-
ous modalities. For example, the computation of the GM measure within a CT-MR
registration makes sense, however, if applied to PET-MR, it will likely fail because
of the entirely different nature of the images. Thus, statistical similarity measures,
namely MI and NMI, have become state-of-the-art in automatic, multi-modal image
registration over the past ten years. Their computation requires PDFs of the refer-
ence, template, and joint intensities. The density functions are not known a priori,
so they have to be estimated from intensity samples that are assumed to be indepen-
dent of each other and identically distributed (i.i.d.) random measures. Although
there exist approaches to approximate the PDFs with parametric or semi-parametric
models, certain assumptions about the PDF shapes soon become unreliable for dif-
ferent modalities. The models would also have to be adapted to varying fields of
views or changes in the reconstruction settings. Another technique for this task is
non-parametric Parzen-window estimation that only requires a kernel PDF of appro-
priate width(s), a property that makes it very attractive.

The discretization of the statistical measure is not as straightforward as one might
initially think. Various parameter values for an implementation have to be chosen
with care to achieve a both robust and accurate measurement. Unfortunately, a
generally applicable parameter configuration for an optimal discretization cannot be
found, if the approach has to reliably work for large sets of images. The input data
has a great influence on the values of the parameters. In our opinion, this explains
why various research groups propose partly contradictory, empirical values for these
variables.

An implementation of this PDF estimator requires variables for the kernel width
and / or the number of histogram bins. Challenges arise from the fact that these
values are dependent on the data and mutually influence each other. Furthermore,

27
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to keep the computation times within the runtime requirements, it may be neces-
sary to restrict the sampling to only a subset of the overlap domain. The number
of samples also interferes with the previous parameters, i. e. it affects the width of
the Parzen-windows and also the adaptive layout of the histogram. Some of the
problems have been presented in related articles, but the empirical results are con-
tradictory. There is ambiguity, for instance, about the optimal number of bins used
for the discrete PDF representations, and whether or not it is necessary to automat-
ically determine the kernel size for the Parzen-windowing. Additional problems arise
from structured noise within the background region, especially in medical images.
The artificial structures account for inaccuracies within the measurements, and there
exist proposals in literature to treat the background of the images differently when
evaluating the similarity. Tailoring all the necessary parameter values manually to
the application problems may be possible for sets containing only few images. How-
ever, large-scale applications require the registration of hundreds, if not thousands, of
images. Thus, the manual adjustment of the values soon becomes impossible. Wrong
parameters can have a rather destructive impact on the result of the registration, as
it is demonstrated in Figure 4.1 for an intra-patient CT-PET image pair. From two
different starting positions, a rigid registration using NMI with default parameters
(see Chapter 7 for a detailed description of the values) delivered wrong results. The
outlines of the lesion, for instance, are clearly mismatched, which is also the case for
the outlines of the brain.

The focus of this chapter lies on crucial numerical aspects of the joint PDF es-
timation, which is based on sampled random measures. A measure, in this context,
consists of the image intensity values at related spatial positions within the overlap
domain between the reference and the template image. From a numerical point of
view, the sampling technique is very important, as the results are prone to grid ef-
fects that are dependent on the utilized pattern. We briefly summarize the steps to
reduce the sampling artifacts using a jittering technique. The discretization of the
PDF estimates based on these samples requires some parameters. Instead of choos-
ing the values by empirical adjustment, data-driven approaches are used to adapt
them to the input data. We extend ideas proposed by Viola [Viol 95] and Hermosillo
et al. [Herm 02b] to present an efficient kernel width estimation algorithm that uses
histogram binning. The commonly applied method of linear binning in the discrete
histograms, the so-called isotropic binning, does not account for the variability within
the structure of the PDF [Bish 97]. Research results of Knops et al. [Knop 06] or
Katkovnic and Shumulevich [Katk 02] show that isotropic binning is outperformed
by adaptive techniques. Our experiments also lead to the conclusion that adaptive
histogram layouts improve the registration accuracy, as the structure of the estimated
PDF plays an important role in the entire registration. Unfortunately, adaptive ker-
nel sizes applied in the Parzen-windowing yield a high complexity and prevent fast
computation techniques. Therefore, we propose a novel, quasi-adaptive scheme for
the kernel width selection that is comprised of a combination of an isotropic esti-
mator with an adaptive histogram binning layout. The adaptive computation of the
histogram layout brings about an additional benefit in form of a measure for the
quantization error that is used as a criterion to determine a suitable number of bins.
Additionally, we propose a novel technique to tackle the aforementioned problem of
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(a) (b)

(c) (d)

Figure 4.1: Demonstration of the resulting mismatch due to wrong parameters applied
to a rigid registration using NMI. For two initial starting positions shown as overlay
visualizations (a), (c), the results are provided in the right column (b), (d). For
comparison, results using optimally adapted parameters are shown in Figure 4.12.

structured noise within the background. A weighting scheme between the probabili-
ties for object-object and background-background correspondences is applied to the
joint PDF to ensure that the background, and especially the noise within, does not
dominate the similarity measure. A manual specification of implementation variables
is no longer necessary, because the data-driven schemes lead to parameter values that
are optimal with respect to the given input images. The number of samples may be
automatically selected as well, based on the runtime requirements of the application.
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4.1 Sampling Artifacts

Medical images are usually represented by a discrete lattice together with informa-
tion about the position, orientation, and spacing. As the true density functions are
not known, they have to be estimated from the discrete observations stored at the
vertices of the lattice. Intensity values for positions between the grid points are
interpolated. Various research groups reported about accuracy and benefits of inter-
polation methods in the field of image registration. Most frequently, nearest neighbor,
linear, and partial volume methods are applied [Maes 98]. Higher order approaches
are described, for instance, by Thévenaz et al. who introduced continuous models of
the images based on cubic B-Splines. This image representation allows for subpixel
accurate registrations [Thev 98] and high quality multi-resolution schemes [Thev 00].
Independent of the employed interpolation method, a regular sampling scheme of
gridded data leads to serious numerical problems within the subpixel range. Maes
[Maes 98] and Pluim et al. [Plui 00] were among the first who described these effects
for the MI measure. They showed that, due to these numerical effects, local extrema
are introduced into the objective function and lead to inaccurate registration results.
The optimal transform is biased and no longer subpixel-accurate. The authors de-
scribed these numerical problems as interpolation artifacts and proposed to resample
the images in order to avoid grid-aligning positions. It is known from rendering
techniques in computer graphics algorithms that uniform sampling produces highly
visible noise when the regular structure in the images correlates with the sampling
patterns. The disturbing effects are perceived as aliasing, especially at lines that are
non-orthogonal to the image grid [Mitc 87]. The aliasing in computer visualization
is closely related to the numerical effects introduced by regular sampling in image
registration. The problems can be resolved almost completely by non-uniform sam-
pling, for example by adding a random jitter to the sampling positions. The jittering
is motivated by the idea to reduce systematic effects that occur if the sampling – and
also the interpolation coefficients – are based on regular patterns throughout the en-
tire grid. It is schematically illustrated in Figure 4.2. The sampling positions (dots)

(a) (b)

Figure 4.2: Illustration of sampling with and without jittering: (a) regular sampling
pattern at the grid positions, (b) jittering with randomly distributed offsets that are
used to destroy regular patterns.

in a regular scheme spatially coincide with the grid vertices (Figure 4.2a), whereas
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with the usage of jittering, the sample positions are achieved by adding random off-
sets to the grid coordinates (Figure 4.2b). Tsao [Tsao 03] has thoroughly evaluated
jittering of the sampling coordinates and smoothing of the discrete histograms as
additional methods to cope with the numerical problems. The effects of jittering
are demonstrated on the densely sampled objective function for the case of DMI in
Figure 4.3. It shows the DMI values for translational changes of the transform param-

(a) (b)

(c)

Figure 4.3: Plots of the densely evaluated DMI objective function values for transla-
tional parameter changes with a rate of 1

50
of the voxel spacings ∆x in x- and ∆y in

y-direction around the ground truth transform of a 3-D registration. We applied (a)
linear interpolation, (b) PVI, and (c) a combination of both PVI and jittering.

eters in a 3-D registration. The measure is evaluated at densely sampled positions
around the ground truth optimum with variations along two coordinates of the trans-
form parameter space. The PVI within the histogram space reduces the noise in the
measure, but not the additional local ridges due to numerical effects. The jittering,
in combination with the PVI, delivered the best results, as it greatly reduced the
aliasing errors – in fact, they are no longer visible in the plot for this example. The
sampling scheme has a major influence on the smoothness of the objective function
for accurate alignments within the subpixel range. From our experiments we con-
clude that the random offsets of the jittering do not necessarily have to be normally
distributed around the grid knot coordinates, as proposed by Tsao. Instead, any
random placement of the samples that avoids regular grid patterns can be used. For
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example, Thévenaz et al. [Thev 08] proposed quasi-random sampling based on Hal-
ton sequences. This sampling strategy has a low discrepancy regarding the resulting
coordinates, which means that the sampled space is covered more regularly than true

random sampling and avoids clustering. Even if the number of samples is low, as
it is may be the case for the highest resolutions in a multi-resolution scheme to re-
duce the costs for the measure computation, the additional variance in the objective
function is smaller than in true random sampling. Therefore, the authors argued for
using non-stochastic optimization techniques even if sparse quasi-random sampling
is applied.

4.2 Density Estimation

Once the samples have been determined with respect to the current transform param-
eters, the joint PDF has to be estimated. Non-parametric estimation techniques like
simple, discrete histogram methods, k-nearest-neighbors (k-NN), and kernel-based
approaches [Bish 97] are usually applied. A histogram is obtained by partitioning the
domain of the random measures into a number of bins. The discrete PDF is then
estimated by the fraction of samples that fall inside the bins. Although the number of
bins acts as a smoothing parameter, the histogram suffers from discontinuities at the
bin boundaries. The requirement of differential measures is very important for com-
plex registration transforms with either many parameters, or entirely non-parametric
approaches. At least first-order optimization techniques are required to achieve re-
sults in reasonable computation times. The differentiability of stochastic measures,
hence, depends on the density estimator. On the one hand, standard histograms with
few bins are usually less accurate compared to histograms that use a larger number
of bins for a representation of the density. On the other hand, the estimate should
be adequately smooth for various numbers of samples, which is not the case for his-
tograms with a large number of bins. As initially mentioned, the bin size acts as a
smoothing parameter, however, reducing the number of bins also leads to a loss of
structural information within the PDF estimate, if the measured distribution has a
high local variance. Although histograms are not differentiable at the bin boundaries,
in practice, finite difference schemes between the bin center positions are used as an
approximation.

The k-NN and kernel approaches are related to each other. In the k-NN method,
one assumes that k random measures fall inside some region of the domain. The
volume of this region depends on the chosen value of k and is determined by the
data. The variable k acts as a smoothing parameter that is independent of the
position. However, the estimated density has discontinuities between data points and
the integral over all x-space diverges. Alternatively, one can keep the volume fixed
and determine the number of random measures that fall into the region, which leads
to a kernel-based estimator. In the one-dimensional case, given n random samples
x1, x2, . . . , xn, the Parzen-window PDF estimator [Parz 62; Duda 01] is:

pλ,n(x) =
1

n

n∑

i=1

Kλ(x− xi) , (4.1)
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where Kλ is the kernel PDF with a width of λ, the smoothing parameter for this
method. Equation (4.1) yields the sample mean of the kernel functions centered at
the sampling positions. For i.i.d. random samples, the mean estimator p̄λ,n(x) for an
infinitely large number of samples is an unbiased estimate of the true PDF p(x) if
the following equation is fulfilled [Duda 01; Viol 95]:

lim
n→∞

p̄λ,n(x) = lim
n→∞

E [pλ,n(x)]

= lim
n→∞

1

n

n∑

i=1

Kλ (x− xi) p(xi)

= (Kλ ⋆ p) (x) = p(x) .

(4.2)

The convolution in (4.2), denoted by the operator “⋆”, yields a blurred version of the
true density unless the number of samples becomes infinitely large and the kernel
width reaches zero. In this case, the kernel Kλ converges into a Dirac delta peak that
is centered at each random measure. The true density can also be recovered if p(x)
has bounded frequency content and Kλ is a perfect low pass filter with an appropriate
cut-off frequency. In practice, this means that, although the number of samples is
finite, the PDF can be well approximated if p(x) is a smooth function and Kλ a low
pass filter [Well 96]. We assume in the following that these conditions hold true for
our registration problem and apply this PDF estimator instead of k-NN or clustering
techniques.

There are non-parametric PDF estimation methods particularly designed for mul-
ti-modal image registration. Maes et al. [Maes 97] applied a discrete representation
of the PDF with equidistantly-spaced histograms, whereas Wells et al. [Well 96] sug-
gested a continuous Parzen-window estimator to model the joint PDF. Although the
latter approach does not require a binning scheme for the discrete PDF, it yields a
relatively high computational complexity, i. e. O(nm) for n random samples and m
evaluations of the estimator. Some effort has been made to reduce the computational
load by transforming the problem into the frequency domain [Held 04], which reduces
the costs to O(n+m). A compromise is suggested by Thévenaz et al. [Thev 00] who
combine the smoothing properties of B-spline kernels with an equidistant binning
scheme. Except for the first approach, a value for the kernel width parameter has to
be determined for all of the described methods.

4.3 Automatic Data-Driven Parameter Selection

Some authors argue that it is rather simple to determine suitable values for the kernel
size by empirical adjustment [Xu 08], while others state that data-driven parameter
estimations are possible, but the entropy estimation is not very sensitive to empirical
values [Well 96]. Unfortunately, the kernel width λ is dependent on the intensity
distribution of the image, the discrete representation of the PDF, and the number
of random measures. For a fixed, finite number n, the estimator pλ,n(x) is sensitive
to λ. If on the one hand the chosen value for λ is too large, the estimated density
is over-smoothed and the accuracy within the result is lost. On the other hand,
too small values for λ insert artificial structure that may not be present in the real
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data. A general registration algorithm for clinical applications should handle various
imaging modalities and different field of views. Finding a good overall kernel width
empirically for each modality combination is quite cumbersome and, as we will show
in the results, a non-optimal value leads to mis-registrations and less accurate results.

Finding appropriate values for λ is further complicated by multi-level techniques
that are employed for the optimization of a registration transform [Thev 98; Thev 00].
The result for a lower level of the resolution pyramid is applied as a starting point for
the next one, which contributes to the robustness of the entire registration through
enlarging the attraction range for the correct optimum. The ratio between the number
of samples and the information contained in the images of the pyramid, however,
varies between the levels, and in turn, influences the parameter λ.

After this summary of Parzen-windowing, we will concentrate on its discretization
that is required for an implementation in practice. We gradually present the steps
that are necessary to achieve an estimate that adapts to the structure of the true PDF,
but still has the advantages of a discrete Parzen-window approach with a single kernel
width. The basis for the kernel width estimation in the discrete case is a maximum
likelihood formulation. The resulting log-likelihood objective function to determine
the optimal kernel width parameter, with respect to the random samples, has a high
computational complexity for the continuous Parzen-window approach. Therefore,
we modify the PDF estimator to use discrete histograms, and present the derivatives
of the related log-likelihood function. Finally, we propose an extension of the isotropic
estimator by applying an adaptive binning scheme for the histograms. In this novel
approach, we still use a single kernel width for the entire Parzen-window estimation
and avoid spatially varying, anisotropic kernel widths. Therefore, we can represent
local variations of the PDF structure, while – and in our opinion this is the major
advantage – keeping the computational costs at a low level.

4.3.1 Leave-One-Out Cross-Validation

To determine appropriate values for the kernel width λ, the observations themselves
are used. In this data-driven approach, care has to be taken to use disjoint sample
sets for estimating the kernel width parameter and the objective test function. A
common technique to resolve this problem of overfitting is cross-validation [Hast 01].

For a leave-one-out cross-validation strategy, let pjλ,n−1 be the estimator after
deleting the j-th sample:

pjλ,n−1(x) =
1

n− 1

n∑

i=1,i6=j

Kλ(x− xi) . (4.3)

This estimator is independent of the value xj. The probability pjλ,n−1(xj) may, there-
fore, be used as a measure for how well the estimator fits to xj with respect to the
parameter λ. The resulting log-likelihood objective function is [Chow 83]:

L(λ) =
n∑

j=1

log pjλ,n−1(xj) . (4.4)
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An optimal value for the kernel width yields a maximum log-likelihood:

λ̂ = argmax
λ

L(λ) . (4.5)

In practice, such a data-driven approach is well known to deliver reliable results.
However, its efficiency drastically decreases with increasing sizes of the sample set.
Typically, a leave-one-out cross-validation method to determine L for a specific kernel
size has a relatively high complexity of O(n(n − 1)). In the following section, we
propose an approximation, which leads to a binned version of the discrete PDF with
a major reduction in complexity.

4.3.2 Discretization of the Parzen-Window Estimator

The theory of Parzen-window estimation is based on a continuous representation
of the data, and the estimated PDF is optimal with respect to the correct kernel
width. As described above, this approach has a high computational complexity,
which can be reduced by the usage of discrete histograms. Applying histograms, the
non-parametric estimator resembles the behavior of a mixture model with as many
components as bins. The n samples are stored in a histogram hn with b bins (b > 1).
Here, hn(xi) denotes the fraction of samples that fall into the bin containing xi. The
bin width for an equidistantly-spaced histogram is given by w = (xmax−xmin)/(b−1),
with xmax being the maximal and xmin the minimal image intensity value, respectively.
A discretization like this results in an error because the correct location of the random
measures is no longer continuous, but a discrete bin index, and the estimated PDF
value is assumed to be constant for the entire bin. Let p̂λ,n be the discrete PDF
estimator that is based on a binning scheme using a histogram and defined only
at discrete bin center positions cj. Unlike its continuous counterpart, the discrete
estimator results in a piecewise constant PDF estimate given by:

p̂λ,n(cj) =
b∑

i=1

hn(ci)Kλ(cj − ci) ≈ pλ,n(cj) , (4.6)

where cj is the intensity value corresponding to the center of the j-th bin. The
normalized approximation error e in (4.6) can, for instance, be defined similar to
the quantization noise, or noise power in the context of signal quantization (see also
Chapter 4.3.3):

e =
1

(xmax − xmin)
2

b∑

j=1

e(cj) , where

e(cj) =

∫ cj+
w
2

cj−
w
2

(cj − x)2 pλ,n(x) dx .

(4.7)

The normalization with respect to the maximal range of the input values, given by
the largest value xmax and the minimal value xmin, allows to specify an error threshold
that is invariant to the input sample range. An illustration of this error for the j-th
bin is given in Figure 4.4. If the approximation errors are neglected, equation (4.6)
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pλ,n

p̂λ,n

p(x)

p̂λ,n(cj)

cj xcj − w
2

cj + w
2

−
+

+

Figure 4.4: Illustration of the approximation error between the continuous PDF
estimator pλ,n and the discrete version p̂λ,n utilizing a binning scheme. The variation
between the two graphs in the j-th bin defines the error e(cj). Graphically, this is
denoted by the “+” and “−” marked areas representing under- and over-estimations,
respectively.

yields a complexity of O(n · b) with b ≪ n, which allows for a substantially faster
computation of the discrete PDF estimate compared to a continuous approach. Of
course, the number of bins and the binning scheme used for the histogram affects the
accuracy of the estimation.

Very common choices for the kernel PDF Kλ are the Gaussian gλ with variance λ
or cubic B-splines [Unse 93a; Unse 93b]. Using a cubic B-spline B yields the following
Parzen-window kernel KB

λ :

KB
λ (x) =

1

λ
B

(x

λ

)

. (4.8)

The B-spline function is usually defined recursively by the Cox-de Boor recursion
formula, however, in the case of a third-degree B-spline, the recursion scheme yields
the following kernel function:

KB
λ (x) =







1
λ

(
4
3
− 2 |x|

λ
+ x2

λ2 − |x|3

6λ3

)

, if |x|
λ
∈ [1, 2[

1
λ

(
2
3
− x2

λ2 + |x|3

2λ3

)

, if |x|
λ
∈ [0, 1[

0 , otherwise .

(4.9)

KB
λ can either be discretized by sampling the kernel values with a distance of w or by

recursive filtering. In practice, however, the discretization of the Gaussian gλ raises
problems due to its infinite impulse response, which is also a reason why it violates
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the partition of unity constraint [Thev 00]. A kernel function K satisfies the partition
of unity, if the following equation holds true:

∑

x∈Z

K(x+ f) = 1 , ∀f ∈ R . (4.10)

The condition (4.10) can only be fulfilled by kernel functions with local support.
Therefore, the application of a Gaussian kernel function leads to numerical errors
in the estimates, and in multi-variate density estimation, as the marginal along one
dimension is not totally invariant to the corresponding random variable. A kernel
that fulfills the partition of unity constraint is, for instance, the cubic B-spline kernel
KB
λ . In practice, using a Gaussian may still be attractive, as it can be implemented

with cascaded uniform-coefficient finite-impulse-response digital filters [Well 86] or
with recursive filtering schemes that can also be efficiently evaluated [Deri 90]. The
computational complexity of the recursive Gaussian filter is invariant to the variance
of the Gaussian. In cases where the partition of unity constraint [Thev 00] is required
for the density estimation, especially where the marginals of joint PDFs have to be
computed, the Gaussian may be replaced.

The discrete Parzen-window estimator is written in terms of a convolution of the
histogram with the discrete representation of the kernel function:

p̂λ,n(cj) =
b∑

i=1

hn(ci)Kλ(cj − ci) = (hn ⋆ Kλ)(cj) . (4.11)

Nonetheless, it is still required to optimize the log-likelihood (4.5) to achieve a value
for the kernel width that yields the estimator with the best resemblance to the
data. The problem can be solved using an iterative, nonlinear optimization scheme,
e. g. Newton’s method. Therefore, the derivatives of L with respect to λ are required:

∂

∂λ
L(λ) =

n∑

j=1

1

p̂jλ,n−1(xj)

∂

∂λ
p̂jλ,n−1(xj)

∂2

∂2λ
L(λ) =

n∑

j=1

− 1
(
p̂jλ,n−1(xj)

)2

(
∂

∂λ
p̂jλ,n−1(xj)

)2

+
1

p̂jλ,n−1(xj)

∂2

∂2λ
p̂jλ,n−1(xj) .

(4.12)

Similar to the leave-one-out notation for the PDF estimator introduced above, hjn−1

refers to the histogram without the j-th sample. For Gaussian kernel functions, the
partial derivatives of the Parzen-window estimator yield:

∂

∂λ
p̂jλ,n−1(xj) =

b∑

i=1

hjn−1(ci)

2λ
gλ(xj − ci) ·

[
(xj − ci)

2

λ
− 2

]

∂2

∂2λ
p̂jλ,n−1(xj) =

b∑

i=1

hjn−1(ci)

4λ2
gλ(xj − ci) ·

[
(xj − ci)

4

λ2
− 8(xj − ci)

2

λ
+ 8

]

.

