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Automatic Parameter Selection for Multimodal
Image Registration

Dieter A. Hahn*, Volker Daum, and Joachim Hornegger, Member, IEEE

Abstract—Over the past ten years similarity measures based on
intensity distributions have become state-of-the-art in automatic
multimodal image registration. An implementation for clinical
usage has to support a plurality of images. However, a generally
applicable parameter configuration for the number and sizes of his-
togram bins, optimal Parzen-window kernel widths or background
thresholds cannot be found. This explains why various research
groups present partly contradictory empirical proposals for these
parameters. This paper proposes a set of data-driven estimation
schemes for a parameter-free implementation that eliminates
major caveats of heuristic trial and error. We present the following
novel approaches: a new coincidence weighting scheme to reduce
the influence of background noise on the similarity measure in
combination with Max-Lloyd requantization, and a tradeoff for
the automatic estimation of the number of histogram bins. These
methods have been integrated into a state-of-the-art rigid registra-
tion that is based on normalized mutual information and applied
to CT–MR, PET–MR, and MR–MR image pairs of the RIRE 2.0
database. We compare combinations of the proposed techniques to
a standard implementation using default parameters, which can be
found in the literature, and to a manual registration by a medical
expert. Additionally, we analyze the effects of various histogram
sizes, sampling rates, and error thresholds for the number of
histogram bins. The comparison of the parameter selection tech-
niques yields 25 approaches in total, with 114 registrations each.
The number of bins has no significant influence on the proposed
implementation that performs better than both the manual and the
standard method in terms of acceptance rates and target registra-
tion error (TRE). The overall mean TRE is 2.34 mm compared to
2.54 mm for the manual registration and 6.48 mm for a standard
implementation. Our results show a significant TRE reduction for
distortion-corrected magnetic resonance images.

Index Terms—Adaptive binning, automatic parameter esti-
mation, coincidence weighting, normalized mutual information,
Parzen-window estimation.
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I. INTRODUCTION

M ULTIMODAL registration is central to numerous tasks
in the field of medical image processing. Fully auto-

matic approaches widely utilize similarity measures that are
voxel intensity-based, like mutual information (MI), normalized
mutual information (NMI), or correlation ratio [1]–[4].

The similarity criterion is embedded into an objective function
and optimized numerically. We assume two inputs for the mea-
sure: the reference image and a template image, which is mapped
into the space of the reference using image interpolation. The
computation of the measure requires probability density func-
tions (PDFs) that are associated with the reference, template and
joint intensities. They are not known a priori and have to be esti-
mated from intensity samples treated as independent and identi-
cally distributed (iid) random measures. Approaches to approx-
imate these PDFs with parametric or semi-parametric models
require PDF shape assumptions that become unreliable for dif-
ferent modalities, varying reconstruction settings and changing
fields of view. Instead, nonparametric Parzen-window estima-
tion is commonly applied to this task. It requires a kernel PDF of
an appropriate width in order to work properly. The estimation
process can be discretized efficiently using histograms specified
by the number and the layout of the bins.

An implementation of this PDF estimator requires settings
for the kernel width and the number of histogram bins. These
two parameters are not independent of each other. In addition, it
may be necessary to work on only a subset of the entire overlap
domain to meet runtime requirements placed on the registra-
tion application. Unfortunately, this sampling directly affects
the kernel width and may also interfere with the number of his-
togram bins and their adaptive layout. To achieve a robust imple-
mentation, which works for a whole variety of input images, a
suitable set of values for these parameters has to be determined.
Although these problems are not new, the literature in this field
presents partly contradictory, empirical results. There is ambi-
guity, for instance, about the optimal number of bins used for the
discrete PDF representations, whether or not to determine the
kernel size for the Parzen-windowing automatically or a sep-
arate treatment of the background of the image. Tailoring the
parameters manually to the application problems is very cum-
bersome and time-consuming.

