
GPU-Accelerated SART Reconstruction

Using the CUDA Programming Environment

Benjamin Keck1,2, Hannes Hofmann1,
Holger Scherl2, Markus Kowarschik2 and
Joachim Hornegger1

1 Chair of Pattern Recognition (Computer Science 5)
 Friedrich-Alexander-University Erlangen-Nuremberg, Germany

2 Siemens Healthcare, CV,
 Medical Electronics & Imaging Solutions, Erlangen, Germany

February 12th,
2009

© NVIDIA

SPIE 2009

 Page

Benjamin Keck

Outline

• Motivation

• Algebraic Reconstruction Techniques

• First Approach (CUDA 1.1)

• Second Approach (CUDA 2.0)

• Experimental Setup & Results

• Discussion & Conclusion

• Outlook

2

 Page

Benjamin Keck

Outline

• Motivation

• Algebraic Reconstruction Techniques

• First Approach (CUDA 1.1)

• Second Approach (CUDA 2.0)

• Experimental Setup & Results

• Discussion & Conclusion

• Outlook

3

 Page

Benjamin Keck

Motivation

• Simultaneous Algebraic Reconstruction Technique (SART):
• well-studied reconstruction method for cone-beam CT scanners
• rarely used due to its computational demands
• many advantages in specific scenarios over the more popular FBP

4

 Page

Benjamin Keck

Motivation

• Simultaneous Algebraic Reconstruction Technique (SART):
• well-studied reconstruction method for cone-beam CT scanners
• rarely used due to its computational demands
• many advantages in specific scenarios over the more popular FBP

4

• Geometry setup:
• volume size: 512x512x350 voxels
• 228 projections, each 256x128 pixels

 Page

Benjamin Keck

Motivation

• Simultaneous Algebraic Reconstruction Technique (SART):
• well-studied reconstruction method for cone-beam CT scanners
• rarely used due to its computational demands
• many advantages in specific scenarios over the more popular FBP

4

• Geometry setup:
• volume size: 512x512x350 voxels
• 228 projections, each 256x128 pixels

• SART runtime with 20 iterations:
• about 9 hours on off-the-shelf dual-core PC
• about 2 hours on 8-core workstation

 Page

Benjamin Keck

Motivation

• Simultaneous Algebraic Reconstruction Technique (SART):
• well-studied reconstruction method for cone-beam CT scanners
• rarely used due to its computational demands
• many advantages in specific scenarios over the more popular FBP

4

• Geometry setup:
• volume size: 512x512x350 voxels
• 228 projections, each 256x128 pixels

• SART runtime with 20 iterations:
• about 9 hours on off-the-shelf dual-core PC
• about 2 hours on 8-core workstation

• Accelerate reconstruction using
NVIDIAs Common Unified Device Architecture (CUDA)

 Page

Benjamin Keck

Outline

• Motivation

• Algebraic Reconstruction Techniques

• First Approach (CUDA 1.1)

• Second Approach (CUDA 2.0)

• Experimental Setup & Results

• Discussion & Conclusion

• Outlook

5

 Page

Benjamin Keck

Algebraic Reconstruction Techniques

• Solve a system of linear equations according to the Kaczmarz method

• The followings methods can be distinguished by their update rule:

6

 Page

Benjamin Keck

Algebraic Reconstruction Techniques

• Solve a system of linear equations according to the Kaczmarz method

• The followings methods can be distinguished by their update rule:

6

Method: ART SART SIRT Ordered Subsets (OS)

Update current volume
estimation by computation of

each
ray

each
projection

all
projections

a subset of all
projections

 Page

Benjamin Keck

Algebraic Reconstruction Techniques

• Solve a system of linear equations according to the Kaczmarz method

• The followings methods can be distinguished by their update rule:

6

Method: ART SART SIRT Ordered Subsets (OS)

Update current volume
estimation by computation of

each
ray

each
projection

all
projections

a subset of all
projections

 Page

Benjamin Keck

Algebraic Reconstruction Techniques

• Solve a system of linear equations according to the Kaczmarz method

• The followings methods can be distinguished by their update rule:

6

Method: ART SART SIRT Ordered Subsets (OS)

Update current volume
estimation by computation of

each
ray

each
projection

all
projections

a subset of all
projections

 Page

Benjamin Keck

Algebraic Reconstruction Techniques

• Solve a system of linear equations according to the Kaczmarz method

• The followings methods can be distinguished by their update rule:

6

Method: ART SART SIRT Ordered Subsets (OS)

Update current volume
estimation by computation of

each
ray

each
projection

all
projections

a subset of all
projections

 Page

Benjamin Keck

Algebraic Reconstruction Techniques

• Solve a system of linear equations according to the Kaczmarz method

• The followings methods can be distinguished by their update rule:

6

Method: ART SART SIRT Ordered Subsets (OS)

Update current volume
estimation by computation of

each
ray

each
projection

all
projections

a subset of all
projections

 Page

Benjamin Keck

Algebraic Reconstruction Techniques

• Solve a system of linear equations according to the Kaczmarz method

• The followings methods can be distinguished by their update rule:

6

Method: ART SART SIRT Ordered Subsets (OS)

Update current volume
estimation by computation of

each
ray

each
projection

all
projections

a subset of all
projections

• Each method consists of two computationally intensive parts:
• correction image computation

(including forward-projection and weighting)
• back-projection of correction image

 Page

Benjamin Keck

Outline

• Motivation

• Algebraic Reconstruction Techniques

• First Approach (CUDA 1.1)

• Second Approach (CUDA 2.0)

• Experimental Setup & Results

• Discussion & Conclusion

• Outlook

7

 Page

Benjamin Keck

First Approach (CUDA 1.1)

• Back-projection (BP): voxel-driven approach (Scherl et al.1)
• Forward-projection (FP):

• based on ray casting (eligible on GPUs)
• numerical error comparable to other popular interpolation

and integration methods used in CT (Xu et al.2)
• Unmatched pair forward-projector and back-projector (Zeng et al.3)

8
attenuation value in the simulated projection. Similar to the back-projection step we use projection matrices,
instead of assuming an ideal geometry, to compute the resulting perspective projection.

To parallelize the forward-projection step, each thread of the kernel computes one corrective pixel of a
projection. Analogous to the back-projection step we chose the grid configuration experimental due to our
results.12 In the implemented kernel we compute the direction vector for a specific ray, which is the first step
in the inner for loop in Algorithm 1. Therefore we take the source position vector and the 3D coordinate of the
pixel position, compute the difference vector, and normalize it. The source position for all rays of a projection is
obtained from the homogeneous projection matrix which is designed to project a 3D point to the image plane.
Depending on the output format of the projection (2D image- vs. 3D world-coordinates), this matrix has three
or four rows. In the latter case, the vector can be found in the fourth column of the inverted matrix (first three
components). In the case of a 3 × 4 matrix it is possible to drop the fourth column, invert the 3 × 3 matrix and
multiply the inverse with the previously dropped fourth column to get the source position. This holds, because
in case of a perspective projection with projection matrices, this fourth column represents the shift of the optical
center to the origin of the coordinate system. Galigekere et al.17 have shown already how to reproject using
projection matrices.