(4.13)
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The partial derivatives can be formulated accordingly, if a Parzen-window estimator
is based on cubic B-splines:

∂

∂λ
p̂jλ,n−1(xj) =

b∑

i=1

hjn−1(ci)
∂

∂λ
KB
λ (xj − ci)

∂2

∂2λ
p̂jλ,n−1(xj) =

b∑

i=1

hjn−1(ci)
∂2

∂2λ
KB
λ (xj − ci) .

(4.14)

Similar to the kernel function (4.9), we provide the derivatives of KB
λ for three cases.

Case 1: |x|
λ
∈ [1, 2[

KB
λ (x) =

1

λ

(
4

3
− 2

|x|
λ

+
x2

λ2
− |x|3

6λ3

)

∂

∂λ
KB
λ (x) =

1

λ2

[
2|x|
λ

− 2x2

λ2
+

|x|3
2λ3

− λKB
λ (x)

]

∂2

∂2λ
KB
λ (x) =

2

λ3

[

−2|x|
λ

+
3x2

λ2
− |x|3

λ3
− λ2 ∂

∂λ
KB
λ (x)

]

.

(4.15)

Case 2: |x|
λ
∈ [0, 1[

KB
λ (x) =

1

λ

(
2

3
− x2

λ2
+

|x|3
2λ3

)

∂

∂λ
KB
λ (x) =

1

λ2

[
2x2

λ2
− 3|x|3

2λ3
− λKB

λ (x)

]

∂2

∂2λ
KB
λ (x) =

2

λ3

[
3|x|3
λ3

− 3x2

λ2
− λ2 ∂

∂λ
KB
λ (x)

]

.

(4.16)

Case 3: |x|
λ
/∈ [0, 2[

KB
λ (x) = 0

∂

∂λ
KB
λ (x) = 0

∂2

∂2λ
KB
λ (x) = 0 .

(4.17)

Equations (4.13) and (4.14) are again convolutions with the partial derivatives for
the kernel width of the Parzen-window kernel. Due to its local support, the spline
kernel is very suitable for an implementation of the log-likelihood optimization using
a discrete convolution operator and the kernel functions shown in Figure 4.5. The
multi-variate kernel width estimation is realized analogue to the 1-D case, because
both the Gaussian kernel PDF with diagonal covariance matrix and the B-spline
kernels are separable. The 1-D convolution kernels have to be subsequently applied to
each dimension of the histogram. Figure 4.6 shows example curves that can typically
be observed for the log-likelihood optimization of the kernel width. In this example,
the width of a cubic B-spline kernel has been adapted to 100 sample values drawn
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Figure 4.5: Convolution kernels for the kernel width estimation using a cubic B-spline
window function KB

λ printed for a kernel width λ = 1. The kernel function, the first
derivative, and the second derivative are plotted within the locally supported region
with respect to λ.
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Figure 4.6: (a) Parzen-window log-likelihood function for the width of a cubic B-
spline kernel in an estimation for 100 samples drawn from a normal distribution with
λ = 4, and (b) the corresponding first and second order derivatives with respect to
λ.

from a Gaussian distribution with mean zero and a variance of 4. The objective
function shown in Figure 4.6a has a convex shape, which provides a good basis for
the nonlinear optimization. In some cases, we observed a change in the sign of the
Hessian for larger values of λ, however, this can be detected quite easily and the
update is computed by stepping into the direction of the gradient instead of applying
Newton’s rule. The convergence for initial starting position may, in the worst case,
be linear instead of superlinear.

Note that, from a numerical point of view, the domain of the intensity random
variable is rather important. In order to achieve numerically stable results, the density
transform theorem [Brem 87] can be applied. According to this theorem, the kernel
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width parameter for the discrete estimator is invariant to constant offsets applied to
all random values but not to linear scalings. Let s ∈ R+ be a scaling factor for the
intensities and t ∈ R an offset. An affine transform of the random measure x is given
by:

y = f(x) = sx+ t . (4.18)

Applying, for instance, the Gaussian as density function, the kernel PDF Kλ′ of the
transformed samples can be expressed using the determinant of the Jacobian Jf of
(4.18):

Kλ′(y) = Kλ(f
−1(y))

1

det Jf (f−1(y))

=
1√

2πs2λ
e−

1
2

(y−t−µ)2

s2λ .

(4.19)

The kernel width λ′ for the transformed domain is therefore:

λ′ = s2λ . (4.20)

This property is very convenient as both the convolution (4.11) and the optimization
of the kernel width parameter (4.5) can be performed in an affine-transformed domain.
The sampled histograms may, therefore, be directly convolved with a Gaussian of
adapted kernel size λ′ without having to account for the bin spacings – a technique
which has also been applied similarly by Hermosillo et al. [Herm 02b].
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Figure 4.7: Optimal kernel width parameter values for various numbers of samples
and bins. For (a) a slice taken from a 3-D AX scan, the (b) vertical bars show the
corresponding optimal values for the kernel widths and their standard deviations due
to random sampling with different sampling numbers (100, 1.000 and 10.000). The
results are averaged from 100 subsequent runs with different random seeds.
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4.3.3 Histogram Layout

In data-driven approaches for estimating the optimal kernel width, one can observe
that the result is directly related to the uncertainty within the data, i. e. the number of
samples provided for an intensity value. Due to the discrete nature of histograms, this
uncertainty is reflected by a varying smoothness or degenerations. Estimators using
constant kernel widths cannot distinguish between regions of high and low certainty
within one histogram. Therefore, several authors suggest making this parameter
spatially variant. In medical images, the PDF of the intensity values is often degraded,
as the background yields a strong and dominating peak. A convolution with a low
pass filter, as proposed in Section 4.3.2, smears this peak over the neighboring bins,
which may overshadow information on low intensity image content. The ability to
adapt the estimator to PDFs of varying smoothness is, hence, an important feature
for image registration. An additional drawback of estimating the discrete PDFs using
equidistantly-spaced histograms is that intensities of a single tissue class may end up
in different bins. Intensities measured in medical imaging rarely follow a uniform
distribution because the probabilities for all tissue classes would have to be equal,
which is obviously not the case. The dimensions of the organs inside the human body
vary between individuals, and the extent of the background region depends on the
field of view. Adapting the bin sizes to the structure of the PDF, therefore, leads to a
better representation with respect to a smaller quantization error. This approach has
been proposed previously by Knops et al. [Knop 06] who applied intensity clustering.
In the following, we use the term adaptive, anisotropic kernel width in the context
of PDF estimation to express the property that the estimator is spatially adapted to
the structure of the underlying PDF using varying kernel sizes.

Given kernel widths λ = (λ1, λ2, . . . , λn), an adaptive Parzen-window estimator
reads:

pλ,n(x) =
1

n

n∑

i=1

Kλi
(x− xi) . (4.21)

This estimator has recently been applied in human motion tracking for the modeling
of position and orientation priors [Brox 07]. The adaptive estimator focuses better on
the structure of the PDF by allowing smaller kernel sizes in areas with many training
samples. Sparsely sampled areas of the PDF can still be approximated by larger kernel
widths. The authors suggested a linear combination of local covariance matrices and a
scaled identity matrix to determine the i-th kernel width. Katkovnik et al. [Katk 02]
computed confidence intervals of the random variable domain using a pilot density
from an estimation with a constant kernel size and knowledge about the sample
variance. The intersections of these intervals determine the adaptive kernel sizes.
The method results in small widths in regions with high variance compared to areas
with low variance, where larger values of the kernel size tend to decrease the mean
squared error (MSE) between the estimate and the true PDF. Their approach has
some similarities to an adaptive k-NN method. The authors show that an estimator
using adaptive kernel widths produces estimates with less variance in the MSE.
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Quasi-Adaptive Kernel Widths

A disadvantage of adaptive, anisotropic kernel widths, if applied in image registra-
tion, is the increased computational complexity for both the estimator and the for-
mulation of its derivatives. The efficient evaluation scheme that was presented in
Section 4.3.2 cannot be applied to estimators with varying kernel sizes. We propose
a novel combination of an adaptive binning scheme with isotropic kernel sizes for
the PDF estimation as a trade-off. Instead of determining different kernel widths for
an equidistantly-spaced histogram, we propose to approximate the PDF using a his-
togram with varying bin sizes. The corresponding bin centroids define a quantization
characteristic, which can be used to map the input intensities to requantized output
values. These, in turn, can be represented with an equidistantly-spaced histogram.
A density estimation on this requantized intensity space does not have to account for
different bin widths of the histogram and the proposed estimation scheme of Section
4.3.2 can be applied. The nonlinear mapping may be computed as a preprocessing
step in the beginning, which means that it has to be computed only once for each
image. Of course, the registration of the images containing these processed valued re-
quires a distance measure that is robust to this type of intensity transform, a property
that is fulfilled by stochastic measures.

Given the number of bins, we want to distribute the location and the sizes of the
bins over the domain of the random variable, such that the discrete estimator accounts
for local variances of the PDF. Problems like this are known from quantization theory,
where a quantization characteristic is optimized for a signal with respect to a minimal
quantization noise [Niem 83]. We applied an approach that was introduced by Lloyd
[Lloy 82] and Max [Max 60]. It minimizes the noise power N for a specific number of
bins by an iterative refinement of the bin center locations. The spatial region of the
i-th bin within the domain of the random variable is defined by the interval [li−1; li]
with the centroid ci. The noise power of the requantization with respect to the signal
PDF p(x) is:

N =
b∑

i=1

∫ li

li−1

(ci − x)2p(x) dx , (4.22)

which we also used in (4.7) to measure the approximation error for the discrete PDF
estimator. According to Lloyd [Lloy 82], a fixed point iteration scheme can be applied
to optimize an adaptive layout of the bins that minimizes (4.22). The updates in each
iteration are:

ci =

∫ li

li−1
xp(x) dx

∫ li

li−1
p(x) dx

li =
ci + ci+1

2
, i ∈ {1, 2, . . . , b} .

(4.23)

If applied to the quantization of images, l0 and lb can simply be chosen as the minimal
and maximal image intensity value, respectively. Again, p denotes the unknown
true PDF that, of course, is not known. For an implementation, we propose to
use a discrete Parzen-window estimator instead, but with large values for both the
number of bins and the samples. During the iterative solution of the registration
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problem, such an estimator is prohibitive, as the computational benefit from the
discrete histogram compared to the continuous representation is lost. However, we
only need to determine the nonlinear distribution of the bins once for each input
image. In practice, medical images are currently stored with 16 bit accuracy or less,
which, for instance, allows for a discrete representation of the estimator for p with a
full resolution of 216 bins. This computationally rather expensive estimator is then
plugged into (4.22) to determine the nonlinear intensity mapping in a preprocessing
step of the algorithm. After the images have been requantized based on the nonlinear
intensity mapping, the estimators used within the main iteration of the registration
algorithm make use of the fast discretization presented in Section 4.3.2. The whole
approach is described for 1-D PDFs, however, it can be easily extended also to 2-D
joint densities.

Number of Histogram Bins Selection

The histogram binning introduces quantization errors and, therefore, accuracy is
lost compared to the optimal density. The question is how many bins are a good
compromise between efficiency and accuracy. An empirical result states that the
optimal number of bins for a joint histogram used in NMI is 64 for each dimension
[Knop 06]. From a theoretical point of view, there is no explanation why 64 bins
should be the best possible choice. As the final quantization error is also dependent,
for instance, on the image content and the number of samples, the general nature of
this result is questionable. Therefore, we propose to estimate this parameter for each
pair of input images individually.

The quantization error criterion (4.7) and (4.22), which is used for the adaptive
histogram binning, can also be utilized to automatically determine a suitable number
of bins. The continuous density estimate may, for this purpose, be approximated by
a discrete histogram using the aforementioned methods. It can be generated with
the full intensity resolution, i. e. 216 bins for a 16-bit quantized image, and estimated
from all intensity values stored in the image grid. Such a huge number of bins is
undesirable for a computationally efficient distance measure computation. Thus, we
suggest to define a lower threshold for the discretization error e between this high-
resolution and the target estimate p̂λ,n. The number of bins can now be computed in
an iterative procedure starting from an initial, minimal value, e.g. 16 bins. Equation
(4.7) is solved for each discrete estimator built with this number of histogram bins.
The iteration stops if e falls below the defined threshold. As the integrals over the
discrete density estimates are normalized to one, the threshold is invariant of the
image content and a universally applicable value can be chosen. In the performed
experiments, a value of 0.005 has been used successfully. Figure 4.8 shows an example
for the computation of the number of bins needed for the reference (CT) and template
(PET) image. The quantization error drops heavily in the beginning of the iteration
and converges slowly towards zero as the number of bins is increased. The adaptive
binning proposed in 4.3.3 yields a smaller number of bins compared to equidistant
bin spacings at the same error level.
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Figure 4.8: Automatic selection of the number of bins for (a) a reference CT and
a template PET image. The quantization error curves (b) for the CT and (c) the
PET have been computed with respect to a high resolution density estimate. The
plots show that the adaptive histogram layout results in a smaller quantization error
compared to uniform binning. A threshold level of 0.005 in this case yields values
between 40 and 50 for the number of bins.

4.3.4 Coincidence Weighting

In the previous sections, we have established an efficient PDF estimator by a dis-
crete Parzen-window approach. It can be directly applied in the formulations of the
stochastic similarity measures, however, there is still an important aspect of medical,
tomographic images that often leads to inaccurate registration results. More precisely,
problems arise due to structured noise contained in the background regions of the re-
constructed images. Tomographic images are the result of discrete, modality-specific
reconstruction methods that are based on physical measurements. In practice, these
measurements are affected by detector noise and physical effects, for example beam
hardening or scattering in CT. This noise is propagated through the reconstruction
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chain. Structured noise is, unfortunately, not only dependent on the reconstructed
object itself, but also partly on the acquisition geometry. Although the noise may
occur in all regions of an image, the major problems are primarily caused by clusters
of artificial noise in the background, which consists of a homogeneous region in an
ideal case. Examples for this type of background noise are shown in Figure 4.9. If two

(a) Low Intensity Window (b) High Intensity Window

(c) Low Intensity Window (d) High Intensity Window

Figure 4.9: Structured noise visible in the low intensity range of the background
region of the images. The images relate to (a), (b) two different transfer function
settings (called window, with center and width defining the visible intensity range)
for an AX image of a vessel phantom, and (c), (d) similar visualizations of a SPECT
image of a human brain.

images differ only in the structured noise in the background, the resulting transfor-
mation between the objects becomes less accurate. These artificial structures impair
the similarity measure, because the registration algorithm tends to optimize their
alignment as well. For the case of medical images, one typically assumes that inten-
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sities belonging to the background are at the lower end of the intensity range. Some
authors have tried to eliminate this problem by using intensity thresholds within the
joint histogram for a standard and coincidence thresholding [Rohl 99; Rohl 00], or by
masking the background region of the images [Thev 98]. The standard thresholding
is similar to applying a mask on the background. Only those joint intensities are
taken into account with both the reference and the template intensity value being
above the corresponding background threshold. Thus, only the overlap between the
object parts is incorporated into the distance measure and combinations with the
background regions are disregarded. The robustness of the registration, therefore,
decreases, as large initial misalignments with relatively small overlaps between the
objects cannot be recovered.

To account for these blind spots in the object-background relations, Rohlfing and
Beier [Rohl 99] have proposed a thresholding, which only affects alignments between
background parts of the images. Elements in the joint histogram are discarded,
if they correspond to intensities below both the reference and the template back-
ground threshold. They called this technique coincidence thresholding and reported
a reduction of the maximum registration error without loss of accuracy. For an imple-
mentation of this technique, the threshold values for the reference and the template
background intensities have to be specified. The authors provided experimentally
determined values. However, these thresholds are very modality- and image-specific.
Even if the intensities are related to a specific type of tissue (e. g. HU in CT) the
images may still differ in content and contrast. For example, cardiac CT images have
a different intensity distribution than whole-body scans. Depending on the field of
view, the background may not even be included within the image. For modalities
that lack an intensity normalization, a fixed threshold could be too restrictive in some
cases, which yields results that are computed without valuable information about the
objects.

Instead, we propose an alternative to coincidence thresholding that does not re-
quire fixed threshold values. The disadvantage of manually determined settings is
that they do not apply to all the data that is used as input to the algorithm. The
specification of a background threshold can, again, be solved by data-driven param-
eter estimation techniques. In addition, we do not want to completely discard the
background-background (B-B) region in the joint PDF. We rely on a robust, au-
tomatic detection of the background value, which is afterwards used to distinguish
between object-object (O-O) and B-B alignment regions within the joint PDF. Thus,
we are able to determine a weighting factor between the two regions to ensure that
the B-B does not dominate the similarity measure, but still contributes to the overall
measure value. This strategy is less restrictive than the coincidence thresholding. We
call it coincidence weighting in the following.

Thévenaz et al. [Thev 98] presented a robust technique to distinguish between the
object and background region within an image. They used the aforementioned Max-
Lloyd quantization algorithm on a low pass filtered version of the image. Together
with the filtering, the algorithm computes the bin widths for a discrete histogram
containing two bins. The boundary between the two bins is assumed to separate
intensities in the background from object values. The authors used the resulting
threshold to determine a mask for the background region within PET images to
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get rid of structured noise, but at the expense of losing the ability to detect false
object-background (O-B) alignments. Especially in the early iteration steps of the
registration, it is likely that the initial alignment contains large O-B parts. As the
background is masked within the images, these pixels are discarded within the sim-
ilarity measure computation. In other words, the similarity measure is “blind” to
misalignments where object content of the template image is transformed to spatial
locations of the background in the reference image, and vice versa.

The determined threshold may, for instance, be used as a substitute for the man-
ually defined value in the coincidence thresholding scheme, but we relax the strict
thresholding constraint and propose a weighting instead. In some acquisitions, the
field of view is placed totally inside the boundaries of the patient’s body. If co-
incidence thresholding is applied to the joint density with the resulting Max-Lloyd
threshold, the algorithm loses information about low-intensity structures between
the objects. We, therefore, propose a trade-off, which does not clamp the coinci-
dence region in the joint density to zero, but rather applies a weighting to the B-B
probabilities. The estimated probabilities p̂O-O for O-O and p̂B-B for B-B intensity
combinations are calculated from the joint histogram hR,TΦ

:

p̂O-O =

bR∑

i=ψR+1

bT∑

j=ψT +1

hR,TΦ
(ci, cj)

p̂B-B =

ψR∑

i=1

ψT∑

j=1

hR,TΦ
(ci, cj) .

(4.24)

Here, ψR and ψT denote the bin indices that contain the corresponding Max-Lloyd
threshold values for the reference and the template images, respectively. The number
of bins used for the reference image is given by bR, the corresponding number of bins
for the template image by bT . The following equation provides the formula for the
coincidence weighting factor wh, which is then applied to all joint histogram entries
with indices in the range of [1, 1] to [ψR, ψT ]:

wh =

{

1 , if p̂B-B ≤ p̂O-O
p̂O-O
p̂B-B

, otherwise .
(4.25)

As mentioned above, the weighting with wh ensures that the background combinations
do not dominate the joint PDF estimate. As we modify the relative frequency of the
samples in this weighting step, the histogram has to be normalized to sum up to one
before the discrete Parzen-window estimation 4.11 is applied (see Section 4.3.2).

4.4 Implementational Aspects

So far, we have proposed a novel, discrete PDF estimator that combines the advan-
tages of anisotropic binning with the efficiency of discrete, isotropic histograms. The
presented approach contains several data-driven estimation steps: the computation
of a binning layout that is optimal with respect to a minimal quantization error, the
automatic selection for the number of bins, and the calculation of a threshold value
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that separates the background intensities from the objects within each image. In
addition, the coincidence weighting method utilizes these thresholds to decrease the
influence of the B-B contributions in the joint PDF, if necessary.

We suggest incorporating the proposed methods at specific points of a registra-
tion algorithm. The computational overhead is minimal compared to fixed settings,
as some of the data-driven schemes are performed only once in a preprocessing step
before the actual multi-level registration is started. Primarily, the preprocessing is
necessary in order to achieve a nonlinear requantization for the quasi-adaptive kernel
estimation, and to compute the background intensity thresholds for the coincidence
weighting. The requantization can be efficiently combined with the creation of a
multi-resolution image pyramid used in a multi-level nonlinear optimization after-
wards. The main registration loop usually implements an iterative numerical scheme
over several resolution levels to optimize the transformation between the images. We
assume that the optimal kernel widths for the Parzen-window estimation can be used
for an entire nonlinear optimization on a single level. Therefore, we also introduce a
preprocessing step for a single level where the data-driven kernel width computation
is performed. During the nonlinear optimization, the resulting kernel width values
are used for the actual PDF estimation with the efficient, discrete Parzen-windowing.
The remaining steps to complete the registration algorithm may vary between differ-
ent applications and have been omitted for the sake of clarity and generality. The
following listing summarizes the required implementation steps along with references
to the corresponding sections:

Preprocessing

• compute the background intensity thresholds ψR, ψT used for the coinci-
dence weighting (Section 4.3.4)

• compute the number of bins bR, bT , for the reference and the template
image as a good trade-off between accuracy and quantization error (Section
4.3.3)

• calculate the adaptive binning layout of the histograms given bR, bT , which
then determines the nonlinear intensity requantization for each image (Sec-
tion 4.3.3)

• apply the nonlinear requantization of the image intensities and threshold
values to apply the proposed Parzen-window estimator (Section 4.3.2)

• create multiple resolutions of the requantized images for a multi-level op-
timization

Main Registration Loop

1. Multi-Level Preprocessing

– estimate optimal kernel width values for the current resolution of input
images and the given (or also automatically determined) number of
samples by optimizing the log-likelihood function (4.4)

2. Nonlinear Optimization until Convergence
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– determine the joint histogram by jittered sampling to avoid numerical
grid artifacts (Section 4.1)

– apply the proposed coincidence weighting with the thresholds ψR, ψT

to reduce the influence of background noise on the similarity measure
(Section 4.3.4)

– estimate the joint PDF using the efficient discretization scheme for
the Parzen-window approach with the optimal kernel widths for this
level (Section 4.3.2)

4.5 Results

The first step in the practical implementation is comprised of the automatic computa-
tion of the background intensity thresholds. These values are used for the coincidence
weighting, and their computation has to be robust and invariant to the medical modal-
ity. Figure 4.10 shows results of the background threshold detection for the images
provided in Figure 4.8a, which shows a CT and PET image. Figure 4.11 provides
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Figure 4.10: Intensity histograms for the images in Figure 4.8a. The (a) histogram
for the CT is shown with the computed threshold marked as a vertical line at around
-550 HU. The (b) plot for the PET is provided, respectively.

examples for the joint density estimation of the same images at an initial starting
position. Although the image pair shows a large amount of background information,
the proposed weighting scheme leads to similar joint density estimates, even when
the number of samples is reduced. For this example, the percentage of samples taken
from the entire number of voxels within the overlap domain ranged between 10% and
0.01%. To compute the results, the number of histogram bins, the adaptive binning,
the coincidence weighting, and the kernel width optimization have been applied in
the Parzen-window estimation. The data-driven estimation of the parameters ac-
counts for the uncertainty within the data, which is increasing with each reduction
of the sampling rate. The kernel width is always chosen optimally with respect to
the data and adapts to the sampling rate. The PDF estimates for very low sampling



50 Chapter 4. Statistical Similarity Measures

(a) (b)

(c) (d)

Figure 4.11: Results of the proposed PDF estimation for a PET-CT image pair. The
number of samples for the estimation has been (a) 10%, (b) 1%, (c) 0.1%, and (d)
0.01% of the number of voxels within the overlap domain.
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rates, therefore, are smoothed representations of the high sampling rate PDF, but its
overall structure can still be recognized.