The focus of this article lies on crucial numerical aspects
of the joint PDF estimation. Instead of choosing the param-
eters by empirical adjustment, we extend ideas proposed by
Viola [5] and Hermosillo et al. [6] for presenting an efficient
kernel width estimation algorithm based on histogram binning.
Adaptive kernel sizes can perform significantly better than con-
stant-bandwidth kernels, but they usually have a rather high
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computational complexity [7]. It is also known that isotropic
binning may be outperformed by an adaptive clustering scheme
for the representation of the histogram [8], [9]. From our exper-
iments, we can confirm that an adaptive histogram layout im-
proves the registration accuracy and robustness.

We present a novel quasi-adaptive scheme for the kernel width
selection. It is comprised of a combination of an isotropic esti-
mator with an adaptive histogram binning layout. The resulting
quantization error is used as a criterion to automatically select a
suitable number of bins, based on a tradeoff between quantiza-
tion error and runtime. As part of the results section, we evaluate
the influence of this value on the accuracy of the registration
result. The PDFs obtained from medical images are often degen-
erate, due to the large amount of background information. Thus,
we also propose a novel technique for incorporating background
information into the joint PDF to avoid negative effects on the
binning layout or the kernel width estimation. The combination
of the proposed data-driven methods leads to parameter values
that are optimal with respect to the given input images and the
number of samples. Although the sampling rate may be auto-
matically selected as well, for example based on the runtime
requirements of the application, we demonstrate its influence
on the robustness, accuracy and the computational efficiency of
the registration algorithm. From these results, an uncritical value
can be chosen to speed up the registration without sacrificing too
much accuracy. Altogether, the proposed methods yield an NMI
implementation that does not require predetermined parameter
settings for the density estimation.

This paper is organized as follows. In Section II we summa-
rize state-of-the-art methods for the NMI similarity measure.
The contributions towards a parameter-free NMI are presented
in Section III, which also contains an implementation roadmap.
Comparisons between the proposed methods, along with exper-
iments regarding histogram bins and the influence of the sam-
pling rate, are provided in the results part Section IV. Our con-
clusions and a discussion are presented in Section V.

II. STATE-OF-THE-ART METHODS

A statistical image intensity-based similarity measure re-
quires intensity distributions of the input images. In this section,
we briefly summarize the key aspects of NMI and mention
numerical details regarding the grid effect during the sam-
pling. However, this section focuses on a convolution-based
Parzen-window estimator and the data-driven estimation of its
associated kernel width parameter.

A. Normalized Mutual Information

As initially introduced, the image intensity-based registration
corrects for misalignments between an -dimensional reference
image and a template image using a distance measure be-
tween the two images. Given a spatial transform ,
which is specified either by a parametric (e.g., rotation and trans-
lation parameters) or a nonparametric class of transformations
(e.g., a deformation field in the nonrigid case), the term
refers to the transformed template image at the spatial position

(1)

The general objective function used to search an optimal trans-
form can be stated as

(2)

Nowadays, distance measures based on image intensity statis-
tics are widely used for multimodal registration tasks. Based on
Shannon’s theory [10], the information content within the im-
ages is measured using entropies, which require the marginal
PDFs , , and the joint PDF

(3)

(4)

(5)

where and represent the intensity values of and , re-
spectively, and denotes the vector of these image in-
tensities. These values are treated as random measures and are
obtained by sampling the spatial overlap domain.

Alternatives to density-based entropy estimations are direct
entropic graph estimators as described, for instance, in the
works of Neemuchwala et al. [11] or Sabuncu et al. [12].
Instead of calculating the entropy from estimated densities,
the entropy is directly estimated from the sample values using
graph-based methods, like the minimum spanning tree (MST).
Although the authors claim that an MST method can produce
accurate results at higher speeds, they expect the density esti-
mation-based approaches to yield a wider capture range [12].
Results on registration accuracy also showed a slight advantage
for the density-based measure. A comparison between the
graph-based and our proposed method with optimal parameters
is omitted, because of the higher accuracy and benefits in the
robustness of density estimated NMI registrations reported
in [12].