− ∗

2D texture

volume

projections

S1

S2

S3

S4

FP

BP

update

. . .

relaxation factor

Figure 5. GPU implementation principle: Volume represented in a 2D texture by slices Sj is forward-projected (FP).
After computing the corrective image and scaling with the relaxation factor, the back-projection (BP) distributes the
result onto the volume. After performing an update the 2D texture representation of the volume is equal to the volume.

In the kernel code, the inverse of the projection matrix is used to get the ray direction out of the pixel position
in the projection image. The entrance and exit positions of the specific ray into the volume are calculated and
stored as entrance and exit distances with respect to the source position. Between those points the volume is
then sampled equidistantly. To get one sampling position, we take the entry vector and add the direction vector
multiplied with the step size times a counter variable. The following sampling step itself proves to be crucial for
the algorithm’s efficiency. In order to get satisfying results, a sub-voxel sampling is required, which introduces a
trilinear interpolation.

The global memory offers write access and thus has a higher latency. In contrast read-only texture memory
has conspicuous low latency due to caching mechanisms and further offers hardware-accelerated interpolation. In
CUDA 1.1 the computation of each sample point intensity is a critical issue since support for 3D textures is not
provided. In consequence, a workaround had to be applied that used just the bilinear interpolation capability
of the GPU. The kernel computes a linear interpolation between stacked 2D texture slices (Sj) (see Figure 5).
Therefore, two values are fetched from proximate stack slices with hardware-accelerated bilinear interpolation
and afterwards linearly interpolated in software. These sampling steps are substituted by only one hardware-
accelerated 3D texture fetch in CUDA 2.0. Since texture memory is read-only, the back-projection updates the

1Scherl, H., Keck, B., Kowarschik, M., and Hornegger, J., “Fast GPU-
Based CT Reconstruction using the Common Unified Device Architecture
(CUDA),” in [Nuclear Science Symposium, Medical Imaging Conference
2007], Frey, E. C., ed., 4464–4466 (2007).
2Xu, F. and Mueller, K., “A comparative study of popular interpolation and
integration methods for use in computed tomography,” Biomedical
Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on,
1252–1255 (April 2006).
3Zeng, G. and Gullberg, G., “Unmatched projector/backprojector pairs in
an iterative reconstruction algorithm,” IEEE Transactions on Medical
Imaging 19, 548–555 (May 2000).

 Page

Benjamin Keck

 9

Back-projection using CUDA (Scherl et al.1)

Host:
For selected projections Pj

Call kernel;

Kernel:
Compute voxel x and z coordinate;
For all voxels (x,y,z), y=[0 Ny[... number of voxels in y-direction

Compute the coordinates (i,j) of voxel (x,y,z) in projection
Get the projection value at position (texture interpolation)
Add the weighted value to voxel

z

y

x

v

u

X-ray
source

detector

volume

• Same implementation for both
(CUDA 1.1, CUDA 2.0)

• Complete volume in device memory

• Current projection in 2D texture memory

 Page

Benjamin Keck

Forward-projection using CUDA
10

Host:
For selected projections Pj
Compute source position out of projection matrix;

Compute inverted projection matrix;
Call kernel;

Kernel:
Compute pixel u and v coordinate and normalized ray direction;
Compute entrance and exit point of the ray to the volume
Perform ray casting: see illustration
Normalize pixel value to world coordinate system units

source

detector
volume

raydirection vector

sample point

Figure 4. Ray casting principle with an equidistant sample step size.

Corrective image computation

As introduced SART performs a projection-wise correction of the current estimation of the volume. Therefore,
the corrective image has to be computed from the difference between the original projection and the appropriate
simulated X-ray image of the current reconstruction estimate. All values in the corrective image are finally
multiplied by the relaxation factor1 before the back-projection step. The implementation principles for CUDA
1.1 and CUDA 2.0 are illustrated in Figures 5 and 6.

A realistic simulation of the X-ray imaging process can be achieved by a ray cast based forward-projection.
Research on this grid-interpolated scheme, where the interpolation is performed using a trilinear filter and the
integration according to the trapezoidal rule, showed that the root mean square (RMS) error is comparable to
other popular interpolation and integration methods used in computed tomography.16 This scheme is our first
choice, because it can be ideally mapped to the GPU hardware including hardware-accelerated texture access.

Algorithm 1 Forward-projection with a ray casting algorithm
for all projections do

compute source position out of projection matrix
compute inverted projection matrix
for all rays inside the projection do

compute ray direction depending on the image plane
normalize direction vector
//RAY CASTING
compute entrance and exit point of the ray to the volume
if ray hits the volume then

set sample point to the entrance point
initialize the pixel value
while sample point is inside the volume do

add up the computed sample value at current position to the pixel value
compute new sample point for given step size

end while

else
set pixel value to zero

end if
normalize pixel value to world coordinate system units

end for

end for

The volumetric ray casting principle for the forward-projection step is illustrated in Figure 4 and the algorithm
is shown in Algorithm 1. To determine the attenuation value of a certain pixel on the detector plane, a ray is
drawn pointing from the X-ray source towards the detector pixel position. Afterwards voxel intensity values
inside the volume are sampled equidistantly along the ray. These sampling values add up to the respective

source

detector
volume

raydirection vector

sample point

Fig. 1. Ray casting principle.

line (”ray”) is drawn pointing from the optical center towards

the pixel position. Afterwards voxel intensity values inside

the cuboid are sampled equidistantly along the ray. These

sampling values add up to the desired gray level value in

the image. As a result we get a perspective projection of the

volume data.

Algorithm 1 Forward-projection with a ray casting algorithm

for all projections do

compute source position out of projection matrix

compute inverted projection matrix

for all rays inside the projection do

compute ray direction depending on the image plane

normalize direction vector

//RAY CASTING

compute entrance and exit point of the ray to the cuboid

if ray hits the cuboid then

set sample point to the entrance point

initialize the pixel value

while sample point is inside the cuboid do

add up the computed sample value at current

position to the pixel value

compute new sample point for given step size

end while

else

set pixel value to zero

end if

normalize pixel value to world coordinate system units

end for

end for

The physical process of acquiring an X-ray image works

just as well. In particular, in this case the optical center depicts

the X-ray source whereas the image plane depicts the detector.

While Strobel et. al. [10] have shown that the image quality of

a reconstruction can be improved by using projection matrices

instead of assuming an ideal geometry, we decided to use this

parameterization in our implementation.

Furthermore this section describes some general features

that are common to both implementations, CUDA as well as

OpenGL. There are some different methods to get the direction

vector of the ray, which is the first step in the inner for loop

in Algorithm 1. A simple one is to take two position vectors,

compute the difference vector, and normalize it. Such positions

are the optical center, the 3D coordinate of the pixel position,

or the points where the ray enters or leaves the cuboid. For

example the position of the optical center can be obtained

volume

texture

S1

S2

S3

S4

etc.