Picking up the registration example at the beginning of this chapter (see Fig-
ure 4.1), we have applied the proposed estimators in a new registration attempt.
Figure 4.12 shows the positive impact on the registration that is achieved by optimal

(a) (b)

(c) (d)

Figure 4.12: Registration of the images provided in Figure 4.1 using the proposed
PDF estimation techniques. The final transforms computed for both initial starting
positions shown in (a), (c) yield the results in the right column (b), (d). Here, the
alignment is consistent and more accurate.

parameters values. The proposed approach clearly indicates an improvement of both
the accuracy and the robustness compared to the initial result in Figure 4.1. A more
detailed evaluation of the data-driven approaches can be found in Chapter 7, which
contains the results for the fully automatic PDF estimation used in a registration of
the RIRE database.
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Chapter 5

Projection-Based Registration

From a computational point-of-view, the evaluation of the similarity measure is the
most time-consuming operation within a registration algorithm. In non-parametric
techniques, the optimization problem is ill-conditioned and, therefore, an additional
regularization energy is required. The situation is different for parametric techniques.
In the case of rigid transforms, the range for the measure computation is very large,
compared to the six parameters for the transform, which yields a well-conditioned
optimization problem. As this system is overdetermined for rigid transformations,
sparse sampling and statistical estimation methods (see Chapter 4) are often used
to reduce computational costs. In the following, we present an alternative to pre-
viously mentioned approaches to reduce the amount of computations by a division
of the parameter space into mutually disjoint subsets of lower dimensions. The re-
lated optimization problems can be computed separately. This technique is based
on the concept of marginalization to become invariant to specific parameters. In
addition, the novel projection scheme for the marginalization is suitable for a paral-
lel implementation, for example on a graphics processing unit (GPU). An example
implementation is presented in Chapter A.

There is still the need for fast – here, the term fast actually means close to
real time – rigid registration algorithms on state-of-the-art desktop workstations. Of
course, registration algorithms can be solved in near real time on dedicated, highly
parallel workstation clusters or supercomputers (e. g. see the work of Christensen
[Chri 98], Ino [Ino 05], or Salomon et al. [Salo 05]). Nonetheless, rigid registrations
have to be computed also on general workstations in many clinical scenarios, such as
in tumor therapy monitoring, digital subtraction angiography (DSA), or as an initial
step for a subsequently applied, deformable registration algorithm. As described in
Section 3.3, there exist quite a number of intensity similarity measures. Some are only
suitable for mono-modal cases, while others can also deal with different types of multi-
modal problems. They all have in common that a straightforward implementation
leads to a pixel-by-pixel distance measure evaluation, which is expensive for very
large images. Therefore, approaches for solving the nonlinear optimization problems
(e. g. Newton, Gradient Descent, Levenberg-Marquardt) tend to become very time-
consuming on standard hardware when it comes to real clinical data. Although
multi-resolution approaches can reduce the computational load to a certain amount,
the highest accuracy can only be achieved by performing at least some optimization

53
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iterations at the highest resolution level of the input data. These last few iterations
may take too much time, even on the latest workstations.

In the following sections, we present a novel decomposition scheme that results in
parameter subsets that are optimized disjointly on projections of the image data. The
decomposition yields significant speed-ups of the computation time required for the
optimization. Compared to state-of-the-art projection-based registration algorithms,
the proposed approach is able to deal with subvolume matching problems and enables
a complete decomposition of the 6-DOF into disjoint 1-DOF problems. A common
issue of related algorithms is the need for reprojections of the high-dimensional space.
While solving the 1-DOF optimization problems, the projections do not have to be
recomputed for the proposed method, because the parameter subset is related linearly
to the projection space. With commonly applied orthogonal projections, this holds
true only for the translational parameters. Therefore, we introduce a circular and
cylindrical projection geometry for 2-D and 3-D images, respectively, to account for
rotation parameters as well. Additionally, the proposed approach can be ported onto
dedicated graphics hardware.

5.1 Decomposition of the Parameter Search Space

Widely established, intensity-based registration algorithms usually require the com-
putation of an image similarity measure defined on all pixels of the overlap region
between a reference and a template image. Although the partial derivatives of this
measure with respect to the transform parameters can often be analytically formu-
lated, its evaluation on a pixel-by-pixel basis is very time-consuming. In addition, it
is well known from theory that the conditioning of optimization techniques decreases
with an increasing number of dimensions of the parameter space.

In 2000 and 2002, Hornegger and Niemann [Horn 00; Horn 02] proposed a new
method to reduce the complexity of the optimization by projections. The approach
is closely related to a technique often used in stochastic frameworks, where the de-
pendencies on specific random variables can be eliminated by marginalization. The
authors applied the method to determine the position and orientation of 3-D objects
in the field of object recognition. Their work describes how the projection of the
data onto a lower dimensional subspace yields an optimization problem of reduced
complexity. Solutions for the objective function on these projected sets can be found
with significantly less computations, compared to the original problem. In case of the
rigid registration, an optimal parameter set for the 6-DOF transform is computed it-
eratively by solving lower dimensional optimization problems until the global solution
converges. In the field of object detection and localization, a similar approach was
developed by Ratan et al. [Rata 00]. They detected and localized faces within 2-D im-
ages by utilizing a small, 2-D template that is warped into an image. Using dynamic
programming on the correlation between columns of the template and the image,
their approach allowed to convert the localization problem to a 1-D sub-problem to
search for the best match.

The principle of reduction of dimensionality of the search space was applied to
3-D image registration by Khamene et al. [Kham 06] who proposed to iteratively
project the 3-D volumes onto 2-D images along the coordinate axes. This orthogonal
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projection scheme eliminates three DOF with each projection: two rotational and one
translational parameter in the direction of the projection. Although the presented
results indicated a huge gain in computational speed, their approach still couples
three DOF within the optimization problems for the 2-D projections. This is due
to the usage of orthogonal projections, which are only invariant to changes in the
rotation around the projection axis and translations within the projected image plane.
Their algorithm can, therefore, reduce the complexity only to 3-DOF optimization
problems.

An additional problem often arises from projection methods, if the content of the
input data differs largely from each other. This is most often the case for subvolume
registration tasks, where one image only consists of a subset of the first one. In
related work, ideal assumptions are made on the content of the images, and the
authors rely on the distance measure to be invariant to those parts of the images that
are only present in one of the projections. We, therefore, propose an extension of the
projection scheme to incorporate the overlap domain into the projection geometry.
This additional constraint ensures that the projections are only computed within the
overlap domain, which depends on the transform parameters.

5.2 Orthogonal Projections

This section illustrates the basic ideas of using projections for the computation of im-
age similarities and how they accelerate the registration. In addition, the projection-
based registration approach is extended to support subvolume problems by fitting a
suitable projection geometry into the overlap domain.

As mentioned before, the intensity-based, rigid registration of two 3-D images
aligns the reference image R and the template image T with respect to a 6-DOF
transform ΦR

a. For the sake of simplicity, we present a formulation based on the
SSD distance measure between the two images. The parameters of the transform
are usually estimated by a nonlinear optimization approach. Finding an optimum is
equivalent to finding the zero crossing of its derivative, which consists of a sum of
partial derivatives of (3.23) with respect to the transform parameters a:

∇aDSSD[R, T ,ΦR
a] =

−2

|Ω(R, TΦ)|

∫

Ω(R,TΦ)

(R(x) − TΦ(x)) JTΦR
a
(x)∇xTΦ(x) dx

!
= 0 .

(5.1)

The partial derivative (5.1) yields a vector determining the ascent direction of the
distance measure. This information is used during the optimization in order to find
the direction towards the desired optimum. The drawback of this standard approach
becomes obvious when considering the integral: both the measure and the derivative
have to be evaluated on the entire overlap domain Ω(R, TΦ). In practice, large sets of
samples have to be drawn from this domain, which requires interpolation operations
(see also Section 4.1). This has to be repeated for each iteration in the nonlinear
optimization process.

The general idea of projection approaches is to eliminate some DOF in the pa-
rameter space by generating projections, i. e. to perform a marginalization of the
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corresponding transform parameters. Although the optimization of the similarity
measure between the projections is not the same as for the original images, we as-
sume that the result is identical, i. e. the similarity between the projections yields an
optimum for a correct alignment of the 3-D images. Ideally, the projections depend
linearly on the remaining parameters. This crucial requirement allows to refine the
remaining parameters in a single projection step without having to reproject. The
principle is illustrated in the Figure 5.1 taken from [Horn 00]. The figure shows the

ex

ey

Rx

ty

Figure 5.1: Illustration of a linear projection of features onto the x-axis ex. The
projection remains the same, regardless of how the object is translated along the
y-axis (ty), or rotated around the x-axis (Rx). If the object is translated parallel to
the x-axis, the projection is translated accordingly. In these cases, it is, therefore,
not necessary to reproject. This figure was taken from [Horn 00].

projection of a set of 3-D features onto the x-axis. Both a translation of the features
along the projection direction and a rotation around the x-axis do not affect the pro-
jection. In the case of medical image registration, the spatial sampling positions may
be regarded as features. In general, shifting an image along a direction that is orthog-
onal to the projection axis translates its projection by the same amount, and vice
versa. An optimization within the reduced parameter space after the marginalization
does not require reprojections. Of course, if the volume is rotated around a different
axis, the previous projection no longer fits to the changes in the parameter set and
a reprojection becomes necessary. As far as only changes in the translational part of
the parameter vector are considered, orthogonal, axis-aligned projections onto 1-D
images are sufficient to cover the entire variation in the parameters. This is illustrated
in Figure 5.2a. Using orthogonal projections along the coordinate axes corresponds
to a marginalization over the translational parameters.

5.3 Nonlinear Projection Schemes

To account for changes within the parameter subset that belongs to rotations, we
propose a nonlinear projection scheme that is described in the following section.
Orthogonal projections cannot be used in these cases, as they are valid only for one
rotational parameter setting, and a change of the rotation requires a reprojection,
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R TΦ
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R TΦ

(b)

Figure 5.2: Projection schemes for 2-D images to separate (a) translational and (b)
rotational parameters.

which is prohibitive. We will extend the approach for 2-D problems first, before
considering the more difficult projection scheme for 3-D images.

5.3.1 Circular Projections for 2-D Problems

In order to achieve a complete separation of the registration parameters into disjoint
1-DOF subsets, it is necessary to account for the rotational parameters. A projec-
tion geometry has to be selected for the rotations that exhibits the same property
as the axial projection in Figure 5.2a for the translational parameters: a linear re-
lation between the projection and the parameter. We propose to cast rays from the
center of a circle onto its boundary for the rotational parameter optimization in 2-
D registration problems. The principle is shown in Figure 5.2b. A rotation of the
template image around the center of the circle is reflected as a translational shift of
the circular projection on the boundary. This enables an optimization of the rotation
parameter independent of the translation, and also without having to reproject when
the rotation angle is changed. If the same circular projection geometry is chosen
for both the reference and template image, the parameter for a rotation around the
center of the circle can, therefore, be optimized in the 1-D circular projections. Only
one circle projection for each image is required for several optimization steps in this
reduced 1-DOF parameter space, similar to projections onto the coordinate axes for
the translations.

Unfortunately, the optimization results in the several projections are to some de-
gree dependent on each other: a translation along an axis has some influence on the
overlap and, thus, on the center for the circular projection. Therefore, the content
within the projection images depends on the optimization result of the previous pa-
rameter subsets. In the following, we will combine the axis-aligned and the circular
projections in an iterative optimization scheme that can be applied to 2-D registra-
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tion problems. It is highly efficient with respect to the operations performed in the
original 2-D image space, as a single projection of the data has approximately the
same computational complexity as one evaluation of the standard distance measure
(5.1) on the entire overlap domain.

5.3.2 Cylinder Projections for 3-D Problems

Lifting the 2-D circular projection approach into 3-D space in a straightforward man-
ner results in a spherical geometry. However, the parametric representation of the
surface implies a nonlinear relation and, additionally, the discretization at the poles
is difficult. Representing the rotational parameters in spherical coordinates does not
yield a linear relation to the projection onto the surface of the sphere. Modifying
one parameter on the surface, therefore, results in a nonlinear warping within the
projection domain, which can only be compensated by means of a reprojection.

We propose to use a cylindrical projection geometry that does not separate be-
tween all rotational and translational parameters, but rather combines one rotational
with one translational DOF. This, again, yields linear relations between the projec-
tions and the parameter values. A rotation around the axis of the cylinder, similar
to the rotation around the center of the circle in the 2-D case, relates to a shift of the
projection along the radial component of the cylinder surface. Likewise, a translation
along the axis of the cylinder corresponds to a translation of the surface projec-
tion along its second coordinate axis. The two operations are mutually independent
from each other, which enables additional projections to separate the parameters
into 1-DOF problems, and, in both cases, without having to reproject during their
optimization. Dealing with the surface data on basis of the cylinder coordinates is
not necessary. The surface projections may be regarded as common 2-D images that
result from unfolding the cylinder into a 2-D image plane. The x-axis then corre-
sponds to the rotation angle, the y-axis to the translation along the cylinder axis.
For the x-axis, periodic boundary conditions have to be applied, as the original cylin-
der surface is connected along the entire boundary. A rotation around the cylinder
axis in the 3-D image space is reflected by shifting the projection image along its
x-axis. Analogously, a translation along the cylinder axis relates to a translation of
the projection along its y-axis. An example for a cylinder projection of a CT image
of a human head is given in Figure 5.3. The surface image can then be orthogonally
projected along its axes, as described in Section 5.2, which results in a fully decoupled
sequence of 1-DOF optimizations. A single cylinder projection corresponds to two
parameters: one rotation angle and a translation. In order to represent the entire
six DOF of a rigid transform, three cylinder projections are necessary, with the axes
being orthogonal to each other. Since the cylinder projections are not independent
of each other, it is necessary to perform the optimization iteratively by repeatedly
projecting onto each of the cylinder geometries in an alternating order.

Computing the projection along the rays is similar to standard volume rendering
techniques [Enge 06]. Performing a single projection from 3-D to 2-D is very similar
to creating a digitally reconstructed radiograph (DRR), a technique used for 2-D/3-D
registrations. The projections along a single axis correspond to line integrals where
the intensities are accumulated. The approach can be ported to dedicated graphics
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(a) (b)

Figure 5.3: The images contain (a) the illustration cylinder geometry fitted into the
overlap domain of two CT head datasets, the 3-D cubes mark the boundaries of the
image domains, and (b) one corresponding unfolded cylinder projection of the 3-D
images. Its x-axis corresponds to a rotation parameter around the cylinder axis, the
y-axis to a translation along the axis.

hardware (see the corresponding section in the Appendix A). Additionally, it is
possible to incorporate transfer functions or segmentation results (e. g. see Hahn
et al. [Hahn 05]).

5.3.3 Fitting the Projection Geometry

Medical image registration often involves subvolume problems, where only a part
of the content of one image is shown in the other one. If the projection approach
does not account for the overlap domain, the projection is superimposed by the
additional content of the larger image, and, thus, an unwanted bias is introduced
into the similarity measure. An example for this problem is provided in Figure 5.4,
that, for the sake of simplicity, shows the effect of varying image domains for an
orthogonal projection along the main axis of a full body CT. As we want to evaluate
the similarity in the reduced space, we have to make sure that the projections are
computed only within the overlap domain. Otherwise, the superimposed structures
lead to a displacement of the correct optimum within the subspace objective function.
Given the images in Figure 5.4, the restriction of the projections to the overlap domain
removes the body parts below the pelvis seen in Figure 5.4a.

In order to incorporate this requirement into the presented scheme, the projection
geometry has to be fitted into the overlap domain between the two images. Depending
on the dimensionality of the images, various optimization problems have to be solved.
For 2-D geometries, we present solutions for the fitting of a square, a rectangle, and a
circle. In 3-D, the corresponding problems are to find the optimally fitting positions
of a right cuboid, a rectangular box, and a cylinder. Suitable techniques to tackle the
constrained optimization problems are comprised of simplex methods and sequential
quadratic programming [Wach 06]. By fitting the geometry, we also maximize the
information contained within the projections. Therefore, we retain the ability to deal
with subvolume registration problems while keeping a maximal amount of overlap
information within the objective functions.

Fortunately, the overlap domain, if not being empty, is always a convex poly-
tope for medical images, as it is defined by a space partitioning with half spaces
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(a) (b)

Figure 5.4: The images (a) within the left column show a projection along the lon-
gitudinal axis of the full image domain. The reduction of the domain (b) results in
a different projection. The structures that are only visible in the left images (the
legs or the hip) contribute to the projection image and lead to additional information
that impairs a subsequent registration.

representing the boundaries of the image domains. In addition, we demand that the
projection geometries have to be axis-aligned, thus, the optimization problems can
be solved very efficiently using linear and quadratic programming.

2-D Problems

We will first describe the problems of fitting a square, a rectangle, and a circle into
the overlapping region of two intersecting rectangles. An axis-aligned rectangle is
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parameterized with an offset corner point xrect =

(
x
y

)

∈ R2 and two side lengths

lx, ly ∈ R:

rectAA =

{(
x
y

)

,

(
x+ lx
y

)

,

(
x+ lx
y + ly

)

,

(
x

y + ly

)}

= {xrect, lx, ly} . (5.2)

An arbitrarily oriented rectangle is defined by boundary lines that are pairwise or-
thogonal to each other. The intersections of these lines specify the corner points of
the rectangle:

rect = {L1, L2, L3, L4} = {n1, . . . ,n4, d1, . . . , d4} , (5.3)

where Li is the i-th line that defines the boundary of the rectangle. Each line parti-
tions the coordinate system into two half spaces:

L =
{
y | nTx = d

}
, (5.4)

with the vector n, ‖n‖ = 1, denoting the normal to the line, and d its distance to
the origin. Thus, a point x lies within the negative half space, which is the half space
opposite to the normal vector direction, if:

nTx < d , (5.5)

or within the positive half space, otherwise. We define the boundaries of the rectangle
with the normal vectors pointing to the outside of the rectangular region. The inner
region of the rectangle is, therefore, defined by the intersection of all negative half
spaces that are given by the boundary lines. In the following, we represent the image
domains in 2-D by two rectangles (5.3). Therefore, the overlap domain between the
images is determined by the inner region of the convex polytope that is shaped by
their boundary lines (5.4).

Fitting a Square The following parameter vector is used to describe an axis ori-
ented square:

a = (xrect, lx)
T . (5.6)

As lx = ly is a property of the square, we can simplify the parameters in (5.2). The
problem of fitting a square into the overlapping region can then be stated as a linear
maximization problem for the side length lx, but subject to each corner of the square
being located within the overlap region. Suppose the boundaries of the 2-D reference
image domain are defined by the rectangle rectR, and for the transformed template
by rectTΦ

, accordingly. Then, the overlap domain is described by a set of eight
normal vectors n1, . . . ,n8 and the corresponding distance values d = (d1, . . . , d8)

T ,
with the first four elements in each set belonging to rectR and the others to rectTΦ

.
The optimization problem for the fitting of a square with maximal size is then:

max lx , with lx ∈ R

s. t. Ma ≤ d .
(5.7)
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with M ∈ R32×3 being the measurement matrix for the constraints. It consists of
the components of each rectangle’s line normals, which are arranged in a matrix that
defines the linear system of inequalities:

M =












n11 n12 0
n11 n12 n11

n11 n12 n11 + n12

n11 n12 n12
...

...
...

n81 n82 n82












. (5.8)

Here, nij is the j-th element of the i-th normal vector ni. The problem 5.7 can
be solved by means of linear programming, for example with a two-phase simplex
approach [Padb 99].

Fitting a Rectangle In order to fit an axis-oriented 2-D rectangle into the overlap
domain, a quadratic optimization problem has to be solved with similar constraints
as in (5.7). The parameter set, which describes a general 2-D rectangle, is given by:

a = (xrect, lx, ly)
T . (5.9)

In the case of a square, the maximization problem is linear, as the two parameters lx
and ly are equal. Now, we have to incorporate the area of the rectangle and, therefore,
the problem becomes quadratic:

max lxly , with lx, ly ∈ R

s. t. Ma ≤ d .
(5.10)

The measurement matrix for (5.10) consists of the following elements:

M =












n11 n12 0 0
n11 n12 n11 0
n11 n12 n11 n12

n11 n12 0 n12
...

...
...

...
n81 n82 0 n82












. (5.11)

A solution for this problem can, for instance, be computed numerically using se-
quential quadratic programming. We applied an interior point method described by
Wächter and Biegler [Wach 06] after calculating an initial starting point based on the
simplex solution for a square.

Fitting a Circle Using the fitted rectangular geometry, the translational parame-
ters along the x- and y-axis can be separated. In order to achieve a decomposition of
the rotational parameters for a 2-D registration problem as well, it is necessary to fit
a circle geometry into the overlap polytope. Changes in the angle of a rotation within
a 2-D image plane are, then, reflected by a shift on the boundary of the circle that is
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located at the center of the rotation. The ideal circle representing the image content
within the overlap domain has the maximal area and is located completely within
the intersection polytope. Thus, the related fitting problem yields parameters for its
position and radius. Similar to the case for the square, the convexity of the polytope
can be utilized to reduce the fitting to a linear, constrained optimization problem.
The criterion for an optimal circle is a maximal radius with respect to the circle being
located completely within the overlap domain. The circle is parameterized by:

a = (xC, r)
T , (5.12)

with xC being the center of the circle, and r its radius. The radius constraint for a
circle located at xC and limited by a line L is given by:

r = d− nTxC . (5.13)

The linear inequality constraints can, therefore, be reformulated to:

nT
i x + r ≤ di , ∀i = 1, . . . , 8 . (5.14)

These constraints yield the following measurement matrix:

M =








n11 n12 1
n21 n22 1
...