The most important example for the class of statistical sim-
ilarity measures is certainly MI [1], [2], which is successfully
applied in various applications and proposed by a large number
of articles about multimodal registration. However, it depends
on the overlap domain between the images. If the background
is extended with respect to the foreground object, the proba-
bility for object elements in the image domain decreases. The
joint entropy increases accordingly, but the peak of the MI at
the position of correct alignment is flattened because no new ob-
ject information is gained. The NMI can compensate this effect
through dividing the marginal entropies by the joint entropy [3]

(6)

Note that is written as a distance measure, i.e., smaller
values indicate a better result.

B. Sampling Artifacts

Medical images are usually represented by a regular grid
with orientation and spacing information along the grid axes
and intensity values at each knot. The true density functions
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Fig. 1. Densely evaluated objective function values for translational parameter changes with a rate of 1/50 of the voxel spacings�� in �- and�� in �-direction
around the ground truth optimum for a 3-D image. The distance measure is the negative MI using: (a) linear interpolation, (b) partial volume (PV) interpolation
and (c) PV and jittering. The jittering was implemented using a uniformly distributed random offset added to the grid positions of the samples, which removed the
grid effect.

can, therefore, be only estimated from these discrete obser-
vations. Interpolation has to be incorporated to allow for
subpixel accuracy and target positions between the reference
grid knots. Various reports about the accuracy and benefits
of interpolation methods in image registration can be found
in the literature. Most frequently, nearest neighbor, linear
and partial volume methods are applied [13]. Higher order
approaches are described by Thévenaz et al., who introduced
cubic B-spline-based continuous models of the images for
subpixel accurate optimization [14] and high quality multireso-
lution schemes [15]. Independent of the employed interpolation
method, regular sampling of gridded data leads to serious
numerical problems. Maes [13] and Pluim et al. [16] described
effects on the MI measure for grid-aligning transformations.
The authors showed that, due to these effects, local extrema are
introduced into the objective function and lead to inaccurate
registration results. They described these numerical problems
as interpolation artifacts and proposed to resample the images
in order to avoid grid aligning positions. Tsao [17] later picked
up this problem and thoroughly evaluated not only several inter-
polation methods, but also jittering of the sampling coordinates
and smoothing of the discrete histograms. The jittering adds
normally distributed random offsets to the grid coordinates,
making interpolation necessary within the reference image do-
main as well. The effects of jittering are shown on the densely
sampled objective function for the case of the negative MI in
Fig. 1. It is indeed the jittering, not the interpolation method,
that has the biggest positive impact on the smoothness of the
objective function. The random offsets do not necessarily have
to be normally distributed around the grid knot coordinates,
as proposed by Tsao. Instead, any random placement of the
samples that avoids grid patterns can be used. Thévenaz et
al. [18] identified the sampling itself as the main reason for
the grid effects and proposed quasi-random sampling based
on Halton sequences, which outperforms regular and random
sampling. It can also be used to avoid problems due to varying
amounts of overlap. Quasi-random Halton sequences feature
low discrepancy regarding the resulting coordinates. Even if
the number of samples is reduced for the high resolution steps
in a multiresolution scheme, the additional variance in the ob-
jective function is smaller compared to true random sampling.
Therefore, a nonstochastic optimizer may still be applied.

C. Parzen-Window Estimation

Among nonparametric density estimation techniques,
simple histogram methods, -nearest-neighbors ( -NN) and
kernel-based approaches [9] are usually applied. A histogram
is obtained by partitioning the domain of the random measures
into a number of bins. The discrete PDF is then estimated by the
fraction of samples that fall inside the bins. Although the number
of bins is acting as a smoothing parameter, the histogram suffers
from discontinuities at the bin boundaries. Finding a solution
for the multimodal registration problem with at least first-order
optimization techniques requires a differentiable similarity
measure and, in turn, a differentiable PDF estimate. The estimate
should be adequately smooth even if sparse statistical sampling
is applied, which is not the case for histograms of larger numbers
of bins. In addition, equidistantly-spaced histograms may not
resemble the true PDF structure if the distribution has a high
local variance. The -NN and kernel approaches are related to
each other. In the -NN method one assumes that random
measures fall inside some region of the domain. The volume of
this region depends on the chosen value of and is determined
by the data. The variable acts as a smoothing parameter that
is independent of the position. However, the estimated density
has discontinuities between data points and the integral over all

