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ABSTRACT

Most algorithms for extracting illuminant chromaticity from
arbitrary images, such as the images found on the web, are
based on machine learning techniques. We will show how
a physics-based methodology can be adapted to provide rel-
ative illumination information on real images. More specifi-
cally, we use the inverse-intensity chromaticity representation
and show how the analysis of the histograms of illumination-
chromaticity candidates provides information about the type
of illumination(s) present in a scene. Experiments indicate
that the estimate is quite robust towards noise, and that simple
measurements on the histogram peak can be used to counter-
check the reliability of the estimate.

Index Terms— specularities, inverse-intensity chro-
maticity

1. INTRODUCTION

The majority of semantic image analysis methods are based
on machine learning [13], partially because it is very difficult
to define mathematically or algorithmically what constitutes
a semantic entity. There are, however, a number of successful
image analysis methods, which are based on physical and/or
geometrical models (e.g. edge detection, stereo, tracking). Of
course, most of them are tackling simpler problems, either by
definition (e.g. circle detection), or by imposing constraints
that may not be applicable to a large percentage of the images
typically found on the web. Nonetheless, such physics-based
methods can be used in augmenting semantic image analysis,
if one is willing to replace the precise quantitative measure-
ments, like metric distances, spectra, angle or velocity values,
with more abstract descriptions. In this paper we will show
how a state-of-the-art methodology for illuminant color esti-
mation can be extended, so that it can infer general illumi-
nants information in arbitrary images.

The illuminant estimation problem was selected as an ex-
ample application for transfer of physics-based methodolo-
gies to semantics-oriented analysis for three main reasons.
First of all, when looking at images, people are able to com-
pensate for variations in appearance caused by changes in the
illuminant color (color constancy). There is also evidence that

illumination clues, like specular highlights, are explicitly used
in the perceptual analysis of scenes [15, 6]. Secondly, as in
semantic analysis, previous work on illuminant estimation on
arbitrary scenes is mostly based on machine learning tech-
niques, e.g. [2, 1, 5]. Though recent work by Gijsenij et al. [8]
augments machine learning with physics-based analysis, the
majority of such methods is still closely tied to the training
samples and some of them, e.g. [2], are not easily general-
izable. algorithms which, under strong constraints, can esti-
mate the color of the illuminant, e.g. [3, 4, 14, 9, 10]. One
of the most popular family of these techniques is specularity
based [9, 10, 12, 17].

We will show how a state-of-the-art technique for estimat-
ing the illuminant-color based on specular highlights [17] can
be adapted for obtaining an estimate of the type of illumant
in arbitrary images found on the web. This involves the treat-
ment of difficulties in the segmentation of specularities, ways
to assess the compliance of the obtained intensities with our
model and the handling of multiple illuminants.

2. ESTIMATION OF THE ILLUMINANT COLOR

Most of the methodologies, which use specular highlights to
infer the illuminant color, e.g. [9, 10, 12], are based on the
dichromatic reflection model [16]. This states that the amount
of light reflected from a point, ~p, of a dielectric, non-uniform
material is a linear combination of diffuse reflection and spec-
ular reflection. Furthermore, they all assume that the color of
specularities in such materials is the same as the illuminant
color. When an image is taken with a trichromatic camera,
the sensor response at each channel can be modeled as:

Ic(~p) = wd(~p)Bc(~p) + we(~p)Gc (1)

where c = r, g, or b corresponds to the color channel, wd(~p)
and we(~p) are the geometric parameters for diffuse and spec-
ular reflection respectively. Bc(~p) is the sensor response to
the diffuse spectral reflectance. Gc is the sensor response
to the illumination spectral distribution and is assumed to be
constant over the image. Thus, the color values recorded by
a camera are a mixture of diffuse, wd(~p)Bc, and specular,
we(~p)Gc, components. The algorithms which extract illumi-



nation information from specular highlights typically analyze
the scatter plots of these reflectance mixtures in color space.

2.1. Inverse-Intensity Space

Recently, Tan et al. [17] introduced the inverse-intensity chro-
maticity space as a new color space for analyzing these specu-
larity clusters. Their technique is a very general method since
it does not impose constraints on the type of illumination,
does not require multi-colored or single-colored objects and
does not assume known camera spectral responses.