...
...

n81 n82 1








. (5.15)

The resulting linear problem is similar to (5.7), but now with respect to the radius
of the circle:

max r , with r ∈ R

s. t. Ma ≤ d .
(5.16)

Although the maximization of the area within a circle, in general, is a quadratic prob-
lem, the convexity property of the problem domain allows for a linear formulation.
As it was the case for (5.7), the problem can be solved by linear programming.

3-D Problems

The 2-D problem of fitting a rectangle into the convex polytope of the overlap domain
boundaries can be analogously extended to 3-D. Fitting an axis-aligned, right cuboid
leads to a linear problem similar to (5.7), but with the additional component of the
z-axis and six half spaces, instead of four. The complexity for a general, rectangular
box becomes cubic, as the maximal volume is subject to the optimization in 3-D.
However, the formulas may be easily derived from (5.10) described above. Therefore,
we will concentrate on the more complex case of fitting a cylinder in the following.
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Fitting a Cylinder The complete separation of the six DOF for a rigid regis-
tration of 3-D images requires three cylinders. The axes of the cylinders should be
mutually orthogonal to achieve the maximal coverage of the rotational parameters.
Thus, we formulate the problem for arbitrary cylinder orientations. The objective for
the optimization is the maximization of the cylinder volume within the intersection
domain. As the intersection polytope is convex, it is sufficient to define constraints
for the points that are lying on the boundaries of the top and bottom circular caps
of the cylinder. If all of these points are located within the intersection polytope, the
entire cylinder is contained within the intersection domain, as well. The problem is,
therefore, similar to (5.16) and the formulations are based on the 2-D circle fitting.
The minimal distance between the center point of the circular cap to the polytope
half spaces defines the radius, which has to be maximized. Within this maximization,
we also incorporate the height of the cylinder, as it is defined by the distance between
the two center points of the circular caps, and achieve a coupling between both the
radius and the volume. The axis of the cylinder determines the spatial orientation
and defines the vector between the cap centers.

In 3-D, the overlap domain can be described by a convex polytope, which consists
of 12 planes P , each being parameterized by a normal vector and a distance value:

poly = {P1, . . . , P12} = {n1, . . . ,n12, d1, . . . , d12} . (5.17)

The points x within the cylinder are defined by the center point of the lower circular
cap xcap ∈ R3, the normalized axis orientation vector o ∈ R3, ‖o‖ = 1, the height
h ∈ R, and the radius r ∈ R:

cyl =







x | oTxcap ≤ oTx ≤ oTxcap + h
︸ ︷︷ ︸

location between the cap planes

∧ ‖xcap − (x − (oTx)o)‖ ≤ r
︸ ︷︷ ︸

location within the radius







.

(5.18)
An illustration of the cylinder geometry is shown in Figure 5.5. Here, the cylinder

is defined by the intersection points xi, located on the planes Pi, with i = 1, 2, 3.
Similar to the maximal radius constraints for the circle (5.14), the distances of

the cylinder cap center points, xcap,xcap + ho, to the planes Pi, i = 1, . . . , 12, are
used to constrain the radius of the cylinder. However, the distance is not measured
directly between the cap centers and the planes, but within the top and bottom cap
planes. The boundary planes of the polytope and the cylinder caps intersect either
in a line, a common plane, or not at all, depending on whether the plane’s normal
vector is parallel to the cylinder axis.

For a normal vector nj of the j-th polytope plane, with nj ∦ o, its normalized
projection onto the lower cap plane is denoted by n̂. The distance d̂j to the intersec-
tion between Pj and xcap can then be expressed in terms of a multiple of the projected
normal (see also Figure 5.5b):

n̄j = nj − (oTnj)o (5.19)

n̂j =
n̄

‖n̄‖ (5.20)

d̂j = n̂T
j (xcap + λn̂j) . (5.21)
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Figure 5.5: Illustrations of (a) the cylinder geometry, and (b) the projection of the
j-th plane normal vector onto the cap plane.

Here, λ ∈ R is the scalar value that determines the distance between the cap center
and the intersection. If the plane is tangent to the lower cap circle, the value of the
parameter is defined by the distance of the plane to the coordinate origin, and we
can formulate an expression for d̂j:

λ =
dj − nT

j xcap

nT
j n̂j

using nT
j (xcap + λn̂j) = dj (5.22)

d̂j =
dj

nT
j n̂j

+

(

n̂T
j − 1

nT
j n̂j

nT
j

)

xcap . (5.23)

Maximizing the distance d̂j between the center points of the caps and the j-th in-
tersection line is equivalent to maximizing the radius of the cylinder, and yields the
following constraints for the j-th plane:

n̂T
j xcap + r ≤ d̂j (5.24)

n̂T
j (xcap + ho) + r ≤ d̂j . (5.25)

Those polytope planes with normal vectors parallel to the cylinder axis constrain the
height, but not the radius. Suppose the normal vector of the k-th polytope plane
is parallel to the cylinder axis, i. e. nk ‖ o, the length of the projection of nk onto
the cylinder cap planes has zero length. Therefore, this plane only constrains the
cylinder’s position and height:

nT
kxcap ≤ dk (5.26)

nT
k (xcap + ho) ≤ dk . (5.27)
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Using (5.23), the optimization problem for the cylinder fitting is:

max r2h ,with xcap ∈ R3, r, h ∈ R (5.28)

s. t. nT
kxcap ≤ dk ,∀k | (nk ‖ o) (5.29)

s. t. nT
kxcap + hnT

k o ≤ dk ,∀k | (nk ‖ o) (5.30)

s. t. nT
j xcap + rnT

j n̂j ≤ dj ,∀j | (nj ∦ o) (5.31)

s. t. nT
j xcap + hnT

j o + rnT
j n̂j ≤ dj ,∀j | (nj ∦ o) . (5.32)

The constraints (5.29)-(5.32) determine the linear system of inequalities, which guar-
antees that the optimal cylinder is located within the overlap domain. The problem
may be solved by sequential quadratic programming [Wach 06].

5.3.4 Uniqueness of the Solution

The optimization with respect to only the distances to the boundaries of the overlap
domain does not lead to a unique solution in all cases. For example, if the reference
and template image domains are equal except for a translation in one direction, the
solution for a cylinder geometry is unique for the radius and the height, but not for
the cap center point xcap. Any cylinder with the optimal height and radius placed on
the line segment depicted in Figure 5.6 fulfills the constraints. All cylinders located

R TΦ

Figure 5.6: Schematic view from top onto two equal but shifted image domains and
the solution space for the location of the cylinders, indicated by the line segment.

in this solution space have the same volume, however, from a registration point of
view, it is important which position is chosen for the projection. If we assume that
the important content within the images is located at the center of the domain, we
prefer a solution that accounts for this additional criterion. It is also beneficial for the
optimization of the rotation parameters to place the cylinder axis close to the center
of the reference volume. In order to achieve a unique solution with this additional
requirement, we propose to extend the objective for the maximal cylinder volume by
an additional term that punishes the distance to the center point cR ∈ R3 of the
reference domain. The direct Euclidean distance to the cap centers would bias the
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result towards cylinders of smaller height. Instead, we measure the distance dR from
xcap to the perpendicular of cR within the plane of the lower cap center:

dR = ‖xcap − (cR − (oTcR)o)‖ . (5.33)

This additional distance is incorporated into the maximization problem in order to
resolve ambiguities and locate the cylinder more in the center of the reference image.
Applied to the example in Figure 5.6, the solution then consists only of one cylinder
located in the middle of the line segment:

max αr2h− (1 − α)dR , with xcap ∈ R3, r, h ∈ R , (5.34)

where α ∈ [0, 1] is the weighting factor between the two objectives. Of course, the
contraints (5.29)-(5.32) still apply.

This concept to enforce a unique solution can be analogously adapted to the other
fitting problems.

5.4 Comparison to Marginal Space Learning

A technique that is similar to the aforementioned projection approach is marginal
space learning (MSL), introduced by Zheng et al. [Zhen 07]. The idea of MSL is to
reduce the parameter search space for the initial placement of a model within an
image, for example in image segmentation. The problem can also be regarded as
a registration between the model and the image content. Usually, the goodness of
a specific model placement is determined using classifiers, which have been trained
on specific image features. The projection approach bears a resemblance to MSL,
as both techniques try to reduce the parameter space by marginalization. In MSL,
the PDF for the image features, with respect to all of the transform parameters,
is not known a priori, but it is assumed to contain a cluster around the optimal
position and orientation parameters. An exhaustive search for this cluster in the
high-dimensional parameter space is prohibitive, as the computational complexity
increases exponentially with each dimension. A reduction could be achieved by a
marginalization for a subset of the parameters, however, as the PDF of this reduced
set is also unknown, the marginalization has to be accomplished by specific types of
features that are invariant to the parameters one seeks to eliminate. Determining
the PDF of these features is assumed to be equivalent to the marginalization of the
high-dimensional PDF. Thus, the classifiers are trained directly on the “marginalized”
PDFs. Large portions of the entire parameter space are quickly eliminated by the
search for clusters in the marginals. The resulting, restricted regions of the high-
dimensional space can then be effectively processed using exhaustive search methods
for the optimal parameters.

In the projection approach, one wants to avoid evaluations in the full parameter
space, as this is time-consuming compared to the measure evaluation in the subspaces.
In MSL, the optimal marginal parameters are lifted into the higher space and refined
there, as well. Instead, we propose to iteratively refine the parameters only in the
projections, without having to calculate the measure for the entire image domain.
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5.5 Results

The proposed algorithm has been implemented for 2-D and 3-D registrations on
the central processing unit (CPU). In addition, results have been acquired with a
hardware-accelerated version on the GPU. Details about the latter implementation,
which is using the OpenGL Shading Language to specify the shaders on the GPU, can
be found in the Appendix A. The following comparison of the algorithm with a rigid
registration implemented within the Insight Segmentation and Registration Toolkit

(ITK)[Iban 05] on the CPU was performed on an Intel Pentium M 2.26 GHz with 2
GByte of main memory, and an Nvidia GeForce 7800 Go. The 2-D CPU registration
of two 2562 medical images takes approximately 10 seconds using a common ITK-
based rigid registration approach and no more than 0.3 seconds with the proposed
approach. There is basically no GPU acceleration necessary for 2-D registrations to
achieve registrations in real time, however, we expect an increase of the frame rate of
the registration by a factor of 10 when porting the approach onto the graphics card.
In 3-D, an ITK registration of two volumes with 2563 voxels each lasts more than 10
minutes, if the entire overlap domain is used for the computation of the similarity
measure and no statistical sampling techniques are applied. The proposed projection
approach on the CPU takes approximately 3 minutes. The hardware-accelerated
implementation yields a noticeable speed-up. A single cylinder projection of a 2563

dataset requires a mean time of approximately 40 milliseconds, which results in a total
runtime for the entire approach of less than 10 seconds. The runtime for the projection
registration is, therefore, comparable to approaches that make use of sparse statistical
sampling. A result for a registration of a CT image pair is shown in Figure 5.7. The
images have been acquired at different stages of the therapy. Therefore, a rigid
registration can be used to visualize the treatment-related differences. There is still

(a) (b)

Figure 5.7: Slice taken from the 3-D checkerboard images resulting from a registration
between a pre- and post-therapy CT dataset. The images reflect the differences in
position and orientation (a) before, and (b) after the projection-based registration.
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room for improvement of the GPU implementation. Currently, the bottleneck of
the processing chain is the marginalization of the cylinder surface image. These
images are still transfered from the GPU into the main memory to perform the
summation on the CPU. Newer GPU technologies allow for even faster approaches,
because of extended sets of operations implemented in hardware that supersede the
costly transfer operations, as the entire computation can be carried out within the
programmable graphics pipeline of the GPU.



70 Chapter 5. Projection-Based Registration



Chapter 6

An Evaluation Approach for
Registration Algorithms

The presented automatic registration approaches rely on an intensity-based similarity
measure as the criterion for an optimal alignment. So far, we have discussed tech-
niques to improve stochastic measures by a data-driven parameter estimation, which
yields an optimal adaption to the data, and a reduction of complexity by projection
schemes. Numerical aspects also play an important role during the optimization and
have to be taken into consideration to avoid grid effects. The goal is to design a sim-
ilarity measure that is both robust and accurate to meet the requirements of clinical
applications. Unfortunately, the similarity measure alone is not sufficient to deter-
mine the quality of the registration result. We need evaluation schemes to measure
the performance of the registration algorithm in terms of accuracy and robustness.
Designing an evaluation scheme for image registrations is not an easy task, as a gold
standard is often missing. Different placements of the patient for each scan come
along with combinations of soft tissue deformations and rigid body movements. It
gets even harder for inter-patient registrations, which are needed, for instance, to
determine statistical shape variations. The problem is that a ground truth definition
of the correspondences between the points is usually unknown.

Fitzpatrick et al. [Fitz 98] and West et al. [West 97] presented an evaluation for
rigid registrations based on ground truth transformations determined from implanted
fiducial markers. Although this is a very accurate technique, its field of application
is currently limited to rigid, intra-patient registrations of the head, as the markers
are screwed into the skull. For other parts of the human body, a rigid transform is
insufficient and the placement of the markers raises problems, especially for tracking
soft tissue movements. This complexity is one of the main reasons why existing ap-
proaches to evaluate non-rigid registration algorithms are currently limited to brain
images, because reliable segmentation databases are available for this purpose and
the morphology of the brain is not as complex as, for instance, the anatomy of the
abdomen. Hellier et al. [Hell 03] proposed an evaluation framework based on segmen-
tations of cortical regions. They applied a combination of a global measure, for the
overlap between the segmented regions after the registration, with local distances to
the cortical sulci. Christensen et al. [Chri 06] presented a similar evaluation approach
that makes use of richly annotated 3-D MR images of the brain and a series of metrics

71
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to measure the alignment quality. Although there is a website related to the project
[NIRE 09], it still seems to be in the development phase and uploading of results is
currently not supported. Urschler et al. [Ursc 07] have recently proposed an open-
source and open-data framework for the comparison and evaluation of intra-subject
image registrations. They proposed to use synthetic deformations and quantitative
measures on the deformation fields to assess the validity of deformable registration
transforms.

In this chapter, we will present an evaluation framework that is applicable to
both parametric and non-parametric registration algorithms. The proposed system
requires a database of annotations by medical experts. In contrast to other ap-
proaches, it incorporates the observer reliability, i. e. the intra- and inter-observer
variation, within a statistical model of the segmented data. The models are evalu-
ated for each registration result using a Kullback-Leibler (KL) divergence between the
spatial landmark distributions of the medical experts as measure for the registration
quality with respect to the transformation.

6.1 Statistical Evaluation Framework

In general, the knowledge of medical experts is a reliable source of information to
determine correspondences between the images. Here, we use it to design statistical
models based on manually selected landmarks, labeled contours, and segmented image
regions. Commonly, one cannot expect that an automatic registration algorithm
delivers “correct” results for parts of the images where even experts are unsure about
the true alignment. On the other hand, the registration has to be very accurate in
regions where the observer reliability is high. Thus, it is necessary to collect multiple
segmentations from each medical expert to incorporate the intra- and inter-observer
variability into the statistical model. The segmentations may consist of combinations
between point, surface, and region labels. The similarity between the labels LR and
LT with respect to a registration transform Φ(x) is measured with the symmetric KL
divergence between the spatial distributions p(x|Lj

R) for the reference and p(x|Lj
T ◦Φ)

for the transformed template labels:

DSymKL[LR,LT ,Φ] =
1

L

L∑

j=1

DKL[Lj
R,L

j
T ◦ Φ] + DKL[Lj

T ◦ Φ,Lj
R]

2
(6.1)

DKL[Lj
R,L

j
T ◦ Φ] =

∫

Ω(R,TΦ)

p(x|Lj
R) log

p(x|Lj
R)

p(x|Lj
T ◦ Φ)

dx , (6.2)

with L being the total number of landmark sets and the operator “◦” specifying the
application of the transformation. If we assume that the selection of each landmark
is a random process, which follows a specific distribution, the labels defined by the
medical experts can be regarded as random measures. The shape of the distribution
provides information about the uncertainty within the selection process. With an
increasing sharpness of the distribution the certainty also increases, and vice versa.
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6.2 Spatial Density Estimation

Depending on the modalities of the reference and template image, some anatomical
shapes are well suited for being point landmarks, for example centers of small lesions
that are visible in both images, or structures that can be located precisely. Others may
be more suitable for a representation as surfaces or regions. A list of labels is specified
for the entire body and the evaluation algorithm dynamically selects the joint subset
of labels contained within the overlap domain. Without loss of generality, we assume
in the following that the label description consists of a set of d-dimensional points,
which are located either at a specific anatomical landmark, on a surface, or within
a segmented region. Let L

j
R = {ixR,j}i=1,...,M be the set of spatial samples for the

j-th label in the reference and L
j
T = {ixT ,j}i=1,...,N the points for the corresponding

label within the domain of the template image. The samples may originate, for
instance, from multiple raters who pick specific locations within the image. The
true distributions of the selected labels are not known, therefore, the PDFs required
to compute (6.2) have to be estimated. The related problems are very similar to
the estimation of intensity distributions in the context of statistical image similarity
measures, with the difference that the random measures are now the spatial position
samples for the labels.

6.2.1 Parametric Models

We first examine the estimation of the distribution of the labeled samples with a
parametric density function. A Gaussian model, for instance, requires only the cal-
culation of the mean and variance, which directly provides information about the
uncertainty within the process of the label selection. The distribution for the j-th
reference landmark label is given by:

p(x|Lj
R) = N (x; µR,j,ΣR,j) (6.3)

µR,j =
1

M

M∑

i=1

ixR,j (6.4)

ΣR,j =
1

M

M∑

i=1

(
ixR,j − µR,j

) (
ixR,j − µR,j

)T
, (6.5)

where µR,j is the mean and ΣR,j the covariance matrix of the normal distribution
for the reference landmark samples. The density estimate for the template label is
analogue to (6.3), but incorporates the spatial registration transform Φ in addition:

p(x|Lj
T ◦ Φ) ≈ N (x; µTΦ,j

,ΣTΦ,j) (6.6)

µTΦ,j
≈ 1

N

N∑

i=1

Φ(ixT ,j) (6.7)

ΣTΦ,j ≈ 1

N

N∑

i=1

(
Φ(ixT ,j) − µTΦ,j

) (
Φ(ixT ,j) − µTΦ,j

)T
. (6.8)

Depending on the type of spatial transform, the equality in the equations above is no
longer guaranteed and the assumptions may be violated. In case of a rigid transform,
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however, the density of the transformed label set can be specified immediately from
the original, non-transformed mean and covariance of the template label [Horn 96]:

p(x|Lj
T ◦ ΦR

a) = N (x; RµT ,j + t,RΣT ,jR
T ) . (6.9)

There exists a closed form, analytical formulation for the result of the KL divergence
between the two normal densities [Yosh 99] that can be applied in this case to measure
the accuracy of a rigid registration with respect to the segmented landmarks:

DKL[Lj
R,L

j
T ◦ ΦR

a] =
1

2
log

(
detΣTΦ,j

detΣR,j

)

+
1

2
Tr

(

ΣR,jΣ
−1
TΦ,j

+ Σ
−1
TΦ,j

(
µR,j − µTΦ,j

) (
µR,j − µTΦ,j

)T
)

− d

2
.

(6.10)

From an implementation point of view, the parametric densities in (6.3) and (6.6)
are very appealing. The analytical formulation (6.10) provides an immediate solution
for the distance, but it is certainly questionable whether the assumption of normally
distributed label samples is justified. Even if the samples are indeed normally dis-
tributed, the application of a local, non-parametric transformation yields another kind
of distribution, which likely follows no longer a normal distribution. In addition, the
mono-modal PDF model for landmark points has to be extended to multi-modal mix-
ture models to represent the spatial distributions of surfaces or regions. The number
of the mixture components is not known beforehand and the computational complex-
ity for the estimation of the parameters for the mixture components increases with a
growing number of components. Additionally, the calculation of the KL divergence
on mixtures is not a trivial task.

6.2.2 Non-Parametric Models

In order to achieve the highest flexibility for the estimation of the spatial densities,
we propose to apply a non-parametric density estimation using Parzen-windowing,
similar to the methods described in Section 4.2. The spatial PDF estimator for the
j-th reference label is, again, discretized using a histogram hjLR

:

p̂(x|Lj
R) = (hjLR

⋆ KB
λ)(x) , (6.11)

with λ = (λ1, λ2, . . . , λd)
T being the d-dimensional vector that contains the kernel

width values for the multi-variate Parzen-windowing. Again, KB
λ denotes a cubic

B-spline kernel function. The number of bins for the histogram discretization is de-
termined by the spatial resolution of the images and may have a higher resolution
than the image in order to achieve subpixel-accurate evaluation results. Figure 6.1a
shows an example set of selected points for a landmark label in a 2-D image. The
uncertainty within the data is estimated by a maximum likelihood optimization of
the optimal kernel widths, as formulated in (4.4). The corresponding log-likelihood
function for the example problem is shown in Figure 6.1b. The estimated spatial
distributions for a point label using different kernel widths are shown in Figure 6.2.
Applying the optimal kernel width with respect to the data-driven cross-validation
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Figure 6.1: (a) Shows an example 2-D point set for a label within an image, (b) is
the corresponding log-likelihood objective function that has been sampled at various
B-spline kernel widths.
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Figure 6.2: The images show (a) the estimated spatial distribution for the data in
Figure 6.1 using a B-spline kernel width of λ = (0.01, 0.01)T , compared to (b) the
estimate using an optimal kernel width of λ = (0.63, 0.99)T . The kernel width values
are multiples of the pixel resolution in each dimension.

yields the estimate in Figure 6.2b. Similar to the PDF estimation for stochastic sim-
ilarity measures, the kernel widths need to be optimal to achieve accurate evaluation
results. The regions for the plotted distributions are basically defined on the entire
image domain, however, for the sake of clarity, the zero-valued parts outside the sup-
port range of the kernel function have been omitted. The KL divergence between
such spatial distributions can simply be evaluated pixel-wise in a discrete manner
using only the non-zero pixels.