Fig. 2. Volume representation in a 2D texture by Slices Si.

from the homogeneous projection matrix which is designed

to project a 3D point to the image plane. Depending on the

output format of the projection (2D image- vs. 3D world-

coordinates), this matrix has three or four rows. In the latter

case, the vector can be found in the fourth column of the

inverted matrix (first three components). In the case of a 3 ×

4 matrix it is possible to drop the fourth column, invert the 3 ×

3 matrix and multiply the inverse with the previously dropped

fourth column to get the center position. This holds, because

in case of a perspective projection with projection matrices,

this fourth column depicts the shift of the optical center to the

origin of the coordinate system. But due to the fact that this

translation occurs not before the rest of the transformations,

these have to be undone in multiplying the inverse. Galigekere

et. al. have shown already how to reproject using projection

matrices in [11].

In the next step the entrance position of the ray into the

volume has to be calculated. The used method to get the

entering and leaving points depends on the implementation.

Between those points the cube is equidistantly sampled. To get

one sampling position, we take the entry vector and add the

direction vector multiplied with the step size times a counter

variable. The following sampling step itself proves to be

crucial for the algorithm’s efficiency. In order to get satisfying

results, a sub-pixel sampling is required, which introduces a

trilinear interpolation.

For a realistic simulation of X-ray imaging, the Beer-

Lambert law has to be fulfilled approximately:

I = I0 · e

−

t(vdetector)
R

t(vsource)
ρ(x(t)) dt

(1)

The densities p are integrated along the line x(t) (or added
up in a discrete manner). Afterwards, they are transformed

with the exponential-function and multiplied with an initial

X-ray intensity to get the target intensity value. This subse-

quent transformation will not be considered here as it can be

computed for example during a post-processing step. For the

application in algebraic reconstruction, a pre-processing of the

original X-ray images may be also appropriate to fit the ray

caster projections.

 Page

Benjamin Keck

Sample Point Interpolation

• Recent graphics cards‘ hardware supports
texture interpolation (1D, 2D, 3D)

• CUDA 1.1 supports only 1D, 2D textures, no 3D textures

• CUDA 1.1 workaround:
• spread volume slices Si

into 2D texture
• fetch two bilinear interpolated

values from proximate slices
• kernel computes sample point

by linear interpolation

• Comparison of ray casting using CUDA 1.1,
CUDA 2.0 and OpenGL see Weinlich et al.4

11

4Weinlich, A., Keck, B., Scherl, H., Korwarschik, M., and Hornegger, J., “Comparison of High-Speed Ray Casting on GPU
using CUDA and OpenGL,” in [High-performance and Hardware-aware Computing (HipHaC 2008)], Buchty, R. and Weiss,
J.-P., eds., 25–30 (2008).

 Page

Benjamin Keck

Texture Update Procedure
12

• Texture memory used by forward-projection is read-only

• Back-projection updates volume in global memory (r/w)

• Texture memory has to be synchronized with global memory
• spread whole volume from global memory into 2D texture
• expensive task in CUDA 1.1

(approx. 1.15 sec for one update of a 512^3 volume with float values)

• Slightly increased number of FP and BP between two texture updates:
• results in OS scheme
• decreases number of texture updates and cuts total time
• convergence remains almost at the same level (Xu et al.5)

5Xu, F., Mueller, K., Jones, M., Keszthelyi, B., Sedat, J., and Agard, D., “On the Efficiency of Iterative Ordered Subset
Reconstruction Algorithms for Accelerations on GPUs,” (2008). Workshop on High-Performance Medical Image Computing
and Computer Aided Intervention (HP-MICCAI 2008).

 Page

Benjamin Keck

SART - OS distinction
13

• ...
• Texture update
• Forward-projection
• Back-projection
• Texture update
• Forward-projection
• Back-projection
• Texture update
• ...

SART

 Page

Benjamin Keck

SART - OS distinction
13

• ...
• Texture update
• Forward-projection
• Back-projection
• Texture update
• Forward-projection
• Back-projection
• Texture update
• ...

SART

• ...
• Texture update
• Forward-projection
• Back-projection

• Forward-projection
• Back-projection
• Texture update
• ...

OS (2.proj)

 Page

Benjamin Keck

First Approach (CUDA 1.1) - Concept
14

attenuation value in the simulated projection. Similar to the back-projection step we use projection matrices,
instead of assuming an ideal geometry, to compute the resulting perspective projection.

To parallelize the forward-projection step, each thread of the kernel computes one corrective pixel of a
projection. Analogous to the back-projection step we chose the grid configuration experimental due to our
results.12 In the implemented kernel we compute the direction vector for a specific ray, which is the first step
in the inner for loop in Algorithm 1. Therefore we take the source position vector and the 3D coordinate of the
pixel position, compute the difference vector, and normalize it. The source position for all rays of a projection is
obtained from the homogeneous projection matrix which is designed to project a 3D point to the image plane.
Depending on the output format of the projection (2D image- vs. 3D world-coordinates), this matrix has three
or four rows. In the latter case, the vector can be found in the fourth column of the inverted matrix (first three
components). In the case of a 3 × 4 matrix it is possible to drop the fourth column, invert the 3 × 3 matrix and
multiply the inverse with the previously dropped fourth column to get the source position. This holds, because
in case of a perspective projection with projection matrices, this fourth column represents the shift of the optical
center to the origin of the coordinate system. Galigekere et al.17 have shown already how to reproject using
projection matrices.

− ∗

2D texture

volume

projections

S1

S2

S3

S4

FP

BP

update

. . .

relaxation factor

Figure 5. GPU implementation principle: Volume represented in a 2D texture by slices Sj is forward-projected (FP).
After computing the corrective image and scaling with the relaxation factor, the back-projection (BP) distributes the
result onto the volume. After performing an update the 2D texture representation of the volume is equal to the volume.

In the kernel code, the inverse of the projection matrix is used to get the ray direction out of the pixel position
in the projection image. The entrance and exit positions of the specific ray into the volume are calculated and
stored as entrance and exit distances with respect to the source position. Between those points the volume is
then sampled equidistantly. To get one sampling position, we take the entry vector and add the direction vector
multiplied with the step size times a counter variable. The following sampling step itself proves to be crucial for
the algorithm’s efficiency. In order to get satisfying results, a sub-voxel sampling is required, which introduces a
trilinear interpolation.

The global memory offers write access and thus has a higher latency. In contrast read-only texture memory
has conspicuous low latency due to caching mechanisms and further offers hardware-accelerated interpolation. In
CUDA 1.1 the computation of each sample point intensity is a critical issue since support for 3D textures is not
provided. In consequence, a workaround had to be applied that used just the bilinear interpolation capability
of the GPU. The kernel computes a linear interpolation between stacked 2D texture slices (Sj) (see Figure 5).
Therefore, two values are fetched from proximate stack slices with hardware-accelerated bilinear interpolation
and afterwards linearly interpolated in software. These sampling steps are substituted by only one hardware-
accelerated 3D texture fetch in CUDA 2.0. Since texture memory is read-only, the back-projection updates the

 Page

Benjamin Keck

Outline

• Motivation

• Algebraic Reconstruction Techniques

• First Approach (CUDA 1.1)

• Second Approach (CUDA 2.0)

• Experimental Setup & Results

• Discussion & Conclusion

• Outlook

15

 Page

Benjamin Keck

CUDA 2.0 Approach

• Back-projection remains
same implementation

• Difference in forward-projection
• CUDA 2.0 supports 3D textures
• enabled hardware support for

trilinear interpolation

• Easier texture update procedure
• single instruction copy
• update approx. 10 times faster

16

original volume data kept in global memory. The volume-representing texture has to be synchronized with the
updated estimate (Figure 5). Such a synchronization is referred to as a texture update.