-space diverges. Alternatively, one can keep the volume fixed
and determine the number of random measures that fall into
the region, leading to a kernel-based estimator. In the 1-D case
with random samples the Parzen-window
PDF estimator [19], [20] is

(7)

where is the kernel PDF with a width of , the smoothing
parameter for this method. It can be shown for iid random sam-
ples that the mean estimator converges asymptotically
to the true PDF for large values [5], [20]

(8)
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Here, denotes the expected value. The convolution in (8), de-
noted by the operator “ ” yields a blurred version of the true
density. When the number of samples becomes infinitely large,
the kernel width reaches zero and converges into Dirac delta
peaks centered at the random measures. The true density is also
recovered when has bounded frequency content and is
a perfect low pass filter with an appropriate cutoff frequency.
In practice, this means that although the number of samples is
finite, the PDF can be well approximated if is a smooth
function and a low pass filter [5].

There are nonparametric methods for PDF estimation partic-
ularly designed for multimodal image registration. Maes et al.
[1] applied a discrete representation of the PDF with equidis-
tantly-spaced histograms, whereas Wells et al. [2] suggested a
continuous Parzen-window estimator to model the joint PDF.
Although the latter approach does not require a binning scheme
for the discrete PDF, it yields a relatively high computational
complexity, i.e., for random samples and evalua-
tions of the estimator. Some effort has been made to reduce the
computational load by transforming the problem into the fre-
quency domain [21], which reduces the costs to .
A compromise is suggested by Thévenaz et al. [15] to com-
bine the smoothing properties of third order B-spline kernels
with an equidistant binning scheme. Recently, a nonparametric
window (NPW) technique that does not require kernels for the
density estimation has been proposed by Dowson et al. [22].
Their density estimator is based on an approach introduced by
Kadir and Brady [23], which estimates the statistics from the
samples by calculating the distribution of piecewise sections of
a signal for a specific interpolation model. The smoothing is
shifted from the probability into the signal domain. Downson
et al. recommend their NPW due to its high accuracy and its
robustness to the number of samples and histogram bins. The
authors show promising results using their estimator plugged
into an MI-based registration, however, the computational costs
for their technique are up to 50 times of other state-of-the-art
methods [22]. The density can also be estimated directly from
the intensity iso-lines of the image, as described in the work of
Rajwade et al. [24]. Similar to the method of Kadir and Brady,
the approach does not require kernels. Instead, they quantize the
image into a number of intensity levels and divide it into triangle
patches located at each pixel. The intensity level curves are then
approximated locally as straight lines. The joint density is es-
timated by calculating the contribution of the parallelogram of
the iso-intensity lines clipped against the triangle patches. While
their method is demonstrated to be applicable to magnetic res-
onance (MR) images, the authors did not examine its usability
in multimodal registration between functional and morpholog-
ical data, where it is unsure whether the iso-intensities in both
images sufficiently relate to each other.

In the following, we will concentrate on kernel-based den-
sity estimators that share the need for determining a value for
the kernel width parameter. Some authors argue that it is rather
simple to determine suitable values for the kernel size by em-
pirical adjustment [2], [25]. Unfortunately, the kernel width
is dependent on the image content, the discrete representation
of the PDF and the number of random measures. For a fixed
finite number the estimator is sensitive to . If on

the one hand the chosen value for the kernel width is too
large, the estimated density is over-smoothed and the nature of
the underlying distribution is lost. On the other hand, too small
values for insert artificial structure that is not present in the
data. A general registration algorithm for clinical applications
should handle various imaging modalities and different fields of
view. Finding a good overall kernel width empirically for each
modality combination is quite cumbersome and, as we will show
in the results, leads to mis-registrations and less accurate results.