Compared to the parametric formulation, the non-parametric density estimation
can be easily extended to spatial distributions of surfaces or segmented regions. In
Figure 6.3, it is demonstrated how the variation within the label set affects the
distributions. The distribution plots 6.3b, 6.3c, 6.3e, and 6.3f show the results of a
discrete, B-spline Parzen-window estimator for manual segmentations within an MR
slice through the lateral ventricle from a human brain. The label data in this example
consists of ten samples that have been created by interactive, manual segmentation
with B-spline contours. Darker values within the distribution plots indicate a higher
probability for a point belonging to the label at the corresponding pixel position.
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Figure 6.3: The images in the first row show (a) the plot of the segmentations for a
label with a high variation, (b) the estimated spatial surface distribution, and (b) the
region distribution. In the second row, the plots are arranged in the same ordering,
but with a lower variance within the label data.

The intra-label variation is reflected by the spread (the kernel width) of the PDF
estimates: it is smaller for the distributions of the second label compared to those in
the first row.

6.3 Experiments

In the following, we examine the feasibility of the evaluation framework using six
label positions that have been chosen for the evaluation: the sections of the horns of
the lateral and temporal ventricles, the cerebellum, the center of the fornix and the
lower corner of the insula. Figure 6.4 shows the image together with a delineation
of the labels. For the segmentation of the object contours, a manual approach has
been implemented that allows the user to interactively adjust control points, which
are then interpolated by cubic B-spline curves. The samples for the point labels
have been acquired by tracking the positions clicked by the user. Each label consists
of 20 samples, the variation within the sampled data is illustrated in Figure 6.5.
In the following experiment, an artificial 2-D B-spline transform (3.6) is applied to
both images in Figure 6.4 and the segmented labels. The influence of the local
mismatch on the evaluation criterion (6.1) is then measured for varying strengths of
the deformation field. Figure 6.6 illustrates the manipulation of the control grid, the
resulting B-spline transformation within the image domain, the original input image,
and the transformed image. Let C0 be the control grid that defines an identity B-
spline transform and u the deformation of C0 into the grid shown in Figure 6.6a. The
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Figure 6.4: Label sets for a slice taken from an MR image of a human brain. The set
consists of six labels: three regions for the ventricles, the surface of the cerebellum,
the center point of the fornix, and the corner of the insula.
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Figure 6.5: Variations in the segmented label data for the MRI brain slice in Fig-
ure 6.4. The plots show the manual segmentation results for the horns of (a) the
right lateral, (b) the left lateral, and (c) the temporal ventricle, (d) the outline of the
cerebellum, (e) the center of the fornix, and (f) the corner of the insula within the
slice. The units along the axes correspond to multiples of image pixels.
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Figure 6.6: Artificial deformation defined by modification of (a) the control grid for
a cubic B-spline transform in 2-D. The strength of the control grid deformation is
color coded from blue (no deformation) to red (largest deformation). (b) Shows the
resulting transformation within the image grid, (c) is the input image, and (d) the
transformed image.
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Figure 6.7: The proposed evaluation criterion (6.1) applied to the labels in example
6.4 with varying values for α.

strength of the deformation is then determined by a linear weighting factor α ∈ [0, 1],
which results in the corresponding 2-D B-spline transform:

ΦBS
a (x) = x +

3∑

l=0

3∑

m=0

Bl(u)Bm(v) ( C0(i+ l, j +m) + αu(i+ l, j +m) ) . (6.12)

The values for the distance (6.1) with respect to various strengths of the deformation
are plotted in Figure 6.7. The results indicate that the measure (6.1) is suitable to
assess the registration accuracy, however, it is necessary to collect a large number
of labeled data. In order to keep the segmentation effort for the physicians low,
we suggest to use semi-automatic segmentation approaches that can be controlled
by user inputs, for example the random walk image segmentation [Grad 06]. Still, a
lot of effort is necessary to establish an evaluation database for various modalities
and a number of image pairs that allow statistically relevant comparisons between
registration algorithms. The creation of this database is outside the scope of this
thesis, therefore, we will leave it to future work.
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Chapter 7

3-D/3-D Multi-Modal Rigid
Registration of the RIRE Database

The statistical methods described in Chapter 4 have been integrated into the NMI
distance measure of a state-of-the-art rigid registration application to perform an
evaluation, which is based on the retrospective image registration evaluation project
(RIRE version 2.0) database of brain images. This database consists of CT, PET,
and MR images. The MR data is comprised of T1, T2, and MP-Rage sequences. For
some of the MR images, the database also contains corrected versions with respect to
scanner-dependent geometry distortions. These images are denoted, in the following,
by the term “rectified”. The entire evaluation consists of CT-MR, PET-MR, as well
as MR-MR image pairs, which yields 114 registrations in total. West et al. [West 97]
and Fitzpatrick et al. [Fitz 98] proposed a gold standard registration based on the
detection and measurement of implanted fiducial markers and evaluated the target
registration error (TRE) for the transformations. The markers have been erased
before distributing the data to conduct a blind study.

Using the RIRE database, we compare the data-driven methods for the auto-
matic parameter selection to standard settings found in literature. The settings for
the standard registration are: discretization of the PDFs with equidistantly-spaced
histograms, standard deviations for the multi-resolution approach as proposed in
Wells et al. [Well 96], Halton quasi-random sampling of 10% of the overlap domain
with jittering, and no special handling of structured background noise. In addition
to the fully automatic algorithm, the registrations were also manually determined by
a medical expert. Only results from automatic approaches were hitherto known for
this database. Table 7.1 shows the abbreviations used for the compared methods.
Combinations between the techniques are also evaluated, for instance, the proposed
NMI approach with all parameters being optimally adapted to the input data is
achieved by the combination KCR. The effect of the number of bins for the histograms
with respect to the registration accuracy is analyzed as well. For the combinations
without requantization (no R), the values 16, 64 and 256 denote the fixed setting
for the histogram sizes. When R is enabled, the values are used as initializations in
the minimization of the quantization error trade-off, which yields the number of bins.
Most of the medical images result in an estimated number of bins in the range of
30 to 60. A minimum requirement of 64 or 256 bins, therefore, already fulfills the

81
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Abb. Description

S standard parameter settings
K automatic Parzen-window kernel width selection
C coincidence weighting
R adaptive requantization with number of histogram bins selection
M manual registration by medical expert

Table 7.1: Abbreviations used for the comparisons between the parameter selection
methods described in Chapter 4. K,C, and R are also combined with each other.

trade-off criterion between quantization error and computational efficiency in most of
the cases. The resulting values for the number of bins are then 64 or 256, respectively.
For a comparison of the number of bins in the R combinations, we suggest to use re-
sults from the entries for 16 and 256 bins presented in the following tables and plots.
Quasi-random sampling is performed using Halton sequences with a length of 10%
of the voxels contained within the overlap domain at the current iteration. A mini-
mum number of 10.000 samples is set for lower resolutions. The jittering and partial
volume interpolation are performed for all automatic methods, including S. Those
algorithm combinations not containing a specific identifier use the standard settings
instead, e.g. the CR method applies the default kernel widths instead of data-driven
estimates. The registration algorithm incorporates multi-resolution stages down to a
size of 32 voxels along a single image direction. On an Intel Core 2 Duo, 2.6 GHz
CPU with 3 GByte of main memory, the average registration time is within a range
of 10 to 20 seconds for a single image pair, compared to several minutes needed with
larger numbers of samples. It took the medical expert an average (standard devia-
tion) time of 3.5 (± 1.8) minutes for one registration and 6 hours and 37 minutes
in total for all image pairs (these times do not include the loading of data or breaks
during the registration).

7.1 Significance Tests

A two-tailed, paired t-test at a 5% level of significance was applied to analyze statis-
tical differences between the approaches based on the median TRE values. Tables 7.2
and 7.3 present the TRE values for the conducted CT-MR and PET-MR registrations
of the RIRE data.

The first tests comprise a statistical comparison between the proposed, fully au-
tomatic NMI approach, i. e. the KCR method with an initialization of 16 bins, and
an implementation using standard parameters from literature with 16, 64 and 256
histogram bins. KCR yields a significantly higher accuracy compared to S for 16, 64
and 256 bins. A comparison with the manual registration also results in a signifi-
cantly higher accuracy in favor of KCR. The level of significance gets slightly worse
for tests between KCR with 256 bins and S (6.1%), and also KCR 256 with M (5.5%).

We also examine whether a specific number of histogram bins performs better
than another. There is indeed a significant difference within the results achieved by S
16 compared to both S 64 and S 256. Between S 64 and S 256, however, a comparison
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MR Technique N

Modality S K C R KC KR CR KCR M

T1

16 1.9 1.7 1.5 1.7 1.6 1.6 1.6 1.6 1.8

1664 1.7 1.6 1.6 1.8 1.6 1.6 1.6 1.6 1.8

256 1.6 1.5 1.6 1.6 1.6 1.5 1.6 1.6 1.8

PD

16 2.2 2.1 2.1 2.2 2.3 2.1 2.3 2.4 2.4

1164 2.4 2.3 2.4 2.3 2.5 2.4 2.4 2.5 2.4

256 2.2 2.2 2.5 2.5 2.5 2.5 2.5 2.6 2.4

T2

16 2.4 2.2 2.1 2.2 1.9 2.1 2.0 1.9 1.9

1564 2.2 2.2 1.9 2.2 1.9 2.2 1.9 1.9 1.9

256 2.2 2.3 2.0 2.2 1.9 2.3 2.0 2.0 1.9

T1

rect.

16 1.8 1.3 0.8 1.4 0.8 1.0 0.8 0.7 1.5

664 1.3 1.2 0.7 1.3 0.8 1.2 0.8 0.7 1.5

256 1.1 2.0 0.6 1.1 0.6 1.5 0.6 0.8 1.5

PD

rect.

16 1.2 1.1 0.9 1.1 0.8 1.1 0.8 0.8 1.5

764 1.1 1.1 0.9 1.1 0.8 1.1 0.8 0.9 1.5

256 1.1 1.6 0.8 1.2 0.8 1.2 0.8 0.9 1.5

T2

rect.

16 1.7 1.3 1.1 1.8 1.5 1.2 1.3 1.2 1.5

764 1.6 1.3 1.3 1.5 1.2 1.3 1.2 1.2 1.5

256 1.4 1.9 1.2 1.3 1.2 1.9 1.1 1.1 1.5

Table 7.2: Median TRE values for the evaluation of CT-MR registrations in millime-
ters. N denotes the number of patients available for each modality combination.

MR Technique N

Modality S K C R KC KR CR KCR M

T1

16 45.5 3.1 3.2 6.0 2.5 3.1 2.9 3.0 3.1

764 3.8 2.9 3.0 3.5 3.2 3.0 3.4 3.3 3.1

256 3.9 18.8 3.2 3.8 3.4 7.8 3.7 3.7 3.1

PD

16 35.6 3.2 2.6 6.1 2.8 2.9 2.8 2.7 3.9

764 3.4 3.2 2.7 3.4 2.7 3.2 2.8 2.6 3.9

256 3.5 20.1 2.7 3.6 2.9 5.2 2.9 2.7 3.9

T2

16 33.4 2.8 3.0 4.3 2.9 2.5 3.0 2.4 2.6

764 3.6 2.8 2.8 3.4 2.7 2.8 2.8 2.8 2.6

256 4.1 21.6 2.7 4.5 2.7 6.2 2.5 2.6 2.6

T1

rect.

16 47.5 2.1 2.7 2.3 2.1 1.9 2.1 2.0 2.9

464 2.0 1.9 1.8 1.9 1.9 2.1 2.0 1.9 2.9

256 2.0 3.9 2.2 2.0 2.1 3.7 2.1 2.1 2.9

PD

rect.

16 24.8 2.8 2.5 3.0 2.7 2.5 2.6 2.7 3.3

564 2.5 2.8 2.5 2.8 2.7 2.9 2.7 2.7 3.3

256 3.2 19.9 2.5 2.8 2.7 12.5 2.4 2.9 3.3

T2

rect.

16 35.1 2.7 2.9 3.1 2.7 2.1 2.9 2.7 2.6

564 2.6 2.0 2.6 2.6 2.9 2.1 2.6 2.6 2.6

256 2.9 3.9 2.6 2.4 2.7 4.1 2.7 2.6 2.6

Table 7.3: Median TRE values for the evaluation of PET-MR registrations in mil-
limeters. See notes in Table 7.2.

yields no significant differences. The proposed KCR approach shows no significant
influence of the number of bins on the results for a minimum required number of bins
of 16, 64, or 256.

7.2 Target Registration Errors

Figures 7.1, 7.2 and 7.3 show the mean TRE values of the various techniques along
with their standard deviations for the evaluated modality pairs. For the MP-Rage
results, all presented techniques achieve similar accuracies, and a single, outstanding
approach cannot be identified. The automatic CT-MP-Rage registrations show a
slightly increased accuracy compared to the medical expert, which is contrary to
the MP-Rage-T2 pairs. In the plots of Figure 7.2, which correspond to CT-MR
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Figure 7.1: Mean and standard deviation of the TRE values for MP-Rage MR se-
quence image pairs: (a) CT-MP-Rage and (b) MP-Rage-T2 combinations. The verti-
cal bars depict the mean TRE for a specific parameter estimation technique together
with the standard deviations (vertical lines). The solid horizontal line indicates the
mean TRE of the medical expert, the vertical bar marks the corresponding standard
deviation. Results for 16, 64, and 256 number of bins for each parameter estimation
technique are presented in order to examine the influence of the histogram size on
the registration accuracy.
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Figure 7.2: Mean and standard deviation of the TRE for CT-MR registrations: (a)
CT-PD, (b) CT-T1, (c) CT-T2 and between the distortion corrected MR sequences
(d) CT-PD rect., (e) CT-T1 rect. and (f) CT-T2 rect. See also Figure 7.1.

registrations, a distinct improvement is achieved for the rectified MR sequences. In
these cases, the automatic registration techniques yield enhancements of the accuracy
of up to one millimeter. The NMI implementation with all data-driven parameter
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Figure 7.3: Mean and standard deviation of the TRE for PET-MR registrations in
the same ordering as in Figure 7.2.

selection methods enabled (KCR) shows an overall good performance for all image
pairs. Similar statements can be made for the results of the PET-MR image pairs
in Figure 7.3, where the increased TRE values are due to the coarse resolution of
the PET data. The geometry correction of the MR images seems to play a more
important role for combinations with PET. Again, the proposed KCR technique is
performing very well for all PET-MR image pairs. The overall mean TRE measured
for all image pairs (CT-MR, PET-MR and MR-MR) is 2.34mm for KCR with 16
bins, compared to 2.54mm for the manual registration, and 6.48mm for the standard
implementation with 64 bins.

7.3 Acceptance Rates

Besides the median and mean TRE analyses, we also investigated the overall land-
mark acceptance rates of the fully automatic KCR approach for the NMI with at
least 16 bins, compared to the standard approach with 64 bins, and the manual
registration. The acceptance rate for a specific error threshold is computed as the
ratio between the number of landmarks with a TRE smaller than the threshold and
the total number of landmarks. The values for the acceptance rate are, therefore,
in the range of [0, 1]. The plots in Figure 7.4 show the increase of the acceptance
rates with respect to a decrease of the error threshold. The visual appearance of
the curves allows to directly compare the performance of the techniques for various
modality pairs. The acceptance rate curves can be regarded as a special form of
receiver operating characteristics (ROC), which are often used for the evaluation of
pattern recognition systems [Egan 75]. Apart from small landmark error levels in the
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Figure 7.4: Landmark acceptance rates for the modality combinations (a) CT-MR
(PD, T1, T2), (b) CT and rectified MR, (c) PET-MR, and (d) PET with rectified
MR. The curves are plotted for the registration using the completely data-driven
parameter selection for the NMI, a standard parameter set and the medical expert.

PET-MR rectified images, the KCR approach performs better than the standard. It
yields acceptance rates of 90% for a TRE of 2.5mm for distortion corrected CT-MR
and 6mm for PET-MR combinations. The manual registration by the medical expert
achieves higher acceptance rates for the PET combinations with the non-corrected
MR images, but for other cases, the automatic registration using the KCR approach
performs better.

7.4 Influence of MR Distortion Correction

West et al. [West 97] have statistically analyzed whether a geometry correction, as
proposed by Chang and Fitzpatrick [Chan 92], of the PD, T1 and T2 MR sequences
yields a better registration accuracy. The geometry correction technique is called
“rectification” and is based on the acquisition of two distorted images using spin-
echo pulse sequences that are identical except for a simple change in the gradients.
Chang and Fitzpatrick showed that a perturbation of the magnetic field can, to some
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extent, be manipulated by adjusting the gradient between the two acquisitions. The
undistorted intensities of the rectified image can then be calculated from the distorted
positions and the ratio between the applied gradients. West et al. found significant
differences between the registrations of MR images with and without corrections
only for CT-T2 pairs in one out of eleven registration approaches. Other registrations
showed minor significances for CT-T2 and CT-T1 pairs at a level of 10%. In contrast,
statistical tests on our results confirm that the distortion correction yields a significant
improvement. A comparison between the median TRE values with and without
correction leads to 95% confidence intervals of [0.76, 0.95]mm for CT-MR images and
[0.43, 1.80]mm for PET-MR pairs.
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Chapter 8

SPECT Subtraction Imaging for
Epilepsy Diagnoses

One of the main goals in epilepsy surgery planning is to localize the region of seizure
onset. For this purpose, intra- and inter-ictal SPECT images are acquired between
epileptic seizures and closely after a seizure. The comparison of these images is
non-trivial due to the low spatial resolution, varying image intensity ranges (uptake
values), and different acquisition times. Therefore, conventional side-by-side, visual
assessments are extremely difficult. We propose an alternative workflow that has
a reduced complexity for the physician compared to commonly applied techniques.
Our method introduces digital subtraction techniques, which are already successfully
applied in digital subtraction angiography (DSA), into the context of SPECT epi-
lepsy imaging. The presented clinical workflow consists of a series of automatic steps
that do not require any user interactions. First, we apply the techniques presented
in Chapter 4 to perform a rigid registration based on the intensity statistics. This
is necessary since, in the beginning, the intensities may largely differ. Second, the
estimated joint PDF after the application of the registration transform is used to
establish an intensity mapping between the two images, which we refer to as nor-

malization. In the following, we will illustrate that local differences in the blood
flow between the two acquisitions lead to a global bias of the rigid registration. The
third step, therefore, consists of a non-parametric registration to correct these errors
and also possible geometric distortions between the two images. In the context of
brain imaging without surgery, using non-parametric registration techniques seems
questionable, however, in this case, it is the variation within the cerebral blood flow
(CBF) that leads to different focal regions, which directly affects the global opti-
mization in a negative way. Making use of an additional, but heavily regularized,
non-parametric registration helps to decrease this bias. The final step of the work-
flow consists of a subtraction between the processed SPECT images. The resulting
difference image directly depicts changes in the CBF between the two acquisitions. A
previously acquired MRI is integrated into the workflow and used to spatially localize
the differences. We show in a multiple observer study that the additional application
of a non-parametric registration leads to an increased accuracy, a higher confidence of
the physician and a better quality of the difference image. The resulting information
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about the changes within the CBF can, for instance, be used for further diagnostics
or surgery planning.

8.1 Related Work

The CBF is known to increase during epileptic seizures at the areas of the seizure
onset, which leads to differences between the two images. Subtraction methods were
introduced into SPECT imaging by Zubal et al. [Zuba 95] and Spanaki et al. [Span 99].
They applied it after a rigid registration and normalization to analyze the location of
seizure onset. O’Brien et al. [OBri 98; OBri 99] additionally incorporated MR images
through an image fusion with the difference image to visualize the spatial location
of the focal spots. In order to identify statistically relevant image differences, both
Chang et al. [Chan 02] and McNally et al. [McNa 05] used techniques of statistical
parametric mapping for a comparison of the subtraction values with a collection of
normal subjects in order to identify those variations that are due to the epileptic
disease. Koo et al. [Koo 03] have shown in a preliminary study that the retrospective
subtraction of inter- from intra-ictal SPECT images at a visualization window of
75% to 100% shows good concordance with the seizure foci determined by other, well
established techniques.

Varying tracer concentrations between the image acquisitions lead to different
uptake values that have to be normalized before subtraction. Otherwise, there is a
systematic error in the intensities of the difference image. Several approaches for
this normalization are described in literature. Chang et al. [Chan 02], for instance,
fit a linear mapping model into the joint histogram of both SPECT images after
the registration such that the entropy of the difference image is minimized. Other
methods include normalizations to the maximal image values, to the mean uptake
value in the entire brain, or to selected regions. The normalization in the present
work approximates a linear model as proposed also by Liao et al. [Liao 03].

Regarding the registrations, we apply the techniques described within the Sections
3.1, 3.2, and Chapter 4. As the SPECT images usually contain a lot of low-intensity,
structured noise within the background region, we utilize the KCR parameter esti-
mation for NMI, which has been shown to work for the RIRE data in Chapter 7.
The approach of comparing inter with intra-ictal SPECT images is very similar to
techniques used in DSA. There, an additional non-parametric registration is incor-
porated in order to get rid of artifacts within the difference image that arise from
patient movements. An overview of related techniques to account for such motion
artifacts can be found, for instance, in Meijering et al. [Meij 99]. For the presented
approach, the non-parametric registration is applied to compensate for the bias in
the rigid registration. In the following, we make use of a non-parametric registration
with a curvature regularization energy term constraining the deformation.

8.2 Clinical Workflow

The following section describes the steps of the workflow in a chronologic order. Both
the rigid and the non-parametric registrations are important steps – we refer to the
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previous Chapters 3 and 4 for the details. The intensity normalization is necessary
for the comparison between the intensity values of the two SPECT images. If an
MRI of the patient exists, it is incorporated by a registration with the reference
SPECT image. A registration of the difference image directly with the MRI is an
ill-posed problem, because there is insufficient anatomical information left within
the differences that could be adequately aligned. Instead, the registration transform
determined for the SPECT-MR pair is applied to the subtraction image, which is
located within the same coordinate system of the reference SPECT. For this task, a
rigid registration is used.

8.2.1 Rigid Registration

The computation of the normalization between the inter- and intra-ictal SPECT
data requires that the images are suitably aligned. To correct for different patient
positions between the acquisitions, a rigid, intensity-based registration between the
SPECT images is performed. We choose as objective function for this problem the
NMI distance measure between the two images with respect to a rigid transform
(i. e. only rotations and translations). In Figure 8.1, the rigid position and orientation

(a) (b)

Figure 8.1: Input SPECT image dataset (a) before, and (b) after the rigid registra-
tion.

alignments are computed for an example image pair. Here, the initial misalignment,
which is compensated by the rigid registration, is mainly due to a different placement
of the head between the two acquisitions.