Since variations in image brightness can affect image
analysis, it is quite common to normalize color representa-
tion. We used the same chromaticity definition, σc, as [17]:

σc(~p) = Ic(~p)/
∑

i

Ii(~p) (2)

In a similar manner, one can define diffuse chromaticicty as
Λc(~p) = Bc(~p)/

∑
iBi(~p) and specular chromaticity as Γc =

Gc/
∑

iGi. Following [17], eq. (2) can be rewritten in terms
of diffuse and specular chromaticity as follows:

Ic(~p) = md(~p)Λc(~p) +ms(~p)Γc (3)

wheremd(~p) = wd(~p)
∑

iBi(~p) andms(~p) = we(~p)
∑

iGi.
Tan et al. [17] have shown, that from these equations

one can derive the following non-linear relationship between
chromaticity σc and image intensity Ic:

σc(~p) = a(~p)
1∑

i Ii(~p)
+ Γc (4)

where a(~p) = md(~p)(Λc(~p)−Γc). This last equation captures
the core idea of their methodology: In order to extract the
illumination chromaticity Γc, one need only derive the value
of a(~p). The image chromaticity, σc(~p), and the sum of all
the colors per pixel,

∑
i Ii(~p), can be directly computed from

the image.
Analytic estimation of a(~p) is in most cases not feasible.

However, in chromaticity space, specular pixels are typically
grouped together into clusters that have approximately the
same value of a(~p) and different

∑
i Ii. As [17] has shown,

all the pixels with the same md value form a line in inverse-
intensity chromaticity space, i.e. the 2D space where the hor-
izontal axis represents 1/

∑
i Ii(~p) and the vertical axis rep-

resents σc. Different md values form distinct straight lines in
inverse-intensity space, which intersect at a single point in the
vertical axis, which is, in turn, the illumination chromaticity
Γc (see Figure 1a). By using Hough Transform, Tan et al.
can compute the intersection point Γc more robustly. Addi-
tionally, in order to further increase the reliability of their al-
gorithm, instead of examining only the single point in Hough
space with the largest number of occurences, they create a his-
togram of the occurences of the different Γc candidates (see
Figure 1b). We will show in section 3 how one can analyze

this histogram of candidate illumination-chromaticities in or-
der to obtain illumination information for arbitrary images.
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Fig. 1. Left: Expected color distrubution in inverse intensity
space. Right: Red channel intersection counting distribution
for the image in Figure 3.

2.2. Specularity Detection

In order to easily identify the chromaticity lines in color
space, one should first obtain a rough estimate of the specular
region. We use the method of Lehmann and Palm [11] for
identifying such regions. The method is simple to implement
and requires minimal user-interaction. A pixel is considered
specular if it is among the brightest pixels in the given image
but its color is still not saturated:

I =
Ir + Ig + Ib

3
> tbImax (5)

S = 1− min(Ir, Ig, Ib)
I

< tsSmax (6)

where I and S are measures of a pixel’s brightness and
color saturation respectively. Imax and Smax are the highest
brightness and saturation values in the image and tb and ts are
their corresponding thresholds. Lehmann and Palm [11] set
tb = ts = 0.5. Tan et al. [17] used a range of threshold values
0.4 ≤ tb ≤ 0.6 and 0.4 ≤ ts ≤ 0.6. We used threshold values
that were more restrictive, with ranges 0.55 ≤ tb ≤ 0.8 and
0.2 ≤ ts ≤ 0.45. The treshold values influene the extend
of the specular regions, but the number of detected specular
regions and their center remain largely unaffected [11].

3. FROM THE LAB TO THE WEB

The methodology introduced by Tan et al. had only been
shown to give accurate illuminant-color estimates under lab-
oratory conditions with controlled illumination, high quality
linear camera and convex objects. Images from the inter-
net introduce new challenges. The image quality is typically
lower than under laboratory conditions. Specularity handling
is more difficult. An image often contains very few clean
specularities, but many pixels may be falsely segmented as
specular. We call this noise, although it is not image noise
in the stricter sense. Finally, specularities often do not fulfill
the theoretical constraints presented in section 2. All these
factors affect the histograms described in section 2.1.



3.1. Extensions to the Histogram Creation

Among the first things to notice is that the specularity seg-
mentation of real world images often labels large bright re-
gions, like the sky, as specular. So noise reduction is a de-
sireable preprocessing step. Assuming that clean specular-
ities typically cover small image regions, we extended the
Lehmann and Palm method as follows.