Finding appropriate values for is further complicated by
multilevel optimization techniques, which are employed to in-
crease the attraction range of the desired optimum and to avoid
being trapped in undesired local optima [14], [15]. The regis-
tration result for a level of the resolution pyramid is applied as
a starting point for the next one, which increases the robust-
ness of the entire registration. The ratio between the number
of samples and the information contained in the images of the
pyramid varies between the levels and, in turn, influences the
kernel size parameter . The basis for the kernel width estima-
tion in the discrete case is a maximum likelihood formulation.
Unfortunately, the related objective function to determine an op-
timal value for the kernel width, with respect to the random sam-
ples, has a high computational complexity for the continuous
Parzen-window estimator. Therefore, we will concentrate on a
discretization and gradually present the steps towards a convolu-
tion-based Parzen-window estimator that makes use of discrete
histograms.

1) Leave-One-Out Cross-Validation: In order to determine
appropriate values for the kernel width , the observations them-
selves are used. In this data-driven approach care has to be taken
to use disjoint sample sets for estimating the kernel width pa-
rameter and the objective test function. A common technique to
resolve this problem of overfitting is cross-validation [26].

For a leave-one-out cross-validation strategy, let be
the estimator after deleting the th sample

(9)

This estimator is independent of the value at . The probability
may, therefore, be used as a measure of how well the

estimator fits to with respect to the parameter . The resulting
log likelihood objective function is expressed by [27]

(10)

An optimal value for the kernel width yields a maximum log
likelihood

(11)

In practice, such a data-driven approach is well known to
deliver reliable results. However, its efficiency drastically
decreases with increasing sizes of the sample set. Typically,
a leave-one-out cross-validation method to determine for
a specific kernel size has a relatively high complexity of

. In Section III, we propose an approximation
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that leads to a binned version of the discrete PDF with a major
reduction in complexity.

2) Efficient Discretization Scheme: The theory of Parzen-
window estimation is based on a continuous representation of
the samples. The estimated PDF is optimal given the correct
kernel width. As described above, this approach has a high com-
putational complexity, which can be alleviated by the usage of
histograms. The estimator then resembles the behavior of a mix-
ture model with as many components as bins. The samples
are stored in a discrete histogram with bins, . Here,

denotes the fraction of samples that fall into the bin
containing . The bin width for an equidistantly-spaced his-
togram is given by , with
being the maximal and the minimal image intensity value,
respectively. A discretization like this results in an error because
the correct location of the random measures is no longer con-
tinuous, but rather a discrete bin index, and the estimated PDF
value is assumed to be constant for the entire bin. Let be the
discrete PDF estimator that differs from its continuous counter-
part by a binning scheme based on a histogram. This piece-
wise constant PDF estimate is given by

(12)

where is the intensity value corresponding to the center of the
th bin. The error between the two estimators is

(13)

with

(14)

An illustration of this error for the th bin is given in Fig. 2.
If the approximation errors are neglected, equation (12) yields

a complexity of with , which allows for a substan-
tially faster computation of the discrete PDF estimate compared
to a continuous approach. Of course, the number of bins and the
binning scheme used for the histogram affects the accuracy of
the estimation.

A very common choice for the kernel PDF is the
Gaussian. In practice, (12) can then be evaluated efficiently
using recursive Gaussian filtering [28]. In cases where the
partition of unity constraint [15] is required for the density
estimation, the Gaussian may be replaced by another suitable

Fig. 2. Illustration of the approximation error between the continuous PDF es-
timator � and the discrete version �� utilizing a binning scheme. The area
between the two graphs integrates to the error � for the �th bin. Graphically, this
is denoted by the “�” and “�” marked areas representing under- and overesti-
mations, respectively.

kernel that fulfills this criterion, e.g., a cubic B-spline [29],
[30]. The density estimation discussion is continued using the
example of Gaussian kernels.

Let be the 1-D Gaussian, which is a suitable low pass filter.
The discrete Parzen-window estimator may then be written in
terms of a convolution

(15)

In practice, the integral over the resulting discrete PDF has to be
enforced to sum-up to one by appropriate normalization of its
entries. This is due to numerical errors in the low pass filtering
itself, discretization errors described above and particularly the
fact that the Gaussian kernel does not fulfill the partition of unity
constraint.