8.2.2 Intensity Normalization

As mentioned above, for a correct interpretation of the differences between the
SPECT images, the intensities have to be normalized to a common intensity range.
This is necessary due to different acquisition times and changes in the overall tracer
uptake within the human body. We model the mapping by an affine intensity trans-
form similar to the proposals of Liao et al. [Liao 03]. In order to be invariant to
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the intensities of the background, and also the structured noise contained within,
we restrict the affine mapping to the region of the joint PDF above the background
thresholds, i. e. the probabilities for joint intensities that both belong to brain tissue.
The thresholds are determined using the binary quantization approach described in
Section 4.3.4. The components of the affine model are then computed by linear re-
gression within the joint PDF without the background intensities. This yields an
affine intensity mapping that transforms the principal axis in the joint PDF region
onto the diagonal, as the entries of a discrete PDF are located on the diagonal for
perfectly aligned and normalized images. An example for this normalization can be
seen in Figure 8.2. After the application of the affine mapping, the entries within the
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Figure 8.2: The figures show the joint PDF of two input SPECT images (a) before, (b)
after the registration, (c) with the model fitted into the joint PDF without background
content, and (d) the joint PDF after applying the intensity normalization. The figures
also show the diagonal through the histogram space (solid red line), the fitted affine
model (dashed red line), and the threshold region for the background (solid blue
lines).

joint PDF are located closer to the diagonal, which indicates a better correspondence
between the intensities. Figure 8.3 shows an example image pair before and after the
normalization. The same transfer function (window level settings) has been used for
the visualization in this example.
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(a) (b)

(c) (d)

Figure 8.3: An example result of the proposed SPECT normalization approach. The
images show (a) the intra-, (b) the inter-ictal SPECT images before the normalization,
and (c), (d) the corresponding images afterwards.

8.2.3 Non-Parametric Registration

The rigid registration results in a transform that can only be optimal in a global
sense, similar to a least squares solution. We found that if there is a large amount
of variation in the CBF across the data sets at different locations, the intensity
similarity measure is biased. This tends to impair the registration accuracy at lower
contrast image regions, for instance at the boundaries of the brain. If such a biased
registration result is used as input for the subtraction stage, the difference image
falsely contains information at the misaligned regions, which may lead to wrong
diagnoses. Figure 8.4 shows a 2-D registration example that demonstrates the effect
of bias on the difference image. Both the reference and the template image show
the same slice of an arbitrarily chosen SPECT image. In order to demonstrate the
impact of a local intensity variation on the registration result, an artificial focal spot
is added to each image. The spots have the same extent, but differ in their location.
After a rigid 2-D registration of the images and the examination of the resulting
difference image shown in Figure 8.4c, the artifacts at the boundaries of the brain
outline are clearly visible. The errors at these regions are due to the bias, which
is introduced by the local motion of the artificial focal spot and affected the result
of the rigid registration. The non-parametric registration is less impaired by the
local variation, as can be seen in Figure 8.4d, although the deformation is restricted
by a high weighting factor for the regularization energy term. There is still a local
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(a) (b)

(c) (d)

Figure 8.4: Illustration of the bias of a rigid registration introduced by local variations
in the image content. The top row consists of (a) the reference and (b) the template
image, which only differ by the location of an artificially introduced focal spot. The
bottom row shows (c) the difference image based on the results of a rigid registration,
and (d) of a non-parametric registration. The same visualization settings have been
applied for both subtraction images.

difference at the artificial spot, which is exactly what we want to retain, but the
artifacts at the remaining image regions are substantially smaller.

Consequently, the rigid registration can only result in a global fit of the images,
and variations in the CBF lead to local SPECT signal changes that impair the accu-
racy of result. This can be compensated by a subsequent non-parametric registration,
where local changes have only a limited effect on the global registration transform.
Without the non-parametric registration step, slight rigid mis-registrations, due to
the aforementioned bias, show up in the difference image and might be falsely re-
garded as lesions. Of course, the proposed method is not the only way to handle this
problem, however, we found that it works very well in practice. The visual quality
of the subtraction images, as a result from the described workflow, is an important
factor for the confidence of the physician to localize the focal spots.

8.2.4 Visualization

The spatial transformation, which is composed of the rigid transform and the defor-
mation field, is then incorporated into the subtraction of the normalized images. The
intensity differences can be directly interpreted as changes of the blood flow activity
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between the acquisitions, however, the spatial information is lost. The missing spatial
information can, for instance, be contributed by an MRI of the patient. The direct
registration of the difference image with the MRI is an ill-posed problem. Instead,
we make use of the fact that the difference image is contained within the same co-
ordinate system as the two registered SPECT images. The fusion of the MRI with
the difference image can, hence, be realized indirectly by a registration of the MR
with the intra-ictal SPECT image. This is performed, again, by calculating a rigid
transform that maximizes the NMI between the MRI and the SPECT. The resulting
transform can finally be used to fuse the difference image with the MRI, which yields
additional information for the physician.

8.3 Results

The proposed method has been applied to a collective of 26 epilepsy patients and as-
sessed by physicians. Each patient went through the standard diagnostic procedures.
The locations and the number of the focal spots are known from the patient charts.
The images have been anonymized within the clinics and handed to us afterwards.
The subtraction images were generated with two versions of the proposed workflow:
the first version consisted of the workflow described above. In the second version,
the non-parametric registration was disabled. The subtraction images were randomly
ordered into a set of evaluation protocols with a maximal distance between the two
workflow results from a single patient. The physicians then had to specify the location
and the number of the focal spots based on a fusion of the subtraction image with the
corresponding MRI in a blind study. Figure 8.5 shows the implemented user interface
for the evaluation. The participants are distinguished by name and password in order
to avoid a mixture between inputs from different participants. During the evaluation,
the intermediate results are stored on the hard disk. The participants can specify the
number and locations of the focal spots for each evaluation sample, together with an
indication of the image quality and their certainty. The results have been collected
from two physicians from the clinics of nuclear medicine of the University Erlangen.

Objective for Comparison Rigid Non-Parametric

Correct Number of Foci 41 41
Correct Location 65 64
Certainty 38 50
Correct Number of Foci (certain only) 58 54
Correct Location (certain only) 80 81
Observer Reliability 84 92
Quality 1.12 1.33

Table 8.1: Comparison between the evaluation results of the two workflow versions.

The results of the blind evaluation are presented in Table 8.1. The first column
specifies the objective for the comparison, the second column shows the results of the
workflow that contains only the rigid registration. In the third column, the values
correspond to the complete workflow with both the rigid and the non-parametric reg-
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(a) (b)

(c)

Figure 8.5: Illustration of the several steps during the evaluation of the SPECT differ-
ence images: (a) the user login screen in order to distinguish between the participants,
(b) the progress screen for each participant, and (c) the actual evaluation screen with
the fusion between the anonymized MRI and the SPECT difference image.

istration. The values relate to the means of the evaluations and, except for the quality
statement, are scaled to percentages. On an ordinal scale, the certainty had to be
classified as very uncertain, uncertain, certain, or very certain. The third comparison
objective measures the percentage of samples that have been classified as certain or
higher. The effects of the two versions of the workflow on the resulting difference
images are shown for an example dataset in Figure 8.6. From the visualization of the
difference images at the same significance level, it can be seen that the result using
the additional non-parametric registration step contains an overall lower noise level
and the contours of the lesion are more focused. In Figure 8.7, the fusion visualization
for two datasets within the study collective are presented. The image 8.7a shows a
lesion within the left parietal lobe that can be located in both the difference images
and the MRI. For the image 8.7b, the MRI did not indicate any lesions, however,
the focal spot in the right temporal lobe, which can be well recognized within the
difference image, correlates also with the EEG measurements and visual side-by-side
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(a) (b)

Figure 8.6: A comparison between the results of the two workflow versions for an
example dataset. The renderings show (a) the difference image using only a rigid
registration, and (b) with an additional non-parametric registration using the same
transfer function settings.

(a) (b)

Figure 8.7: Fusion visualization between an MRI and the subtraction result of the
proposed workflow for two epilepsy patients.

assessment of the SPECT data. Two final examples for the fusion of the subtraction
workflow results with the corresponding MR images are presented in Figure 8.8.
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(a) (b)

Figure 8.8: Two example patients taken from the collective. The images show the
SPECT subtraction image fused with the corresponding MRI.



Chapter 9

Registration Applied to Shape-Based
Segmentation

The segmentation of medical images is an important preprocessing step for further
medical analyses or diagnoses. Many different methods are used for the classification
of anatomical structures of interest, for example region growing, level set, or active
shape model (ASM) segmentations. A major problem for most of the segmentation
algorithms are structures that are not clearly delineated from the surrounding tissue.
An unconstrained segmentation usually leaks into other structures within these re-
gions. Introducing prior knowledge into the segmentation approach helps to increase
the robustness of a segmentation and to avoid leakage in cases of noisy or missing
data. The ASM technique is an example for a segmentation algorithm that makes
use of statistical information about shape variations, which are extracted from a set
of training data. The crucial aspect of an ASM is the correct determination of the
correspondences between the training data, as errors during the model generation
phase lead to wrong statistics about the shape and, in consequence, to wrong results.

A state-of-the-art solution consists of the optimization of a minimum description
length (MDL) measure between a set of points (landmarks) placed on a parametric
surface onto which all training shapes are mapped. The training shapes are repre-
sented as surface meshes with potentially different numbers of vertices. Optimizing
the MDL is highly complex and may be very time consuming, even on newest hard-
ware. In addition, updating the model with new training data requires rerunning
the procedure all over again. Finding a suitable parametric space for the mapping
may also pose a problem for some applications, for example if the transformation is
complex, or if the object largely deviate from the shape of the target space.

From another perspective, the correspondence problem for the model genera-
tion may be regarded as a registration task: depending on the DOF in the spatial
transform, the alignment between the structures within the training data can be
determined by a registration algorithm. Using a combination of parametric and non-
parametric registration algorithms provides, therefore, an alternative to the MDL
technique in order to address the correspondence problem. In the following chap-
ter, we concentrate on solving the correspondence problem with a non-parametric
registration, propose a suitable distance measure for this specific registration, and
compare the novel approach with an already established MDL method. The results
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are presented for the clinical application of kidney segmentation from CT images to
gain information about their extent or volume, which is of interest for nephrologists.

9.1 Model Generation

In 1995, Cootes [Coot 95] introduced the ASMs to regularize a segmentation with prior
knowledge of the statistical variation of the target shape. This additional information
allows to achieve robust results even if the signal to noise ratio is low or the delineation
of the organ boundaries is distorted. For 3-D applications, a common approach to
represent the training shapes is to use surface meshes composed of triangles. The
necessary steps to generate an ASM model are shown in Figure 9.1. Each ASM is

Figure 9.1: The components of a state-of-the-art ASM segmentation system. The
computation of correct correspondences between the training shapes is crucial for the
entire approach.
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based on a point distribution model that is created from a set of N training shapes,
each composed of n sampled surface points. For a segmentation problem in 3-D, let
x
j
i ∈ R3, with i = 1, . . . , n be the vertex coordinates on the j-th surface. The shape

sj ∈ R3n is composed of these vertices by rearranging the coordinate components
(x, y, z):

sj = (xj1, . . . , x
j
n

︸ ︷︷ ︸

x−components

, yj1, . . . , y
j
n

︸ ︷︷ ︸

y−components

, zj1, . . . , z
j
n

︸ ︷︷ ︸

z−components

)T . (9.1)

The N training samples are used to extract the mean shape s̄ and the principal modes
of variation by a principal component analysis (PCA):

s̄ =
1

N

N∑

j=1

sj

S = ((s1 − s̄), . . . , (sN − s̄))

SSTvi = ϕivi ,with i = 1, . . . , T

s. t. ‖vi‖ = 1 ,

(9.2)

where SST denotes the covariance matrix of the training shapes that is decomposed
into the eigenvectors vi belonging to the T -largest eigenvalues ϕi. The decomposition
is performed as described in Murase and Lindenbaum [Mura 95].

The mutually orthogonal eigenvectors are sorted in descending order of their re-
spective eigenvalues and describe the principal modes of variation from the mean
shape. Thus, a linear combination of the eigenvectors with the mean shape spans the
subset of shapes that are composed of the principal modes of variation. Each shape
within this space can be expressed by:

s = s̄ +
T∑

i=1

αivi , (9.3)

with αi being the weighting factor for the corresponding i-th variation.
The approach heavily depends on the correspondences between the training shapes

that are incorporated in (9.2). Difficulties arise especially for complex shapes in higher
dimensions. Unfortunately, the surface representations using triangular meshes, in
general, is not uniquely determined for all training shapes. Therefore, the sample
meshes may differ in the cell structure and the number of vertices. This makes it
difficult to select surface points that occur only in the joint subset of the training
shapes. If the information about the location of these points is not given by con-
struction, a correspondence problem has to be solved prior to the application of the
PCA. Davies et al. [Davi 02a] described an automatic method for the construction
of optimal 3-D shape models based on statistics. The authors proposed to estimate
an optimal parameterization of each surface mesh with respect to an MDL criterion
[Davi 02b]. An extension for dense correspondences, which are optimally distributed
across the set of training shapes, was proposed by Heimann et al. [Heim 05; Heim 06].
They included the distribution of the vertex points within the mapped parametric
space into the objective function.

In the following, we propose an alternative to MDL optimization in order to
solve the correspondence problem by utilizing a non-parametric image registration
algorithm, which is described in Section 3.2.



102 Chapter 9. Registration Applied to Shape-Based Segmentation

9.2 Registered Point Correspondences

The ASM model generation with respect to triangle surface meshes requires the com-
putation of correspondences between the points on the surfaces. In contrast, we pro-
pose to shift the problem into the discrete image domain using segmentation images
of the training shapes, which enables intensity-based image registration techniques.
The registration has to align the shape images from different patients, which re-
quires a spatial transform with sufficient DOF. Therefore, we propose to incorporate
a non-parametric image registration into the ASM generation to compute dense de-
formation fields between the training shape images. The deformation is constrained
by a curvature regularization energy. In addition, the representation of the segmented
shapes within the discrete image domain enables the use of intensity-based similarity
measures. The techniques introduced in Sections 3.2 and 3.3 can be directly applied
to this application. A common reference shape is selected from the training set and
registered with the remaining samples. The surface mesh of this reference shape
can then be mapped through the resulting spatial deformations. This guarantees a
one-to-one match between all points on the surface meshes.

As the basis for the registration, we use an implicit representation of the i-th
training shape by a bi-valued segmentation image Γi. It is defined within the dis-
crete image domain Ωi, which is specified by the spatial sampling properties of the
segmented image:

Γi(x) =

{
1, if x ∈ Ωi inside si
0, otherwise .

(9.4)

Thus, Γi represents the corresponding surface mesh si within the discrete image
domain. The point correspondence problem between two shapes si, sj, i 6= j, can
now be formulated as a registration between Γi and Γj. It optimizes the spatial
transform that maps corresponding structures within the segmentation images onto
each other. The resulting dense deformation field ui,j is the spatial transform between
Ωi and Ωj, and provides a solution for the point correspondence problem:

xk − ui,j(xk) = xl with xk ∈ si,xl ∈ sj . (9.5)

It is worth mentioning that this formulation of the problem within the image do-
main does not require an explicit representation of the surfaces. It can be applied to
both implicit segmentation images and explicit surface meshes, because both repre-
sentations can be converted into each other. In comparison, the MDL-based methods
rely on an explicit surface representation, which is a problem for shapes that are
composed of several elements (e.g. as a result of an implicit level set segmentation).
The training data is acquired by a supervised segmentation of the images and stored
either as binary images or surface meshes. Attention has to be paid to retain sub-
stantial structural information in the discretization. Usually, the resolution of the
input images is sufficient to be used for the shape images alike.

As described above, the optimization problem (3.14) is composed of a curvature
regularization (3.17) on the deformation field and an appropriate similarity measure.
Regarding the point correspondence problem, the measure has to operate on binary
shape images. Points on the surface of the shapes have to be registered correctly and
intrinsic properties, such as the curvature, have to be retained between corresponding
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surface regions as closely as possible. As all shape images share the same intensities,
it is reasonable to use the SSD (3.23) as a suitable distance measure for this task. A
drawback of this measure in the context of finding shape correspondences, however,
is that it does not account for surface properties. Therefore, we propose an extension
of this similarity that incorporates the curvature κi of the i-th segmentation, which is
also used in the context of level set segmentations, for instance, in Sethian [Seth 99].
The curvature is based on the signed Euclidean distance transform dSE(Γi,x) of the
shape image Γi at position x:

κi(x) = −∇ · ∇dSE(Γi,x)

|∇dSE(Γi,x)| , x ∈ Ωi . (9.6)

A detailed description of dSE can be found in Danielsson [Dani 80] or Ye [Ye 88].
The distance-transformed shape image contains the signed Euclidean distance to
the closest point on the shape boundary. The curvature-extended sum of squared
differences (CSSD) similarity measure DCSSD between the shape images Γi and Γj
is then formulated as a convex combination of the SSD and a squared distance Dκ

between the surface curvature values:

Dκ[Γi,Γj,ui,j] =
1

|Ω(Γi,Γj)|

∫

Ω(Γi,Γj)

(κi(x) − κj(x − ui,j(x)))2 dx

DCSSD[Γi,Γj,ui,j] = (1 − β)DSSD[Γi,Γj,ui,j] + βDκ[Γi,Γj,ui,j] ,

(9.7)

where β ∈ [0, 1] is a weighting factor between the two distances. A value of β = 0.5 is
used for the experiments in the following. Figure 9.2 illustrates the difference between
the resulting deformation for DSSD and Dκ for an example registration between two
simple shapes. The curvature distance results in deformation fields that align regions

Γi

(a)

Γj

(b)

−u|DSSD

(c)

−u|Dκ

(d)

Figure 9.2: Differences between deformation fields resulting from similarity measures
DSSD and Dκ. The illustrations show examples for (a) a reference, (b) a template
shape, (c) the deformation with respect to an optimization of DSSD, and (d) the
deformation for Dκ.

with similar curvature. In contrast, optimizing only the SSD distance yields a least
squares deformation field with respect to the regularization energy. In consequence,
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the optimal transform based on the standard SSD approach might just smooth out
a bulge in the surface, while the extended distance (9.7) tries to match it with a
corresponding bulge in its local neighborhood, first.

In the implementation, the curvature (9.6) is calculated on the original, unde-
formed shape images and interpolated during the iterative refinement of the registra-
tion transform. As it contains second order derivatives, the curvature (9.6) is usually
very sensitive to noise in the images. In this case, however, it is computed on the
distance transforms of the binary shape images. Noise in the original images has,
therefore, only effects on the boundary of the segmentation results. Nonetheless, we
propose to use derivatives of low pass filtering kernels, e. g. a Gaussian, with kernel
widths chosen with respect to the spatial resolution of the shape images.

u1,2 u1,3 u1,N

Γ1

Γ2 Γ3 ΓN

· · ·

· · ·

Figure 9.3: Directions of the registrations for the N shape images used for the training
of the ASM. The arrows point from the reference to the template image. The resulting
deformation fields are used to map between the coordinate system of Γ1 into the
coordinate systems of all other training shapes.

The registration scheme for the registration-based approach to solve the corre-
spondence problem between the training shapes is shown in Figure 9.3. The refer-
ence shape image Γ1 is registered with the remaining training samples Γ[2,...,N ] such
that the resulting deformation fields u1,[2,...,N ] can be used to transform a spatial co-
ordinate x ∈ Ω1 into all other coordinate systems. In the aforementioned equation
(9.2) for the determination of the shape variance by a PCA, it is required that the
shapes composing S contain corresponding spatial points in the correct ordering.
The registration results can now be incorporated into the shape vectors to fulfill this
requirement:

sj = s1 ◦ u1,j

x
j
i = x1

i − u1,j(x
1
i ) .

(9.8)

In (9.8), the surface mesh s1, which is defined by the points x1
i , i = 1, . . . , n, is

mapped through the deformation field u1,j to compute the corresponding points x
j
i

of the j-th training shape. This mapping is indicated by the operator “◦”. It im-
plies an interpolation within the deformation field, because the vertices of s1 are not
necessarily located at the knot positions of the discrete grid of the shape image Γ1.
If the segmentation results only consist of the shape images, the surface mesh may
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be extracted using a suitable surface extraction technique, for example the marching
cubes algorithm that was introduced by William and Harvey [Will 87]. The proposed
registration approach yields N surface meshes with points that are corresponding by
construction, as the cell structure of the mesh is not modified by the spatial transform.
Finally, the covariance matrix of the registered shape surfaces can be decomposed into
the principal variations via PCA.

9.3 Results

Three different algorithms for solving the point correspondence problem are compared
to each other based on an evaluation using 3-D CT images of kidneys. We compare
an established MDL approach [Heim 05] to the proposed non-parametric registration
of shape images using a normal SSD and the novel CSSD measure. Each algorithm
has been embedded into the ASM framework shown in Figure 9.1. The medical data
for the evaluation consists of 3-D abdominal CT images from 41 different patients of
mixed gender and age. The images have been acquired using two different Siemens
CT scanners (Sensation 10 and Sensation 16) with spatial resolutions ranging between
0.6/0.6/5 to 0.75/0.75/5 [mm] in x/y/z and provided in DICOM format. The volume
sizes for the experiments range between 512x512x120 to 512x512x300 voxels. In order
to evaluate differences in the point correspondence algorithms, all 41 kidney pairs
have been manually segmented. The results of the segmentations have been approved
by a nephrologist and used as the gold standard in the following evaluations. The
entire set of labeled segmentation data is divided into two disjoint parts for the
evaluation: one set of varying sizes between 7 and 20 is used for the training of the
ASM, the remaining shapes for testing. In the following, we will refer to the resulting
ASM models as MDL, SSD and CSSD. All ASMs have been created on the same
training data and tested with equal initialization parameters. Table 9.1 provides a
brief description of the properties for the MDL approach for a single kidney. For
the other two methods, the surface mesh s1 has been extracted from Γ1 with 2000
vertices by a marching cubes algorithm. The SSD and CSSD models are based on
surface meshes of 2000 vertices, as well.

Mean radius in voxels 22
Number of samples 41

Sample complexity for the MDL (# vertices) 2000-3000
Model complexity for the MDL (# landmarks) 2562

Table 9.1: Characteristics of the clinical datasets for one side of the kidney pairs used
for the MDL approach.

In order to make the approach robust to the selection of the reference shape Γ1, a
state-of-the-art rigid registration is applied to all shape images first, see Section 3.1.
The components of an affine transform are not constrained by the curvature regular-
ization term in the non-parametric case. For the conducted experiments, choosing the
shape with the minimal mean curvature as reference worked fine for the registration
of the entire training set.
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(a) First Eigenmode (b) Second Eigenmode

(c) Third Eigenmode

Figure 9.4: The three major principal modes of variation of a kidney shape model
trained with 20 samples and created with the CSSD registration approach.