− ∗

3D texture

volume

projections

FP

BP

update

relaxation factor

Figure 6. GPU implementation principle: Volume represented in a 3D texture is forward-projected (FP). After computing
the corrective image and scaling with the relaxation factor, the back-projection (BP) distributes the result onto the
volume. After performing an update the 3D texture representation of the volume is equal to the volume.

The difference in volume representation for the corrective image computation leads to two major principles
of SART implementation using CUDA shown in Figure 5 for CUDA 1.1 and Figure 6 using CUDA 2.0. After
all corrective images have been computed and back-projected for all iterations the reconstruction finishes by
transferring the volume to the host system memory.

3. EXPERIMENTS AND RESULTS

In order to evaluate the performance of the GPU vs. the CPU we did the following experiment. On the CPU
side we used an existing multi-core based reconstruction framework, while using NVIDIA’s QuadroFX 5600 on
the GPU side. Our test data consists of simulated phantom projections, generated with DRASIM.18 We used
228 projections representing a short-scan from a C-arm CT system to perform iterative reconstruction with a
projection size of 256 × 128 pixels. The reconstruction yields a 512 × 512 × 350 volume. In order to achieve a
sub-voxel sampling in the forward-projection step we used a step-size of 0.3 of the uniform voxel-size. Since the
majority of time in reconstruction is spent on copying the volume data for the reconstructed image from the
global memory to a texture memory in order to use the hardware-accelerated interpolation, we can significantly
reduce this time by performing an ordered subsets method.

Table 1 shows the achieved performance for the CPU-based SART reconstruction as well as for our optimized
GPU implementations using CUDA 1.1 and CUDA 2.0. The former does not need additional memory for the
forward-projection step because there is no texture update, and therefore reconstruction times for the SART and
OS are identical.

In principle, graphics cards have a very high internal memory transfer rate (≈ 62GB/s on the QuadroFX
5600). Since texture memory is not stored linearly, it has to be reorganized for texture representation, which
is the rate-limiting factor using CUDA 1.1. We measured 476 seconds to transfer a 5123 volume 414 times to
the texture stack representation. This is approximately 1.15 seconds for a single texture update. Using 3D
textures in CUDA 2.0 this can be improved by a factor of 10 such that a texture update can be performed in
approximately 0.11 seconds.

 Page

Benjamin Keck

Outline

• Motivation

• Algebraic Reconstruction Techniques

• First Approach (CUDA 1.1)

• Second Approach (CUDA 2.0)

• Experimental Setup & Results

• Discussion & Conclusion

• Outlook

17

 Page

Benjamin Keck

Experimental Setup
18

 Page

Benjamin Keck

Experimental Setup
18

Projections:
228 projections
à 256x128 pixel

 Page

Benjamin Keck

Experimental Setup
18

Volume:
512x512x350

Projections:
228 projections
à 256x128 pixel

 Page

Benjamin Keck

Experimental Setup
18

Volume:
512x512x350

Projections:
228 projections
à 256x128 pixel

• Performing 20 iterations
• Step size used in ray cast algorithm: 0.3 of uniform voxel size

 Page

Benjamin Keck

Experimental Setup
18

Volume:
512x512x350

Projections:
228 projections
à 256x128 pixel

Off-the-shelf PC:
Intel Core2Duo
@ 2 GHz

Workstation:
Two Intel QuadCore
@ 2.33 GHz

GPU:
NVIDIA
QuadroFX 5600

Compared systems:

• Performing 20 iterations
• Step size used in ray cast algorithm: 0.3 of uniform voxel size

 Page

Benjamin Keck

Results
19

512 × 512 × 350 voxels

Hardware/ Intel Core2Duo 2×Intel Xeon QuadroFX 5600 QuadroFX 5600

2 GHz QuadCore 2.33 GHz CUDA 1.1 CUDA 2.0

Method Time [s] Time [s] Time [s] Time [s]

SART 32968 6630 4234 844

OS(2proj.) ” ” 2435 661

OS(5proj.) ” ” 1359 551

OS(7proj.) ” ” 1156 530

OS(10proj.) ” ” 998 514

Table 1. Comparison of iterative reconstruction times in seconds (for 20 iterations each).

A SART implementation in CUDA 1.1 wastes approximately 1 second per update to transfer the back-
projected volume to a texture memory representation used for the forward-projection. If the number of forward-
and back-projections between two texture updates is increased slightly, the reconstruction speed will be faster
while the convergence rate remains almost at the same level, but is not as fast as a standard SART (analogous
to the relation between ART and SART). This trade-off between convergence and speedup is one of our main
results. The convergence was recently examined by Xu et al.10

We compared reconstruction times on three different systems. First, an off-the-shelf PC equipped with an
Intel Core2Duo processor running at 2 GHz, second, a workstation with two Intel Xeon QuadCore processors
at 2.33 GHz and a NVIDIA QuadroFX 5600 with CUDA 1.1 and 2.0. The SART implementation using CUDA
1.1 is the slowest implementation on the GPU. Yet it is more than 7.5 times faster than the PC and 50 percent
faster than the workstation. Employing the ordered subsets optimization yields another speedup of over 4 times.
SART with 3D texture interpolation (CUDA 2.0) is even a bit faster, and using OS again results in a total
speedup of 64 and 12 compared to the PC (2 cores) and the workstation (8 cores) respectively.

4. CONCLUSION

In conclusion, we have optimized the reconstruction speed and the convergence behavior in our algorithm design.
We have shown the advantage of using the texture memory of current graphics cards to perform the most
time-consuming parts of an iterative reconstruction technique effectively on the GPU using CUDA 1.1 and
recently released CUDA 2.0. Apparently, in CUDA 1.1 the time consuming texture updates dominate the overall
reconstruction time. This is dramatically relieved in the CUDA 2.0 implementation. Therefore, the impact of
OS with CUDA 2.0 is much lower than with CUDA 1.1.

Furthermore, we have demonstrated the drawback of representing the volume data as a texture in that, it is
the time-expensive update process, necessary in iterative reconstruction. Alternatively, the OS method reduces
this effect because it requires fewer updates. For a small increase of forward-/back-projections between two
update steps, the reconstruction speed is accelerated significantly, while the convergence rate is not decreased
significantly. Due to a reconstruction time of less than 9 minutes, our implementation is already applicable for
specific usage in the clinical environment.

5. OUTLOOK

Our research also demonstrate that there exists a lack of comparibility for fast 3-D reconstruction implementa-
tions, despite the plurality of publications. For future research, we want to improve this by providing an open
platform RabbitCT (www.rabbitCT.com) for worldwide comparison in backprojection performance on different
architectures using a specific high resolution angiographic dataset of a rabbit. This includes a sophisticated
interface for rankings, a prototype implementation in C and image quality measures.