We did segmentations with increasingly strict thresholds,
ending up with tb = 0.80 and ts = 0.20, and computed con-
nected regions on these pixels. According to our experiments,
large connected noise elements like parts of the sky are more
compact and decay slower than specularities. By threshold-
ing on the decay and the minimum size of the region, many
noise pixels can be removed. The connected components can
be reused to remove small isolated regions and to detect dif-
ferent illuminant sources, see section 3.4.

3.2. Towards Automated Self-Assessment

Due to the large variety of deviations from laboratory condi-
tions, we need to have tools to judge how well the histogram
satisfies our constraints.

All further processing is done on the (linearly) smoothed
histogram with normalized values between 0 and 1. The his-
togram peak can be identified by computing its first deriva-
tive. We define the peak region as the area between the deriva-
tive’s extreme values, expanded until the curve drops below
(raises above, resp.) a threshold of 0.1.
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Fig. 2. Left: Image without true specularities. Right: The
Gaussian fits better than the triangle.

To assess the quality of the peak regions we fitted trian-
gles and Gaussian curves. Ideally, the topmost part of the
peak should clearly follow a triangular shape. Noise or miss-
ing specularities often lead to plateaus that can be better char-
acterized by a broader curve. By comparing the area of the
peak region with the triangle and the Gaussian, we get a mea-
sure of the estimation’s quality. Figure 2 left shows an in-
door image without specularities (picture courtesy of Alexsey
Troshin [18]). Although we obtain a clear histogram (right),
the Gaussian fits the shape better than the triangle.

3.3. Influence of the segmentation performance and noise

We compared automatically and (semi-)manually segmented
images. Within the same image, the results were surprisingly

stable, although the width of the peak region changed. In
Figure 3 (a) and (b), two images are shown that were captured
at almost the same time and place. The first segmentation
used tb = 0.55 and ts = 0.45, the 2nd tb = 0.65 and ts =
0.35, and the 3rd used the same thresholds as the 2nd, but
with manual assistance. The location of the peak is barely
influenced by the rough automated segmentation (c).
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Fig. 3. (a), (b) Two images captured under almost identical
conditions and the segmented pixels in red. (c) plots of the
red-channel histograms of all segmentations together.

Quantitatively, the estimated illuminant color differs be-
tween the two images. For image (a) we obtain as RGB
(0.378, 0.303, 0.318), in (b) (0.339, 0.341, 0.319), which
shows how problematic it can be to to use the absolute values
to analyze the scene content. However, one can still relate
these values and the histogram analysis to other images to
obtain an indirect scene content estimate.

3.4. Multiple Illuminants

Multiple illuminants become problematic when all segmented
regions are analyzed together. In Figure 4, the statue is illu-
minated by an orange and a blue light source. While there is a
clear difference when each image subregion is analyzed inde-
pendently, the combined histogram contains a stronger third
peak. Noise can further obscure the valley between the peaks.
This motivates grouping of similar illuminant estimates.
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Fig. 4. Image illuminated by distinct light sources and the
blue channel histograms for the blueish region, orange region
and both together. Picture courtesy of Wallace Gobetz.

4. DISCUSSION AND CONCLUSIONS

This is preliminary work. Further testing on the relationship
between the accuracy of specularity detection and our his-
togram analysis has to be done. We tested various images
obtained from the web, mostly from Flickr [7]. We worked
with 10 images whose specularities were both hand- and
automatically segmented and 20 further images whose spec-
ular regions were only automatically detected. The results
with manual assistance showed crisper histogram peaks, but
the overall estimate was surprisingly robust to segmentation-
inferred noise. Therefore, the differences in the absolute
estimates are most likely introduced from other sources.
Please note, that other specularity detection methods besides
Lehmann and Palm [11] can also be used, as long as they do
not impose additional constraints on the image.

Tan’s et al. [17] method, and by extension our analysis
too, assumes cameras with linear response (γ = 1). On im-
ages found on the web one can not know whether the cameras
were truly linear, and constraints like non-dielectric surfaces
also influence the result. Nevertheless, we believe that by an-
alyzing the histogram shapes, conclusions about the content
of an image can be drawn, as seen on the example with mul-
tiple illuminants. We are currently developing a system for
grouping images based on histogram information.
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