In order to get an impression of the statistical information contained within the
training samples, Figure 9.4 illustrates the variations along the three major princi-
pal modes. The model has been created from 20 training samples using the CSSD
registration approach to compute the correspondences between the training shapes.

9.3.1 Evaluation Measures

The evaluation of the results for the segmentation of the kidneys with the three
ASMs is based on the comparison with the gold standard. We focused on measuring
the generalization of the models, i. e. the ability to adapt the shape to a kidney
image that is not contained within the training data, and the segmentation error
with respect to the gold standard. The ability to adapt the models to new input
data depends on the number of incorporated principal components and the variation
within the training set. Therefore, we constructed models with all three approaches
using different numbers of training samples.

The segmentation error is measured by the MSE and the sensitivity (SE). Given
the i-th gold standard shape image Γi, which is not contained within the training
data, and the segmentation result Γ̂i from an ASM, the MSE is given by:

MSE[Γi, Γ̂i] =
1

|Ωi|

∫

Ωi

(

Γi(x) − Γ̂i(x))
)2

dx . (9.9)

It is a measure for the mean squared distance between the segmentations and de-
pends on the resolution used in the discretization. Therefore, the same discretization
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parameters have been applied to Γ̂i as used for the shape image Γi. The SE, as the
second evaluation criterion, is defined as:

SE =
TP

TP + FN
, (9.10)

where TP is the number of true positives and FN the number of false negatives
within Γ̂i. In our case, TP is given by the number of voxels that are segmented
consistently as kidney tissue in both shape images Γ̂i and Γi. FN is the number of
voxels that have been falsely classified as background. The SE is used to measure
the conditional probability for a correct segmentation of kidney structure according
to the gold standard. Therefore, this measurement states how well the shape model
generalizes to new kidneys that are not contained within the training set.

In literature, the specificity is often used as an additional criterion for the quan-
tification of segmentation results. In practice, however, there is a problem with this
particular measure due to a missing background normalization: an increase of the
background region in the segmented images reduces the influence of the actual seg-
mented region on the specificity value. Background voxels are usually not recognized
as members of the segmented structure anyway. Hence, it is difficult to use the
specificity value as an evaluation measure.

9.3.2 Experimental Results

This section presents the evaluation results for three ASM generation methods. All
experiments have been performed on a Pentium 4, 2.8 GHz single core CPU with 2
GBytes of main memory. On this hardware, a single registration of two shape images
from the training set takes approximately 8 minutes for both the SSD and the CSSD
approach, the registration of the largest model with 20 training shapes approximately
170 minutes in total. In comparison, the computation of the correspondences with
the MDL approach lasts up to 20 hours. All timings refer to implementations of
the algorithms that have not been optimized. As several tasks may be performed
in parallel, further improvements could be achieved by utilizing multi-core processor
architectures.

Since the presented segmentation system has to be initialized by a seed point, the
following experiments are divided into two parts. First, we present results for varying
locations of the seed point placements in the model initialization. Second, the center
of gravities of the test segmentations are used as initialization in order to analyze the
performance of each model with respect to a larger test set and different numbers
of training shapes. As mentioned before, the parameters for the ASM segmenta-
tions were identical for all three models throughout the corresponding experiments.
The segmentation itself, i. e. the adaption of the gray level appearance model to the
current image, was implemented using a multi-resolution technique to increase the
attraction range of the optimization algorithm and to accelerate the computation.
The numerical convergence criterion for each resolution level is based on the varia-
tion of the MSE of the segmentation between two subsequent iterations. In general,
the segmentation algorithm converges in less than 30 seconds, where the maximum
number of iterations for each level is set to 70. Analyzing the results, 30 iterations
for one level are generally sufficient to achieve numerical convergence.
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Sensitivity to Seed Point Variations

A series of tests has been carried out to evaluate the robustness with respect to the
placement of the initial seed points. The proposed ASMs are evaluated for various
seed positions with respect to the MSE (9.9) and the SE (9.10). The incorporated
modes of variation cover 99.9% of the training set. 13 different positions for the
initial seed point placement have been chosen to reflect typical user inputs. From the
test set, samples for one left and right kidney were used for this experiment. Results
on the left kidney for the models generated with 20 training samples are provided
in Table 9.2. Table 9.3 contains the corresponding results for the right kidney and,
additionally, shows a comparison with the models based on 10 training samples.

Initialization Sensitivity - Left Kidney
N = 20 MDL SSD CSSD

SE 0.67 ± 0.12 0.94 ± 0.02 0.95 ± 0.01
MSE 100490 ± 33599 22991 ± 3545 22835 ± 3046

Table 9.2: Results for the ASM segmentation of a left kidney for 13 different start-
ing positions. The values correspond to the mean and the standard deviation of
the evaluation measures. The standard deviation within the initial placements was
(3.58, 1.98, 4.14) [mm] in (x, y, z) coordinates. The models were trained with 20 sam-
ple shapes.

Initialization Sensitivity - Right Kidney
N = 10 MDL SSD CSSD

SE 0.69 ± 0.18 0.74 ± 0.13 0.74 ± 0.12
MSE 79330 ± 44930 61064 ± 33263 60084 ± 33043

N = 20 MDL SSD CSSD

SE 0.77 ± 0.15 0.91 ± 0.01 0.91 ± 0.01
MSE 54680 ± 37344 13866 ± 2159 13501 ± 1098

Table 9.3: Results for the ASM segmentation of a right kidney for 13 different starting
positions. The values correspond to the mean and the standard deviation of the eval-
uation measures. The seed point variation was (3.04, 1.98, 4.14) [mm] in (x, y, z). In
addition to the results for models generated from 20 samples, the evaluation measures
for a training set of 10 samples are presented, as well.

Both the SSD and the CSSD ASMs achieved better scores compared to the MDL
method. The curvature-extended similarity measure yields slight improvements over
the standard SSD approach. According to these experiments, the models generated
by the registration approach are less sensitive to variations of the initial seed point
placement. Figure 9.5 shows a graphical comparison of the values in Table 9.3.
The segmentation was improved for all three models trained with a larger set of
samples. The results from the registration approaches indicate a higher relative gain
in performance for more samples than for the MDL model. Figure 9.6 shows an
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Figure 9.5: Comparison of the three different ASMs based on 10 and 20 training
samples for varying starting positions in a segmentation of a right kidney. The chart
reflects the results of Table 9.3. The registration approaches show an increased benefit
from a larger training set compared to the MDL model.

(a) Initial (b) 10 iterations (c) 20 iterations (d) Converged

Figure 9.6: The images show the iterative refinement a right kidney segmentation
example using the CSSD model trained with 20 samples. The sequence illustrates
the progress from (a) the initial placement of the mean shape, (b) after 10 iterations,
(c) after 20 iterations, and (d) through to numerical convergence.

example for the segmentation using the CSSD model trained with 20 samples. The
progress of the iterative refinement of the model position is illustrated for a single 2-D
slice taken from the 3-D test volume. The images show the initial placement of the
mean shape, intermediate results after 10 and 20 iterations, and the final, converged
segmentation. The 3-D visualization of the final result after convergence is provided
in Figure 9.7.

Cross-Validation Segmentation Results

In the second part of the experiments, we present the evaluation results for the
cross-validation regarding the overall segmentation errors for fixed, initial seed point
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Figure 9.7: 3-D visualization of the segmentation result for the example shown in
Figure 9.6. The content colored in purple marks the segmentation result after con-
vergence for the CSSD model trained with 20 samples.

placements. The labeled data has been divided into disjoint sets for the training and
the testing. The training was performed with 7, 10, 15 and 20 different training sam-
ples, the remaining samples have been added to the test set. Considering the MDL,
SSD, and CSSD approaches, this yields 12 models in total. Compared to the previ-
ous tests, where the initial placement varied, the seed point has been automatically
placed at the center of gravity of the gold standard segmentations. This initializes
the segmentation phase (see also Figure 9.1) equally for all compared models.
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Figure 9.8: A comparison of the sensitivity for the MDL, SSD and CSSD models
generated by a different number of training samples. For 10 or more training samples,
both the SSD and CSSD approaches yield better results than the model created with
MDL point correspondences.
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Figure 9.9: The MSE for the three compared model with respect to the number of
training samples. Again, the registration approaches outperform the MDL technique
in terms of registration accuracy.

Figure 9.8 shows the chart for the comparison of the three models with respect to
the SE for varying numbers of training samples. The chart for the MSE is provided
in Figure 9.9, respectively. The corresponding numerical values for each measure
are given in Table 9.4. The results acquired from all models clearly indicate that

SE
# MDL SSD CSSD

7 0.8 0.81 0.78
10 0.88 0.9 0.92
15 0.89 0.92 0.92
20 0.88 0.91 0.91

MSE
# MDL SSD CSSD

7 40037 26366 31930
10 18892 15883 15162
15 16955 13425 13357
20 19820 12635 13043

Table 9.4: Mean values for the SE and MSE of the models with respect to varying
numbers of training samples for the ASM generation.

the ability of an ASM to adapt to a new shape depends on the number of training
samples used for its creation. In our experiments, the SSD and CSSD approaches
deliver better results for models trained with 10 or more samples. In the case of 7
training shapes, the SSD model performs best, however, for larger training sets, the
CSSD model yields better results. In terms of the MSE, the MDL model delivered
the worst results. Considering the ASMs trained with 10 or more training samples,
the MSE values decrease almost linearly for SSD and CSSD, whereas for MDL, it
seems that it is not capable of further improvements with more training data. The
suspicion substantiates from a comparison between the mean shapes of the CSSD and
the MDL models created from 20 samples, see Figure 9.10. The CSSD model provides
more morphological information on concave parts of the surface, while the MDL mean
surface contains considerably less anatomical detail. Although the mean surface of
the MDL model is composed of a similar number of triangles, the distribution of
points on the surface of the CSSD model leads to a better representation of the
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Figure 9.10: A comparison of the mean shapes between the CSSD and the MDL
models created from 20 training samples. Left: CSSD registration approach model.
Right: MDL model.

surface properties of the kidneys. The more detailed surface representation in the

Figure 9.11: Distances between the surfaces of a test shape to the resulting segmen-
tations with the CSSD (left) and the MDL model (right), both models were trained
with 20 samples. The colors mapped onto the surface mesh of the test sample indicate
the distances in mm between the closest points to the segmentation results.

CSSD model yields a higher accuracy in concave segmentation areas. The distances
to the surface of the ground truth shape are smaller than those achieved with the
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MDL mode, as shown in Figure 9.11. The numerical values are visualized by a color
mapping onto the surface of the test segmentation. The CSSD result has a better
accuracy at the area around the renal hilus, where the errors for MDL are large.
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Chapter 10

Outlook

The statistical methods presented in this work are used to estimate intensity dis-
tributions in multi-modal image registration algorithms. The parameters for the
implementation are optimally adapted to the input images, and the results show that
the resulting robustness of the solutions cannot be achieved with fixed standard set-
tings found in literature or determined empirically. The methods have been applied
to a rigid registration with NMI used as a similarity measure.

An open issue is whether sparse sampling techniques are suitable for being applied
in a non-parametric registration framework. For the rigid transform, the derivative
of the measure can easily be computed using either finite differences or an analyt-
ical formulation. From a numerical point of view, the derivatives of the similarity
measure with respect to a parametric transform are better conditioned than in the
non-parametric case. There, the value of the derivative is required at each element
of the deformation field and is not summarized over all elements within the overlap
domain. It is certainly of interest whether sparse sampling for the estimation of the
densities is providing enough information for a numerically stable optimization in
the latter case. Additional experiments have to be conducted with the focus on the
validity and numerical stability of the derivative values.

Besides statistical sampling, a projection approach was presented to divide the
search space for the registration transform parameters into disjoint, lower-dimensional
subspaces in order to reduce the computational complexity. The method has been
applied to mono-modal images in 2-D/2-D and 3-D/3-D registrations. The projection
theory with disjoint parameter sets for the optimization might be applicable also to 2-
D/3-D registration problems, where 2-D digitally reconstructed radiographs (DRR)
are usually created from a 3-D volume by ray casting algorithms. The similarity
measure with respect to the spatial transformation of the volume is then computed
between the DRRs and the 2-D X-ray images. A change in the position and orienta-
tion parameters of the 3-D image, hence, requires a re-computation of the DRRs. For
the perspective projections used in the DRR generation, a projection geometry may
be found that allows for the refinement of a subset of the transform parameters with
a single projection. Additional complexity is introduced by the projection geometry,
but less projections of the 3-D volume are required in the end. This might help to re-
duce the computation times for the 2-D/3-D registrations. Additional challenges for
projection-based approaches arise from multi-modal input data: a projection com-
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puted from a CT volume has a completely different visual appearance than those
computed from an MR or PET volume. The reduction of the dimension from 3-D to
2-D, or even to 1-D projections, reduces the statistical information. A direct applica-
tion of a multi-modal similarity measure, such as the NMI might yield a substantial
amount of local optima in the objective functions for the subspace optimizations.
It has to be investigated whether the correct optimum can still be located in the
projected space and the approach is applicable to multi-modal problems.

New technologies in computer graphics hardware can be utilized to further reduce
the runtime requirements of the registration algorithms. An implementation of the
cylinder projection scheme in OpenGL Shading Language is proposed in Chapter
A. For example, the Compute Unified Device Architecture (CUDA), which was
recently introduced by the Nvidia company, provides the necessary programming
interfaces to port also statistical similarity measures onto the GPU. Compared to
OpenGL Shading Language, CUDA is more suited for general purpose programming
tasks. Dedicated high-end workstations with just a few of those GPU cards yield
an enormous amount of processing power. With increasing graphics memory that is
available on new graphics hardware, the computation of the similarity measure can
be entirely performed on the GPU, and transfers of large amounts of data between
the CPU and the GPU memory can be avoided.

The results of the registration algorithms need to be computed both in a short
amount of time and with a high accuracy. Especially the results of non-parametric
algorithms with a large number of DOF have to be assessed thoroughly to deter-
mine whether the deformation makes sense. There is currently no database available
that provides gold standard deformations similar to the RIRE database for the rigid
registration. In this thesis, we proposed a statistical evaluation framework that in-
corporates the reliability of medical experts who provide the manual segmentations
of the images. In order to establish this system in practice, a multi-modal database
of images has to be segmented by various physicians, which is not a trivial task.
The physicians have to be supported by reliable, semi-automatic segmentation algo-
rithms to reduce the workload. Similar to the RIRE project, a blind study of the
registration results requires an internet site that provides support for distributing
the data without the information about the segmented labels, uploading the spatial
transformations, and an automatic evaluation of the achieved accuracy.

Regarding the presented application, extended studies of the SPECT subtraction
results using image registration should be conducted to further examine the influ-
ence of the deformable registration. One of the interesting aspects is how much
regularization on the deformation field is sufficient to compensate the bias in the
rigid registration. Additional models for the intensity transform between the SPECT
images may be investigated as well.

Registration techniques were used to solve the correspondence problem for ASMs
based on explicit representations of shape surfaces by triangle meshes. Similarly, the
methods can be integrated into shape-based level set formulations. In an implicit for-
mulation, the shape variations may be described by the eigenvectors of the deformed
shape images directly, or by an analysis of the deformations between the training
shapes. The latter approach might be incorporated directly into the iterative calcu-
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lation of the spatial position update of each point located on the moving zero level
set instead of a regularization of the already updated curve.

In the case of shape-based segmentation algorithms, the prior knowledge about
the statistical variations of an object helps to increase the robustness of the solutions.
Similar benefits can be expected when incorporating prior knowledge into registration
algorithms. Gütter et al. [Guet 05] and Zöllei [Zoll 06] have proposed to add prior
knowledge to statistical similarity measures in terms of intensity distributions learned
from ground truth data. At least for CT images, the intensities relate to the density of
the tissue. A modeling of the physical deformation properties of various tissue types
might be incorporated into the regularization of the deformation fields as well. In a
further step, one can think of identifying anatomical structures within the images first
and adding this information to the registration functional afterwards, for instance,
as a regularization energy that models the physical capabilities of the deformations
of the human body in a larger scale. Of course, the latter approach requires a robust
segmentation of the organs within the images, however, the reward is a deformation
field that is reasonable in a physical sense.
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Chapter 11

Summary

Statistical methods are successfully employed in a wide range of image processing
algorithms. In medical registration applications, intensity distributions provide nec-
essary information about the similarities between various types of images. Such regis-
tration techniques are required, for example, in radiation therapy, longitudinal patient
studies, and image reconstruction. A small selection of applications are described in
Chapter 2. A fusion visualization of the registered images provides valuable, addi-
tional information to the physician, but requires registration algorithms that have to
support many modalities and are both robust and accurate, no matter what images
are used as input.

Theory

The mathematical notation used throughout this thesis is introduced in Chapter
3. Each registration approach is based on an objective function that measures the
degree of alignment between some input images with respect to a spatial transfor-
mation. Based on the type of this transform, we divide the registration algorithms
into parametric and non-parametric approaches. In the former class of algorithms,
the problem is well-conditioned, because the number of parameters is small compared
to the spatial information within the images. The presented parametric mappings
include rigid, affine, and cubic B-spline transforms. The non-parametric registration
algorithms require a regularization of the spatial transform, which consists of a dense
deformation field, in addition to the image similarity measure. We briefly summarize
the steps towards a solution for the partial differential equation utilizing the calculus
of variation. The curvature regularization energy is specified and used throughout this
thesis for the non-parametric registration tasks. The similarity measure is the main
part of the objective function. Besides a coarse classification of existing measures,
Section 3.3 describes commonly applied feature-based and intensity-based similarity
measures. The latter class is divided into direct, indirect non-statistical, and indirect
statistical measures.

Especially in clinical applications, the input images vary in size, field of view,
modality, content, and signal to noise ratio. Statistical similarity measures are cur-
rently state-of-the-art in the registration of medical images. Some engineering pa-
rameters have to be specified for an implementation in an automatic, intensity-based
image registration algorithm. Standard settings for these values can be found in
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literature, however, these parameters are actually dependent on the input data and
mutually influence each other. Therefore, a single, empirically determined set of pa-
rameter values that works for all input data cannot be found. In Chapter 4, we focus
on crucial numerical aspects of the estimation of the intensity distributions and data-
driven schemes to optimally adapt the implementation variables to the input data.
A jittering technique helps to reduce sampling artifacts in the objective function.
The artifacts mainly occur due to regular sampling patterns and grid-aligning effects.
The sampled image intensities are regarded as random measures from an unknown
PDF. We apply Parzen-windowing to estimate this PDF using a kernel width deter-
mined by optimizing a log-likelihood function in a leave-one-out cross-validation. A
discretization scheme based on histogram binning is presented, which greatly reduces
the computational costs for both the density estimation and the data-driven compu-
tation of the kernel width. The optimization of the log-likelihood function can be
achieved by numerical methods that require derivatives of the kernel functions with
respect to their widths. The derivatives are formulated for a Gaussian and a cubic B-
spline kernel. The discretization of the density estimator involves a convolution of the
kernel with the histogram. A quasi-adaptive Parzen-window estimator is proposed
in order to account for variations in the true PDF and to keep up the efficient con-
volution scheme. In addition, we introduce a trade-off for the discretization error to
automatically determine a number of bins for the histogram. As medical images usu-
ally contain structured noise within the background region, we propose a coincidence
weighting scheme that is based on automatically determined threshold values. The
weighting within the joint PDF reduces the influence of the background and the noise
artifacts contained within. Implementation guidelines are provided before showing
results of the data-driven density estimation. In a multi-modal registration example
with different initial positions and orientations, the optimal parameter values yield
much better alignment results than those achieved with standard settings.

The similarity measure computation has the highest computational complexity
of the entire registration algorithm. In a straightforward implementation, it has to
be recomputed for a large number of samples whenever the transform parameters
change during the nonlinear optimization. An alternative approach to reduce the
computational complexity is described in Chapter 5, where the transform parameters
are regarded as random variables. It is known from statistics that marginalization
can be used to eliminate the influence of random variables within the measurements.
The presented projection scheme in image registration is analogue to marginalization,
as the projections are invariant to some of the transform parameters. The key aspect
of the approach for rigid registrations is that a reduced subset of the parameters can
be optimized from the projection images without having to reproject. In the case
of 2-D registrations, a complete separation of the parameters into 1-DOF subspaces
is achieved by projecting along the coordinate axes and onto a circle. In 3-D, ori-
ented cylinder geometries enable the separation into three disjoint parameter subsets
for a rigid registration, each containing a rotational and a translational parameter.
The 3-D volume is projected onto the 2-D image of the cylinder surface, which can,
again, be reduced to 1-D projections by marginalization along the axes. This scheme
yields a separate 1-DOF optimization problem for each transform parameter, which
is computationally very efficient. As a necessary requirement to achieve valid re-
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sults, the projection geometry has to be fully enclosed within the overlap domain of
the input images. We propose solutions for the fitting problems together with an
additional constraint to enforce uniqueness. The basic concepts of the projection ap-
proach are similar to those incorporated within the recently developed marginal space
learning. Therefore, we compare the two approaches and delineate the differences.
Additional information on the implementation of the projection scheme on a GPU,
using OpenGL Shading Language, is provided in the Appendix A.

In the final Chapter 6 of the theoretical part of this thesis, we introduce a statis-
tical framework for the evaluation of registration algorithms based on segmentations
supervised by medical experts. There is currently no database with an established
gold standard available for deformable registration techniques, such as the RIRE
project for rigid transformations. Establishing a gold standard for spatial deforma-
tions is a highly non-trivial task due to several reasons: evaluations based on artificial
deformations are always biased towards the technique that is used for the creation of
the ground truth; fiducial markers can hardly be attached to deformable tissue within
the human body; and the intensity-based similarity measure alone is not sufficient to
deduce whether a deformation was physically correct. One possibility to acquire in-
formation about the correspondences between the images is to employ the knowledge
of medical experts who have to label the data either manually or semi-automatically.
Of course, this process leads to results that may vary with respect to the reliabil-
ity of the observers. We incorporate this uncertainty into the evaluation approach
by a representation of the segmented labels with spatial distributions. Each labeled
region, surface, and anatomical landmark is regarded as a random measure, which,
again, allows for non-parametric density estimation with Parzen-windowing. The dis-
tance measure between two segmented images with respect to the spatial transform
is based on a symmetric KL divergence. We briefly describe the techniques for the
spatial density estimation and show an example for the change in the quality criterion
of a labeled MR image that is transformed by a B-spline deformation.