 Page

Benjamin Keck

Results
19

512 × 512 × 350 voxels

Hardware/ Intel Core2Duo 2×Intel Xeon QuadroFX 5600 QuadroFX 5600

2 GHz QuadCore 2.33 GHz CUDA 1.1 CUDA 2.0

Method Time [s] Time [s] Time [s] Time [s]

SART 32968 6630 4234 844

OS(2proj.) ” ” 2435 661

OS(5proj.) ” ” 1359 551

OS(7proj.) ” ” 1156 530

OS(10proj.) ” ” 998 514

Table 1. Comparison of iterative reconstruction times in seconds (for 20 iterations each).

A SART implementation in CUDA 1.1 wastes approximately 1 second per update to transfer the back-
projected volume to a texture memory representation used for the forward-projection. If the number of forward-
and back-projections between two texture updates is increased slightly, the reconstruction speed will be faster
while the convergence rate remains almost at the same level, but is not as fast as a standard SART (analogous
to the relation between ART and SART). This trade-off between convergence and speedup is one of our main
results. The convergence was recently examined by Xu et al.10

We compared reconstruction times on three different systems. First, an off-the-shelf PC equipped with an
Intel Core2Duo processor running at 2 GHz, second, a workstation with two Intel Xeon QuadCore processors
at 2.33 GHz and a NVIDIA QuadroFX 5600 with CUDA 1.1 and 2.0. The SART implementation using CUDA
1.1 is the slowest implementation on the GPU. Yet it is more than 7.5 times faster than the PC and 50 percent
faster than the workstation. Employing the ordered subsets optimization yields another speedup of over 4 times.
SART with 3D texture interpolation (CUDA 2.0) is even a bit faster, and using OS again results in a total
speedup of 64 and 12 compared to the PC (2 cores) and the workstation (8 cores) respectively.

4. CONCLUSION

In conclusion, we have optimized the reconstruction speed and the convergence behavior in our algorithm design.
We have shown the advantage of using the texture memory of current graphics cards to perform the most
time-consuming parts of an iterative reconstruction technique effectively on the GPU using CUDA 1.1 and
recently released CUDA 2.0. Apparently, in CUDA 1.1 the time consuming texture updates dominate the overall
reconstruction time. This is dramatically relieved in the CUDA 2.0 implementation. Therefore, the impact of
OS with CUDA 2.0 is much lower than with CUDA 1.1.

Furthermore, we have demonstrated the drawback of representing the volume data as a texture in that, it is
the time-expensive update process, necessary in iterative reconstruction. Alternatively, the OS method reduces
this effect because it requires fewer updates. For a small increase of forward-/back-projections between two
update steps, the reconstruction speed is accelerated significantly, while the convergence rate is not decreased
significantly. Due to a reconstruction time of less than 9 minutes, our implementation is already applicable for
specific usage in the clinical environment.

5. OUTLOOK

Our research also demonstrate that there exists a lack of comparibility for fast 3-D reconstruction implementa-
tions, despite the plurality of publications. For future research, we want to improve this by providing an open
platform RabbitCT (www.rabbitCT.com) for worldwide comparison in backprojection performance on different
architectures using a specific high resolution angiographic dataset of a rabbit. This includes a sophisticated
interface for rankings, a prototype implementation in C and image quality measures.

 Page

Benjamin Keck

Results
19

512 × 512 × 350 voxels

Hardware/ Intel Core2Duo 2×Intel Xeon QuadroFX 5600 QuadroFX 5600

2 GHz QuadCore 2.33 GHz CUDA 1.1 CUDA 2.0

Method Time [s] Time [s] Time [s] Time [s]

SART 32968 6630 4234 844

OS(2proj.) ” ” 2435 661

OS(5proj.) ” ” 1359 551

OS(7proj.) ” ” 1156 530

OS(10proj.) ” ” 998 514

Table 1. Comparison of iterative reconstruction times in seconds (for 20 iterations each).

A SART implementation in CUDA 1.1 wastes approximately 1 second per update to transfer the back-
projected volume to a texture memory representation used for the forward-projection. If the number of forward-
and back-projections between two texture updates is increased slightly, the reconstruction speed will be faster
while the convergence rate remains almost at the same level, but is not as fast as a standard SART (analogous
to the relation between ART and SART). This trade-off between convergence and speedup is one of our main
results. The convergence was recently examined by Xu et al.10

We compared reconstruction times on three different systems. First, an off-the-shelf PC equipped with an
Intel Core2Duo processor running at 2 GHz, second, a workstation with two Intel Xeon QuadCore processors
at 2.33 GHz and a NVIDIA QuadroFX 5600 with CUDA 1.1 and 2.0. The SART implementation using CUDA
1.1 is the slowest implementation on the GPU. Yet it is more than 7.5 times faster than the PC and 50 percent
faster than the workstation. Employing the ordered subsets optimization yields another speedup of over 4 times.
SART with 3D texture interpolation (CUDA 2.0) is even a bit faster, and using OS again results in a total
speedup of 64 and 12 compared to the PC (2 cores) and the workstation (8 cores) respectively.

4. CONCLUSION

In conclusion, we have optimized the reconstruction speed and the convergence behavior in our algorithm design.
We have shown the advantage of using the texture memory of current graphics cards to perform the most
time-consuming parts of an iterative reconstruction technique effectively on the GPU using CUDA 1.1 and
recently released CUDA 2.0. Apparently, in CUDA 1.1 the time consuming texture updates dominate the overall
reconstruction time. This is dramatically relieved in the CUDA 2.0 implementation. Therefore, the impact of
OS with CUDA 2.0 is much lower than with CUDA 1.1.

Furthermore, we have demonstrated the drawback of representing the volume data as a texture in that, it is
the time-expensive update process, necessary in iterative reconstruction. Alternatively, the OS method reduces
this effect because it requires fewer updates. For a small increase of forward-/back-projections between two
update steps, the reconstruction speed is accelerated significantly, while the convergence rate is not decreased
significantly. Due to a reconstruction time of less than 9 minutes, our implementation is already applicable for
specific usage in the clinical environment.

5. OUTLOOK

Our research also demonstrate that there exists a lack of comparibility for fast 3-D reconstruction implementa-
tions, despite the plurality of publications. For future research, we want to improve this by providing an open
platform RabbitCT (www.rabbitCT.com) for worldwide comparison in backprojection performance on different
architectures using a specific high resolution angiographic dataset of a rabbit. This includes a sophisticated
interface for rankings, a prototype implementation in C and image quality measures.

 Page

Benjamin Keck

Results
19

512 × 512 × 350 voxels

Hardware/ Intel Core2Duo 2×Intel Xeon QuadroFX 5600 QuadroFX 5600

2 GHz QuadCore 2.33 GHz CUDA 1.1 CUDA 2.0

Method Time [s] Time [s] Time [s] Time [s]

SART 32968 6630 4234 844

OS(2proj.) ” ” 2435 661

OS(5proj.) ” ” 1359 551

OS(7proj.) ” ” 1156 530

OS(10proj.) ” ” 998 514

Table 1. Comparison of iterative reconstruction times in seconds (for 20 iterations each).

A SART implementation in CUDA 1.1 wastes approximately 1 second per update to transfer the back-
projected volume to a texture memory representation used for the forward-projection. If the number of forward-
and back-projections between two texture updates is increased slightly, the reconstruction speed will be faster
while the convergence rate remains almost at the same level, but is not as fast as a standard SART (analogous
to the relation between ART and SART). This trade-off between convergence and speedup is one of our main
results. The convergence was recently examined by Xu et al.10

We compared reconstruction times on three different systems. First, an off-the-shelf PC equipped with an
Intel Core2Duo processor running at 2 GHz, second, a workstation with two Intel Xeon QuadCore processors
at 2.33 GHz and a NVIDIA QuadroFX 5600 with CUDA 1.1 and 2.0. The SART implementation using CUDA
1.1 is the slowest implementation on the GPU. Yet it is more than 7.5 times faster than the PC and 50 percent
faster than the workstation. Employing the ordered subsets optimization yields another speedup of over 4 times.
SART with 3D texture interpolation (CUDA 2.0) is even a bit faster, and using OS again results in a total
speedup of 64 and 12 compared to the PC (2 cores) and the workstation (8 cores) respectively.

4. CONCLUSION

In conclusion, we have optimized the reconstruction speed and the convergence behavior in our algorithm design.
We have shown the advantage of using the texture memory of current graphics cards to perform the most
time-consuming parts of an iterative reconstruction technique effectively on the GPU using CUDA 1.1 and
recently released CUDA 2.0. Apparently, in CUDA 1.1 the time consuming texture updates dominate the overall
reconstruction time. This is dramatically relieved in the CUDA 2.0 implementation. Therefore, the impact of
OS with CUDA 2.0 is much lower than with CUDA 1.1.

Furthermore, we have demonstrated the drawback of representing the volume data as a texture in that, it is
the time-expensive update process, necessary in iterative reconstruction. Alternatively, the OS method reduces
this effect because it requires fewer updates. For a small increase of forward-/back-projections between two
update steps, the reconstruction speed is accelerated significantly, while the convergence rate is not decreased
significantly. Due to a reconstruction time of less than 9 minutes, our implementation is already applicable for
specific usage in the clinical environment.

5. OUTLOOK

Our research also demonstrate that there exists a lack of comparibility for fast 3-D reconstruction implementa-
tions, despite the plurality of publications. For future research, we want to improve this by providing an open
platform RabbitCT (www.rabbitCT.com) for worldwide comparison in backprojection performance on different
architectures using a specific high resolution angiographic dataset of a rabbit. This includes a sophisticated
interface for rankings, a prototype implementation in C and image quality measures.

 Page

Benjamin Keck

Results
19

512 × 512 × 350 voxels

Hardware/ Intel Core2Duo 2×Intel Xeon QuadroFX 5600 QuadroFX 5600

2 GHz QuadCore 2.33 GHz CUDA 1.1 CUDA 2.0

Method Time [s] Time [s] Time [s] Time [s]

SART 32968 6630 4234 844

OS(2proj.) ” ” 2435 661

OS(5proj.) ” ” 1359 551

OS(7proj.) ” ” 1156 530

OS(10proj.) ” ” 998 514

Table 1. Comparison of iterative reconstruction times in seconds (for 20 iterations each).

A SART implementation in CUDA 1.1 wastes approximately 1 second per update to transfer the back-
projected volume to a texture memory representation used for the forward-projection. If the number of forward-
and back-projections between two texture updates is increased slightly, the reconstruction speed will be faster
while the convergence rate remains almost at the same level, but is not as fast as a standard SART (analogous
to the relation between ART and SART). This trade-off between convergence and speedup is one of our main
results. The convergence was recently examined by Xu et al.10

We compared reconstruction times on three different systems. First, an off-the-shelf PC equipped with an
Intel Core2Duo processor running at 2 GHz, second, a workstation with two Intel Xeon QuadCore processors
at 2.33 GHz and a NVIDIA QuadroFX 5600 with CUDA 1.1 and 2.0. The SART implementation using CUDA
1.1 is the slowest implementation on the GPU. Yet it is more than 7.5 times faster than the PC and 50 percent
faster than the workstation. Employing the ordered subsets optimization yields another speedup of over 4 times.
SART with 3D texture interpolation (CUDA 2.0) is even a bit faster, and using OS again results in a total
speedup of 64 and 12 compared to the PC (2 cores) and the workstation (8 cores) respectively.

4. CONCLUSION

In conclusion, we have optimized the reconstruction speed and the convergence behavior in our algorithm design.
We have shown the advantage of using the texture memory of current graphics cards to perform the most
time-consuming parts of an iterative reconstruction technique effectively on the GPU using CUDA 1.1 and
recently released CUDA 2.0. Apparently, in CUDA 1.1 the time consuming texture updates dominate the overall
reconstruction time. This is dramatically relieved in the CUDA 2.0 implementation. Therefore, the impact of
OS with CUDA 2.0 is much lower than with CUDA 1.1.

Furthermore, we have demonstrated the drawback of representing the volume data as a texture in that, it is
the time-expensive update process, necessary in iterative reconstruction. Alternatively, the OS method reduces
this effect because it requires fewer updates. For a small increase of forward-/back-projections between two
update steps, the reconstruction speed is accelerated significantly, while the convergence rate is not decreased
significantly. Due to a reconstruction time of less than 9 minutes, our implementation is already applicable for
specific usage in the clinical environment.

5. OUTLOOK

Our research also demonstrate that there exists a lack of comparibility for fast 3-D reconstruction implementa-
tions, despite the plurality of publications. For future research, we want to improve this by providing an open
platform RabbitCT (www.rabbitCT.com) for worldwide comparison in backprojection performance on different
architectures using a specific high resolution angiographic dataset of a rabbit. This includes a sophisticated
interface for rankings, a prototype implementation in C and image quality measures.

 Page

Benjamin Keck

Results
19

512 × 512 × 350 voxels

Hardware/ Intel Core2Duo 2×Intel Xeon QuadroFX 5600 QuadroFX 5600

2 GHz QuadCore 2.33 GHz CUDA 1.1 CUDA 2.0

Method Time [s] Time [s] Time [s] Time [s]

SART 32968 6630 4234 844

OS(2proj.) ” ” 2435 661

OS(5proj.) ” ” 1359 551

OS(7proj.) ” ” 1156 530

OS(10proj.) ” ” 998 514

Table 1. Comparison of iterative reconstruction times in seconds (for 20 iterations each).