Applications

Chapter 7 consists of an evaluation of the proposed statistical techniques on the RIRE
database, which contains CT, MR, and PET images together with gold standard
transformations determined from implanted fiducial markers. A single evaluation
on this data requires 114 registrations. We examine influences of various parameter
settings for the implementation of the NMI measure and compare the results also to
a manual registration. Along with three values for the minimal number of bins in
the histogram layout, this yields 25 evaluations in total. The significance tests on the
registration errors are performed with a two-tailored, paired t-test at a significance
level of 5% for the median errors. The parameters selected by data-driven estimation
schemes outperform the standard settings with a high significance. If the variables
are automatically adapted, there are no indications for significant changes in the
results with respect to the number of histogram bins. The landmark acceptance
rates feature a better performance of the data-driven approach compared to both the
manual registration and the standard settings. We also conclude from the results
that a geometry correction of the MR images yields more accurate transforms.
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Statistical registration techniques can also be applied to SPECT subtraction imag-
ing for epilepsy diagnosis. The main goal is to localize the region of seizure onset.
Two SPECT images are acquired at different activation stages in order to visualize
the changes in the CBF. The comparison is impaired by different positions of the
patient between the acquisitions and a missing intensity normalization. Therefore,
statistical image registration techniques are utilized to align the two SPECT images
in a first step. Afterwards, a model for an affine intensity transformation is fitted
into the estimate of the joint PDF after the registration to enable a direct compari-
son of the intensity values. The automatic background thresholds, which are required
for the coincidence weighting during the registration, are used to exclude the back-
ground from the intensity mapping. Otherwise, it may have a detrimental effect on
the model placement and a large background region introduces a bias in the intensity
transform. We demonstrate that local differences in the CBF have a global effect on
the rigid transform, which can be improved by a strongly regularized, non-parametric
registration. The sparse information of the final subtraction images can be spatially
localized through a registration with an MRI in the final step. The subtraction imag-
ing is applied to a collective of 26 patients and assessed in a blind evaluation study
to compare a workflow with only a rigid registration to a version with an additional
non-parametric alignment. Both approaches show similar percentages for the local-
ization of the lesions, as well as the number of foci. In the cases of an additional
non-parametric registration, however, the physicians report a higher certainty, which
is also reflected by a larger correlation coefficient for the observer reliability.

Chapter 9 dealt with the incorporation of image registration methods in the gen-
eration of a shape model for image segmentation. Compared to unconstrained algo-
rithms, the prior knowledge of shape variations used in an ASM segmentation helps to
increase the robustness of the results and to avoid leakage into adjacent tissue. The
shape variations are determined from a set of training samples by solving a point
correspondence problem. If errors are made within this stage, the shape statistics
are corrupted by noise and a decomposition into the principal modes of variation
yields wrong statistics. State-of-the-art solutions for the problem are based on a
reparameterization of the surface mesh and the optimization of an MDL criterion.
Unfortunately, the entire approach has to be recomputed, if an additional shape is
added to the training set. The mapping into a suitable parametric space, where
the MDL function is optimized, may also be hard to achieve, especially for concave
objects. We propose to tackle the correspondence problem by means of image regis-
tration. The training shapes are represented as discrete images using a signed distance
transform. Establishing a spatial relation between the structures within the shape
images by registration is then a solution for the correspondence problem. Therefore,
a combination of parametric and non-parametric registration provides an alternative
to an MDL formulation of the problem. We briefly summarize the basics of an ASM
before proposing a novel scheme for the registration of the shape images. The SSD
distance measure is extended by a curvature term to incorporate surface properties
into the objective function. The deformation fields, which result from the registration
between a selected reference shape and the remaining training samples, are used to
transform the surface mesh of the reference shape into the spatial domains of the
remaining samples. The elements within the measurement matrix for the decomposi-
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tion into the principal modes of variation are, hence, corresponding by construction.
Results are presented for the 3-D segmentation of kidneys from a collective of 41 CT
images. In summary, the proposed registration approach yields a higher sensitivity
and lower MSE values than corresponding models generated with an established MDL
algorithm. A cross-validation is performed between training sets of 7, 10, 15, and
20 samples. In all experiments, the models created from registered training shapes
yield better segmentation results. A comparison between the mean shapes of both
approaches for a model with 20 samples reveals that the mean shape determined by
registration contains more detail on the shape surface and smaller distances between
the gold standard and the ASM segmentation results can be achieved.

Finally, we comment in Chapter 10 on future work to improve and further inves-
tigate the techniques presented in this thesis. The incorporation of prior knowledge
into the registration algorithms may lead to major improvements, especially for estab-
lishing non-parametric deformations that relate to physical properties of the human
body.
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Appendix A

Cylinder Projections on the GPU

In chapter 5, we introduced a novel registration approach that reduces the search
space by nonlinear projections. In order to rigidly register 3-D images, a cylinder
projection scheme allows to separate the optimizations within the parameter space
into disjoint 1-DOF subproblems. For the projection-based registration approach,
it is necessary to project a 3-D input image onto the surface of a cylinder, which is
discretized and unfolded into a 2-D projection image. The image axes correspond to a
radial and an axial parameter. This projection image can be used in the registration
approach to optimize parameters for the rotation angle around the cylinder axis, and
the translation along of it, respectively. The algorithm for the computation of the
cylinder projection is suitable for an implementation on dedicated graphics hardware.
Modern GPUs contain fast texturing units that can be utilized for the interpolation
along the samples of the projection rays.

The problem of projecting image content onto a cylinder surface is very similar to
a standard ray casting algorithm [Fole 97]. The required coordinate transformation
is formulated in homogeneous coordinates and split into a nonlinear and a linear
part. An additional rigid transformation, e. g. the transform that is currently refined
in a registration algorithm, can be easily combined with the linear components of
the coordinate transform without loss of performance. In addition, we present a
multi-level extension of the cylinder projection scheme that leads to an increase in
computational efficiency, as the number of computed rays is reduced.

A.1 Discretization of the Projection Image

A sampling scheme for the cylinder surface is chosen for the discrete representation of
the projection such that each projection ray hits every voxel of the 3-D image along
its path at least once. This requires either some sort of rasterization of the rays or an
interpolation scheme. Rasterization techniques are prone to aliasing in cases where
the resolution of the input image largely differs between the image axes whereas
a sampling of the rays at equidistant positions implies an interpolation within the
image grid. The latter technique, therefore, is less dependent on the resolution of the
input image. In the following, we focus on a ray casting technique with equidistant
sampling positions along the ray.

125



126 Appendix A. Cylinder Projections on the GPU

Calculating the line integral of a ray that is cast onto the surface with an orthogo-
nal direction to the cylinder axis and requires a discretization into NR sampling points
along its way. The directions of the rays are determined by the intersections with
the projection image P , which is discretized into Nφ elements in the radial direction
and Nt positions along the cylinder axis, i. e. P ∈ RNφ×Nt . Each pixel within the
projection image P of the cylinder surface is assigned a radial component φ and an
axial coordinate position t for the position along the cylinder orientation axis o. The
tuple (φ, t) acts as a discrete, zero-based index into the projection image pixel space,
with φ = 0, 1, . . . , Nφ− 1, and t = 0, 1, . . . , Nt− 1. The right-hand coordinate system
of the unit vectors ex, ey, and o, which point into the direction of the coordinate
axes, describes a cylinder parallel to the z-coordinate axis. The vectors ex and ey
may be simply exchanged to form a similar coordinate system for other orientations.
The value of the numerical line integral along the ray through an image I is:

P(φ, t) =
1

NR

NR∑

i=1

I








xcap +
th

Nt − 1
o
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axial-

+
ir

NR − 1

(

cos

(
φ2π

Nφ

)

ey − sin

(
φ2π

Nφ

)

ex

)

︸ ︷︷ ︸

radial-distance







.

(A.1)
The cylinder radius is denoted by r, its height by h, and the spatial position of the
lower cap center is provided in xcap (see also section 5.3.2).

A.2 Multi-Level Cylinder Projection

In order to keep the discretization error of the projection P low, the values Nφ, Nt

for the projection size in radial and axial direction have to be large enough to retain
the information of the input image within the projection. A disadvantage of the
straightforward application of the direct ray casting strategy is that the distance
between the rays is decreasing towards the axis of the cylinder, which is due to the
fact that we describe a rotation around the cylinder axis. In a discretization of the
approach, the distances between the rays are usually chosen small enough to hit
each voxel near the cylinder surface at least once. Accordingly, the voxels located
closer towards the cylinder axis are intersected by far more rays, which results in an
increasing amount of oversampling. As each row of P corresponds to a slice through
the cylinder, which basically is a circle projection within the slice, Figure 5.2b can be
consulted to illustrates this problem: the projection onto a cylinder or a circle results
in varying sampling distances between the projection rays. In terms of computation
efficiency, this oversampling leads to more interpolation operations performed in the
straightforward approach than necessary.

Therefore, we propose a multi-level computation scheme for the cylinder projec-
tion to reduce the oversampling and save computation time. The scheme is illustrated
in Figure A.1, where the usage of three levels for the reduction of oversampling is
shown. The number of required rays is reduced within the inner segments. As the
projection images of the inner segments feature a lower resolution along the radial
dimension, the values for the line integrals have to be interpolated at the starting po-
sitions of the rays for the next segment. Each segment border specifies a sub-cylinder
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R TΦ

Figure A.1: Multi-level cylinder projection using three intermediate projection levels.
The radial sampling distance is decreased in the projections of the inner segments.
The results of the intermediate projections are lifted into the next segment by means
of interpolation.

surface that is discretized such that each voxel on the surface is at least hit once
by a projection ray. The first level consists of rays emanating from the projection
center and ending at the border surface of the first level. The projections for the first
level are calculated as given in (A.1). The next levels consist of decreasing sampling
distances between the rays that start at the surface of the previous level and end at
the next level or the cylinder surface, respectively. As the entire projection is a sum-
mation of sampling points from the center along the ray, the projection portions of
the lower levels have to be lifted into the next level by interpolation on the low-level
surfaces. The entire multi-level projection scheme can be computed efficiently on the
GPU.

A.3 Coordinate Transformation

The coordinate transformation for the sampling positions along the ray to compute
the integral (A.1) is split into two parts using homogeneous coordinates. The linear
transformation is precomputed outside the ray casting routines and contains the
necessary transformations to map a cylinder coordinate into the coordinate system
of the image for the interpolation of the intensity value. This may also include
a spatial transform on the volume, e. g. the registration transform that changes in
each iteration of the registration algorithm. The position in cylinder coordinates is
computed for each angle and distance of the ray with respect to the cylinder axis
within the nonlinear part.

The sample positions along the rays are discretized using the 3-tuple (φ, t, i),
which describes the location of the i-th sample along the ray within the cylinder. The
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transformation Φcyl(φ, t, i) yields the spatial coordinate xic without the components
for orientation and offset:

xic =





xic
yic
zic



 = Φcyl(φ, t, i) =
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)
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


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. (A.2)

In the linear part, the transformation has to incorporate the offset and orientation
of the cylinder, a spatial rotation R, and a translation t of the image. In addition, we
include the necessary transformations into the voxel coordinate system of the image,
which makes use of the orthonormal vectors dx,dy,dz ∈ R3 for the orientation of the
image coordinate axes, the origin of the image xo, and the sizes sx, sy, sz ∈ R for
a voxel along each coordinate axis. The voxel coordinate vi for the i-th position is
then:

vi =





1 0 0 0
0 1 0 0
0 0 1 0



V −1DTT

(
ex ey o xcap

0 0 0 1

)

︸ ︷︷ ︸

linear

(
xic
1

)

︸ ︷︷ ︸

nonlinear

(A.3)

V =
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D =

(
dx dy dz 0
0 0 0 1

)

(A.5)

T =

(
R t − xo

0 1

)

. (A.6)

The linear part of the coordinate transformation is constant for all rays of the current
projection.

A.4 GPU Implementation

Current state-of-the-art GPUs provide hardware support for texture interpolation
together with programmable vertex and fragment shading pipelines with at least 32bit
floating point accuracy. In the case of the aforementioned projection algorithm, this
yields an advantage over an implementation on a state-of-the-art CPU, which does
not provide hardware-accelerated interpolation of the image intensities and has less
processing cores. In the following, we present an implementation scheme for the GPU
that implements the multi-level cylinder projection by ray casting. Both the nonlinear
transformation and the interpolation of the image intensities are incorporated within a
fragment shader. The sum in (A.1) is realized by alpha blending using the framebuffer
and an additional accumulation texture. Finally, we present code for a fragment
shader for the cylinder projection written in OpenGL Shading Language.
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In the direct projection scheme, a ray is cast from the projection center towards
the cylinder surface, image intensities are collected along the line of the ray, and the
value for the integral is written to the output. This scheme cannot be ported directly
to the GPU, as loops and conditional statements are computationally expensive in
a parallel processing pipeline. Instead, we make use of a technique applied in direct
volume rendering, where the intensities along the rays are summarized using alpha
blending [Enge 06]. An implementation on the graphics hardware for the back-to-
front rendering of view-aligned planes through the volume, as it is required for volume
rendering, can utilize appropriate alpha blending techniques for the summation. In
the cylinder projection, the analogue to the view-aligned planes are the projections
at each sampling step i for the distance to the cylinder axis. The back-to-front
rendering is, therefore, the collection of intensity values along the rays from the
inside to the outside of the cylinder towards its surface. The summation is achieved
by alpha blending between an accumulation texture and the framebuffer. For a
GPU implementation of the cylinder projection, the cylinder surfaces are treated as
unfolded 2-D images that are rendered directly into the framebuffer of the graphics
card. The nonlinear part of the transformation is computed for each fragment and
combined with the linear transform.

Using the texturing unit for the interpolation requires a representation of the
images as textures: a 3-D texture for the input image and 2-D textures for the frame-
buffer and the accumulation texture. The mapping into the voxel space (A.3), thus,
requires an additional transformation into the corresponding texture spaces. Com-
monly, the discretization on the CPU is node-based, whereas the OpenGL texture
interpolation is performed in a cell-based notation. In a cell-based texture, each
texture element represents the center of a spatial region, whereas in a node-based
approach, the region is defined by the neighboring knots of the image grid. The dif-

(0, 0)

(Nx − 1, Ny − 1)

(a)

(0, 0)

(1, 1)

(b)

Figure A.2: The (a) node-based image grid is commonly used for image interpola-
tion on the CPU, whereas in OpenGL, the (b) cell-based notation is applied for the
representation of textures.

ference between the two representations is shown in Figure A.2. They are related to
each other by a conversion between the index of a voxel v and a cell c:

c =
v

N
+

1

2N
(A.7)

v = cN − 1

2
. (A.8)
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Here, c ∈ [0, 1] denotes the cell-based texture coordinate and v ∈ [0, N − 1] the
node-based coordinate for the element of an image of size N . Within the fragment
shader, we account for the change into the cell-based representation using an adapted
nonlinear transform to map the texture coordinates in the corresponding framebuffer
pixel to the cylinder coordinates in a node-based representation:
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The 3-D image is stored as a texture in the graphics card memory as well. Therefore,
the coordinate transform (A.3) has to include the conversion from node- to cell-based
representation, too. The coordinate ci within the GPU texture space is converted
from the voxel index vi using:

ci =





Nx 0 0
0 Ny 0
0 0 Nz





−1
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1
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1
2Ny
1

2Nz



 , (A.10)

where (Nx, Ny, Nz) denotes the number of voxels of the image along the coordinate
axes of the image space.

The loop over all samples along the rays is implemented by rendering the projec-
tion value at a specific distance from the cylinder axis into an accumulation texture.
The accumulation texture is then added to the framebuffer using alpha blending, and
the result is, again, written into the accumulation texture. The blending in the frame-
buffer can also be utilized to interpolate the projections of a previous segment of the
multi-level projection scheme, as described in section A.2. The main program, which
is evaluated on the CPU, controls the graphics pipeline to render the cylinder planes
into the framebuffer from inside of the cylinder to the outside through all multi-level
segments and distances to the axis. Finally, the pixel values of the framebuffer after
the last run of the fragment shader contain the corresponding line integrals (A.1). In
Figure A.3, an example implementation of the fragment shader, which is used to com-
pute the i-th summation term in (A.1), is presented in OpenGL Shading Language.
The variables used within the program are explained in Table A.1.
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uniform sampler3D imageTex;

uniform sampler2D accumTex;

uniform float radialSpacing;

uniform float axialSpacing;

uniform float distance;

uniform mat4 linearTransform;

uniform vec2 frameBufferSize;

uniform vec2 accumTexSize;

uniform float rayNormalization;

void main(void)

{

float phi = (gl_TexCoord[0].x * frameBufferSize.x - 0.5) * radialSpacing;

vec4 cylCoord;

cylCoord.x = -distance * sin(phi);

cylCoord.y = distance * cos(phi);

cylCoord.z = (gl_TexCoord[0].y * frameBufferSize.y - 0.5) * axialSpacing;

cylCoord.w = 1.0;

vec4 imageTexCoord;

imageTexCoord = linearTransform * cylCoord;

imageTexCoord = clamp(imageTexCoord, vec4(0.0), vec4(1.0));

vec2 accumTexCoord;

accumTexCoord = accumTexSize * gl_TexCoord[0].xy;

accumTexCoord = clamp(accumTexCoord, vec2(0.0), accumTexSize);

float colAccum = texture2D(accumTex, accumTexCoord.xy).x;

float colVol = texture3D(imageTex, imageTexCoord.xyz).x;

gl_FragColor.x = colVol * rayNormalization + colAccum;

}

Figure A.3: Example implementation for a GPU cylinder projection fragment pro-
gram written in OpenGL Shading Language. See Table A.1 for an explanation of the
variables.
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Program Variable Explanation

imageTex texture identifier for the input image I

accumTex texture identifier for the accumulation texture

radialSpacing
2π
Nφ

axialSpacing h
Nt−1

distance ir
NR−1

linearTransform linear transformation from the cylinder into the texture
space, as in (A.3), (A.10)

frameBufferSize size of the framebuffer (Nφ, Nt)

accumTexSize size of the previous projection, which may be smaller
than the framebuffer when entering the next segment

rayNormalization 1
NR

Table A.1: Explanation of the variables used within the fragment program in Fig-
ure A.3.
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Notation

R set of real numbers
Z set of integers
Φ general transformation
a parameter vector for parametric transformations
Φa parametric transformation
R reference image
T template image
TΦ transformed (and interpolated) template image
Ω(R) spatial domain of the reference image
Ω(TΦ) spatial domain of the transformed template image
Ω(R, TΦ) spatial overlap domain between the reference and the template image
D similarity measure
R rotation matrix
t translation vector
B cubic B-spline basis function
Cd d-continuity
C 3-D-control grid
u displacement vector field
U set of all displacement fields
J registration functional in the variational formulation
S regularization energy
∇ gradient operator
∆ Laplace operator (∇2)
∇· divergence operator
Γ segmented surface and shape image
1I identity matrix
JΦ(x) Jacobian of the transform Φ at the spatial position x

‖x‖ Euclidean norm
√

xTx of vector x

‖A‖ Frobenius norm
√∑

i

∑

j |aij|2 of matrix A
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r random sample associated with a reference image intensity
t random sample associated with a transformed template image in-

tensity
pR PDF of the reference image intensities
pTΦ

PDF of the transformed template image intensities
pR,TΦ

joint PDF of the reference and the template image intensities
µR mean value of the reference image intensities within the overlap do-

main
µTΦ

mean value of the transformed template image intensities within the
overlap domain

VAR [X] variance of the random variable X
E [X] expected value of the random variable X
H(X) entropy of the random variable X
O Landau notation for limiting behavior of a function
Kλ kernel PDF of width λ
pλ,n Parzen-window PDF estimator
p̂λ,n discrete Parzen-window PDF estimator
⋆ convolution operator
L log-likelihood function
h discrete histogram containing the fractions of samples that fall into

each bin
b number of histogram bins
w bin width of an equidistantly-spaced histogram
ci center value of i-th histogram bin
[li−1, li] interval of the i-th histogram bin
g 1-D Gaussian kernel PDF
G 2-D Gaussian kernel PDF
p̂O-O estimated probability for O-O intensity combinations
p̂B-B estimated probability for B-B intensity combinations
hR,TΦ

discrete joint histogram with fractions of sample intensity combina-
tions between the reference and the template image

ψR automatically determined threshold value that separates the back-
ground region from the object within the reference image

ψT automatically determined threshold value that separates the back-
ground region from the object within the template image

bR number of bins determined automatically for the reference image
bT number of bins determined automatically for the template image
ex unit vector along the x-coordinate axis
xrect corner point of an axis-oriented rectangle
lx side length of an axis-oriented rectangle in x-direction
xcap spatial location of the lower cap center point of a cylinder
o cylinder direction axis
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h cylinder height
r cylinder radius
n normal vector
cR spatial center of the reference image
N (x; µ;Σ) normal distribution of x with mean µ and covariance matrix Σ

Tr(M) trace of matrix M

sj j-th training shape representation (surface mesh) for an ASM
S matrix of all training shapes
ϕi i-th eigenvalue of the covariance matrix of all training shapes
vi i-th eigenvector of the covariance matrix of all training shapes
dSE(Γi,x) signed Euclidean distance transform of the shape image Γi at posi-

tion x

κ curvature
P(φ, t) cylinder projection image at radial position φ and the position t

along the cylinder axis
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Abbreviations

1-D one-dimensional
2-D two-dimensional
3-D three-dimensional
ASM active shape model
AX C-arm computed tomography
B-B background-background intensity combinations in the joint PDF
CBF cerebral blood flow
CC cross correlation
CPU central processing unit
CSSD curvature-extended sum of squared differences
CR correlation ratio
CT computed tomography
CUDA compute unified device architecture
DICOM digital imaging and communications in medicine
DOF degrees of freedom
DRR digitally reconstructed radiograph
DSA digital subtraction angiography
EEG electroencephalography
FN number of false negative classifications
GM Gaussian maps
GPU graphics processing unit
HU Hounsfield units
ICP iterative closest point
i.i.d. independent and identically distributed
ITK insight segmentation and registration toolkit
KL Kullback-Leibler
LM landmark
MDL minimum description length
MI mutual information
MRI magnetic resonance imaging
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MSE mean squared error
MSL marginal space learning
NCC normalized cross correlation
NN nearest neighbor
NMI normalized mutual information
O-O object-object intensity combinations in the joint PDF
PCA principal component analysis
PDE partial differential equation
PDF probability density function
PET positron emission tomography
PIU partition image uniformity
PVI partial volume interpolation
TP number of true positive classifications
TPS thin-plate splines
TRE target registration error
RIRE retrospective image registration evaluation project
RIU ratio image uniformity
SAD sum of absolute differences
SE sensitivity
SPECT single photon emission computed tomography
SSD sum of squared differences
s. t. such that
SVD singular value decomposition
US ultrasound
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