A SART implementation in CUDA 1.1 wastes approximately 1 second per update to transfer the back-
projected volume to a texture memory representation used for the forward-projection. If the number of forward-
and back-projections between two texture updates is increased slightly, the reconstruction speed will be faster
while the convergence rate remains almost at the same level, but is not as fast as a standard SART (analogous
to the relation between ART and SART). This trade-off between convergence and speedup is one of our main
results. The convergence was recently examined by Xu et al.10

We compared reconstruction times on three different systems. First, an off-the-shelf PC equipped with an
Intel Core2Duo processor running at 2 GHz, second, a workstation with two Intel Xeon QuadCore processors
at 2.33 GHz and a NVIDIA QuadroFX 5600 with CUDA 1.1 and 2.0. The SART implementation using CUDA
1.1 is the slowest implementation on the GPU. Yet it is more than 7.5 times faster than the PC and 50 percent
faster than the workstation. Employing the ordered subsets optimization yields another speedup of over 4 times.
SART with 3D texture interpolation (CUDA 2.0) is even a bit faster, and using OS again results in a total
speedup of 64 and 12 compared to the PC (2 cores) and the workstation (8 cores) respectively.

4. CONCLUSION

In conclusion, we have optimized the reconstruction speed and the convergence behavior in our algorithm design.
We have shown the advantage of using the texture memory of current graphics cards to perform the most
time-consuming parts of an iterative reconstruction technique effectively on the GPU using CUDA 1.1 and
recently released CUDA 2.0. Apparently, in CUDA 1.1 the time consuming texture updates dominate the overall
reconstruction time. This is dramatically relieved in the CUDA 2.0 implementation. Therefore, the impact of
OS with CUDA 2.0 is much lower than with CUDA 1.1.

Furthermore, we have demonstrated the drawback of representing the volume data as a texture in that, it is
the time-expensive update process, necessary in iterative reconstruction. Alternatively, the OS method reduces
this effect because it requires fewer updates. For a small increase of forward-/back-projections between two
update steps, the reconstruction speed is accelerated significantly, while the convergence rate is not decreased
significantly. Due to a reconstruction time of less than 9 minutes, our implementation is already applicable for
specific usage in the clinical environment.

5. OUTLOOK

Our research also demonstrate that there exists a lack of comparibility for fast 3-D reconstruction implementa-
tions, despite the plurality of publications. For future research, we want to improve this by providing an open
platform RabbitCT (www.rabbitCT.com) for worldwide comparison in backprojection performance on different
architectures using a specific high resolution angiographic dataset of a rabbit. This includes a sophisticated
interface for rankings, a prototype implementation in C and image quality measures.

 Page

Benjamin Keck

Results
19

512 × 512 × 350 voxels

Hardware/ Intel Core2Duo 2×Intel Xeon QuadroFX 5600 QuadroFX 5600

2 GHz QuadCore 2.33 GHz CUDA 1.1 CUDA 2.0

Method Time [s] Time [s] Time [s] Time [s]

SART 32968 6630 4234 844

OS(2proj.) ” ” 2435 661

OS(5proj.) ” ” 1359 551

OS(7proj.) ” ” 1156 530

OS(10proj.) ” ” 998 514

Table 1. Comparison of iterative reconstruction times in seconds (for 20 iterations each).

A SART implementation in CUDA 1.1 wastes approximately 1 second per update to transfer the back-
projected volume to a texture memory representation used for the forward-projection. If the number of forward-
and back-projections between two texture updates is increased slightly, the reconstruction speed will be faster
while the convergence rate remains almost at the same level, but is not as fast as a standard SART (analogous
to the relation between ART and SART). This trade-off between convergence and speedup is one of our main
results. The convergence was recently examined by Xu et al.10

We compared reconstruction times on three different systems. First, an off-the-shelf PC equipped with an
Intel Core2Duo processor running at 2 GHz, second, a workstation with two Intel Xeon QuadCore processors
at 2.33 GHz and a NVIDIA QuadroFX 5600 with CUDA 1.1 and 2.0. The SART implementation using CUDA
1.1 is the slowest implementation on the GPU. Yet it is more than 7.5 times faster than the PC and 50 percent
faster than the workstation. Employing the ordered subsets optimization yields another speedup of over 4 times.
SART with 3D texture interpolation (CUDA 2.0) is even a bit faster, and using OS again results in a total
speedup of 64 and 12 compared to the PC (2 cores) and the workstation (8 cores) respectively.

4. CONCLUSION

In conclusion, we have optimized the reconstruction speed and the convergence behavior in our algorithm design.
We have shown the advantage of using the texture memory of current graphics cards to perform the most
time-consuming parts of an iterative reconstruction technique effectively on the GPU using CUDA 1.1 and
recently released CUDA 2.0. Apparently, in CUDA 1.1 the time consuming texture updates dominate the overall
reconstruction time. This is dramatically relieved in the CUDA 2.0 implementation. Therefore, the impact of
OS with CUDA 2.0 is much lower than with CUDA 1.1.

Furthermore, we have demonstrated the drawback of representing the volume data as a texture in that, it is
the time-expensive update process, necessary in iterative reconstruction. Alternatively, the OS method reduces
this effect because it requires fewer updates. For a small increase of forward-/back-projections between two
update steps, the reconstruction speed is accelerated significantly, while the convergence rate is not decreased
significantly. Due to a reconstruction time of less than 9 minutes, our implementation is already applicable for
specific usage in the clinical environment.

5. OUTLOOK

Our research also demonstrate that there exists a lack of comparibility for fast 3-D reconstruction implementa-
tions, despite the plurality of publications. For future research, we want to improve this by providing an open
platform RabbitCT (www.rabbitCT.com) for worldwide comparison in backprojection performance on different
architectures using a specific high resolution angiographic dataset of a rabbit. This includes a sophisticated
interface for rankings, a prototype implementation in C and image quality measures.

 Page

Benjamin Keck

Results
19

512 × 512 × 350 voxels

Hardware/ Intel Core2Duo 2×Intel Xeon QuadroFX 5600 QuadroFX 5600

2 GHz QuadCore 2.33 GHz CUDA 1.1 CUDA 2.0

Method Time [s] Time [s] Time [s] Time [s]

SART 32968 6630 4234 844

OS(2proj.) ” ” 2435 661

OS(5proj.) ” ” 1359 551

OS(7proj.) ” ” 1156 530

OS(10proj.) ” ” 998 514

Table 1. Comparison of iterative reconstruction times in seconds (for 20 iterations each).

A SART implementation in CUDA 1.1 wastes approximately 1 second per update to transfer the back-
projected volume to a texture memory representation used for the forward-projection. If the number of forward-
and back-projections between two texture updates is increased slightly, the reconstruction speed will be faster
while the convergence rate remains almost at the same level, but is not as fast as a standard SART (analogous
to the relation between ART and SART). This trade-off between convergence and speedup is one of our main
results. The convergence was recently examined by Xu et al.10

We compared reconstruction times on three different systems. First, an off-the-shelf PC equipped with an
Intel Core2Duo processor running at 2 GHz, second, a workstation with two Intel Xeon QuadCore processors
at 2.33 GHz and a NVIDIA QuadroFX 5600 with CUDA 1.1 and 2.0. The SART implementation using CUDA
1.1 is the slowest implementation on the GPU. Yet it is more than 7.5 times faster than the PC and 50 percent
faster than the workstation. Employing the ordered subsets optimization yields another speedup of over 4 times.
SART with 3D texture interpolation (CUDA 2.0) is even a bit faster, and using OS again results in a total
speedup of 64 and 12 compared to the PC (2 cores) and the workstation (8 cores) respectively.

4. CONCLUSION

In conclusion, we have optimized the reconstruction speed and the convergence behavior in our algorithm design.
We have shown the advantage of using the texture memory of current graphics cards to perform the most
time-consuming parts of an iterative reconstruction technique effectively on the GPU using CUDA 1.1 and
recently released CUDA 2.0. Apparently, in CUDA 1.1 the time consuming texture updates dominate the overall
reconstruction time. This is dramatically relieved in the CUDA 2.0 implementation. Therefore, the impact of
OS with CUDA 2.0 is much lower than with CUDA 1.1.

Furthermore, we have demonstrated the drawback of representing the volume data as a texture in that, it is
the time-expensive update process, necessary in iterative reconstruction. Alternatively, the OS method reduces
this effect because it requires fewer updates. For a small increase of forward-/back-projections between two
update steps, the reconstruction speed is accelerated significantly, while the convergence rate is not decreased
significantly. Due to a reconstruction time of less than 9 minutes, our implementation is already applicable for
specific usage in the clinical environment.

5. OUTLOOK

Our research also demonstrate that there exists a lack of comparibility for fast 3-D reconstruction implementa-
tions, despite the plurality of publications. For future research, we want to improve this by providing an open
platform RabbitCT (www.rabbitCT.com) for worldwide comparison in backprojection performance on different
architectures using a specific high resolution angiographic dataset of a rabbit. This includes a sophisticated
interface for rankings, a prototype implementation in C and image quality measures.

 Page

Benjamin Keck

Results
19

512 × 512 × 350 voxels

Hardware/ Intel Core2Duo 2×Intel Xeon QuadroFX 5600 QuadroFX 5600

2 GHz QuadCore 2.33 GHz CUDA 1.1 CUDA 2.0

Method Time [s] Time [s] Time [s] Time [s]

SART 32968 6630 4234 844

OS(2proj.) ” ” 2435 661

OS(5proj.) ” ” 1359 551

OS(7proj.) ” ” 1156 530

OS(10proj.) ” ” 998 514

Table 1. Comparison of iterative reconstruction times in seconds (for 20 iterations each).

A SART implementation in CUDA 1.1 wastes approximately 1 second per update to transfer the back-
projected volume to a texture memory representation used for the forward-projection. If the number of forward-
and back-projections between two texture updates is increased slightly, the reconstruction speed will be faster
while the convergence rate remains almost at the same level, but is not as fast as a standard SART (analogous
to the relation between ART and SART). This trade-off between convergence and speedup is one of our main
results. The convergence was recently examined by Xu et al.10

We compared reconstruction times on three different systems. First, an off-the-shelf PC equipped with an
Intel Core2Duo processor running at 2 GHz, second, a workstation with two Intel Xeon QuadCore processors
at 2.33 GHz and a NVIDIA QuadroFX 5600 with CUDA 1.1 and 2.0. The SART implementation using CUDA
1.1 is the slowest implementation on the GPU. Yet it is more than 7.5 times faster than the PC and 50 percent
faster than the workstation. Employing the ordered subsets optimization yields another speedup of over 4 times.
SART with 3D texture interpolation (CUDA 2.0) is even a bit faster, and using OS again results in a total
speedup of 64 and 12 compared to the PC (2 cores) and the workstation (8 cores) respectively.

4. CONCLUSION

In conclusion, we have optimized the reconstruction speed and the convergence behavior in our algorithm design.
We have shown the advantage of using the texture memory of current graphics cards to perform the most
time-consuming parts of an iterative reconstruction technique effectively on the GPU using CUDA 1.1 and
recently released CUDA 2.0. Apparently, in CUDA 1.1 the time consuming texture updates dominate the overall
reconstruction time. This is dramatically relieved in the CUDA 2.0 implementation. Therefore, the impact of
OS with CUDA 2.0 is much lower than with CUDA 1.1.

Furthermore, we have demonstrated the drawback of representing the volume data as a texture in that, it is
the time-expensive update process, necessary in iterative reconstruction. Alternatively, the OS method reduces
this effect because it requires fewer updates. For a small increase of forward-/back-projections between two
update steps, the reconstruction speed is accelerated significantly, while the convergence rate is not decreased
significantly. Due to a reconstruction time of less than 9 minutes, our implementation is already applicable for
specific usage in the clinical environment.

5. OUTLOOK

Our research also demonstrate that there exists a lack of comparibility for fast 3-D reconstruction implementa-
tions, despite the plurality of publications. For future research, we want to improve this by providing an open
platform RabbitCT (www.rabbitCT.com) for worldwide comparison in backprojection performance on different
architectures using a specific high resolution angiographic dataset of a rabbit. This includes a sophisticated
interface for rankings, a prototype implementation in C and image quality measures.

• OS optimization reduces GPU specific runtime up to
76% (CUDA 1.1), 39% (CUDA 2.0)

• CUDA 2.0 implementation (SART) outperforms
CUDA 1.1 (OS 10proj.)

• Speedup factor GPU vs. CPU: 64x - 12x (PC resp. Workstation)

 Page

Benjamin Keck

Outline

• Motivation

• Algebraic Reconstruction Techniques

• First Approach (CUDA 1.1)

• Second Approach (CUDA 2.0)

• Experimental Setup & Results

• Discussion & Conclusion

• Outlook

20

 Page

Benjamin Keck

Discussion & Conclusion

• SART can be effectively performed on GPU using CUDA

• Texture memory usage:
• benefit from hardware-accelerated interpolation
• drawback due to necessary synchronization (especially CUDA 1.1)

• OS reduces number of time consuming synchronizations

• Significant progress between CUDA 1.1 and CUDA 2.0 for SART

• GPU implementation is already applicable for specific usage
in the clinical environment (runtime < 9 minutes)

21

 Page

Benjamin Keck

Outline

• Motivation

• Algebraic Reconstruction Techniques

• First Approach (CUDA 1.1)

• Second Approach (CUDA 2.0)

• Experimental Setup & Results

• Discussion & Conclusion

• Outlook

22

 Page

Benjamin Keck

Outlook

• Most presented results on hardware-
optimized reconstruction are not
comparable due to variations in data
acquisitions

• Open platform RabbitCT
(www.rabbitCT.com)
• back-projection performance
• back-projection ranking

(includes reference, website, paper)
• reference implementation available
• in-vivo dataset of a rabbit

• Computational complexity
• Volume size (1283, 2563, 5123, 10243)
• 496 projections of size 1248x960

23

Arnd Dörfler, Neuroradiology, University-Clinic Erlangen

http://www.rabbitCT.com

http://www.RabbitCT.com
http://www.RabbitCT.com

 Page

Benjamin Keck

Thank you for your Attention!

24

Acknowledgements

• Thanks to the support by Siemens Healthcare, CV,
Medical Electronics & Imaging Solutions

• The International Max Planck Research School for
Optics and Imaging (IMPRS-OI)

• The Erlangen Graduate School in
Advanced Optical Technologies (SAOT)

• Special thanks to Dr. Holger Kunze who supported us with his
software framework for iterative reconstruction using multi-core CPUs.