The optimization problem (11) for the kernel width of the dis-
crete estimator can be solved using an iterative, nonlinear opti-
mization scheme, e.g., gradient ascent. The following formula
specifies the gradient of the objective function, which may be
used during the optimization

(16)

The gradient has to vanish at the position of the optimal kernel
width. Similar to the leave-one-out notation for the PDF esti-
mator introduced above, refers to the histogram after dele-
tion of the th sample. Note that, from a numerical point of view,
the domain of the intensity random variable is rather important.
In order to achieve numerically stable results, the density trans-
form theorem (DTT) [31] can be applied. According to this the-
orem the kernel width parameter for the discrete estimator is
invariant to constant offsets applied to all random values but not



HAHN et al.: AUTOMATIC PARAMETER SELECTION FOR MULTIMODAL IMAGE REGISTRATION 1145

to linear scalings. Let be a scaling factor for the inten-
sities and an offset. An affine transform of the random
measure is given by

(17)

Applying the DTT to the Gaussian density function, the
kernel PDF of the transformed samples can be expressed
using the determinant of the Jacobian of (17)

(18)

The kernel width for the transformed domain is therefore

(19)

From a numerical point, this relation is very convenient, as both
the convolution (15) and the optimization of the kernel width
parameter(11) can be performed in any affine-transformed do-
main. Thus, numerical problems can be effectively avoided by
choosing an appropriate value range of the input samples. Ac-
cordingly, the sampled histograms may be directly convolved
with a Gaussian of adapted kernel size that is defined by
the affine transform into the histogram space. This transform
is given by the bin indices and basically detached from the true
intensity values—a technique that has been applied before by
Hermosillo et al. [6].

III. EXTENDED METHODS TOWARDS A PARAMETER-FREE

SIMILARITY MEASURE

In this section, we present a novel quasi-adaptive scheme for
the kernel width selection. It is comprised of a combination of an
isotropic estimator with an adaptive histogram binning layout.
We propose a new scheme to automatically select a suitable
number of histogram bins. Subsequently, we introduce a novel
technique for reducing the influence of background noise on the
registration accuracy. We call it coincidence weighting in the
following, according to the coincidence thresholding approach
by Rohlfing et al. [32], [33]. The last part of this section con-
tains details for an implementation of the methods.

A. Adaptive, Anisotropic Kernel Widths

In data-driven approaches for estimating the optimal kernel
width, one can observe that the result is directly related to the un-
certainty within the data, i.e., the number of samples. Due to the
discrete nature of histograms, this uncertainty is reflected by a
varying smoothness or degenerations. Estimators using constant
kernel widths cannot distinguish between regions of high and
low certainty within one histogram. Therefore, several authors
in the field of pattern recognition suggest making this param-
eter spatially variant (see, for example, [7] and [34]). In many
medical images the PDF of the intensity values is rather degen-
erate, as the background yields a strong, dominating peak in the
PDF. The convolution with a low pass filter, as proposed in Sec-
tion II-C-II, smears this peak over the neighboring bins, which

overshadows valuable image content. The ability to adapt the es-
timator to PDFs of varying smoothness is, therefore, an impor-
tant feature for image registration. In the following, we use the
term adaptive, anisotropic kernel width in the context of PDF
estimation to express the property that the estimator is adapted
to the structure of the underlying PDF using varying kernel sizes
throughout the intensity ranges of the reference and the template
image. For the joint density estimation, the kernel widths along
each direction may be different, which is taken into account by
anisotropic Gaussian kernels.

Given kernel widths , an adaptive
Parzen-window estimator reads

(20)

This estimator has recently been applied to human motion
tracking for the modeling of position and orientation priors
[34]. The adaptive estimator focuses better on the structure of
the PDF by allowing smaller kernel sizes in areas with many
training samples. Sparsely sampled areas of the PDF can still be
approximated by larger kernel widths. The authors suggested a
linear combination of covariance matrices and a scaled identity
matrix to determine the parameters. Katkovnik et al. [7] com-
puted confidence intervals of the random variable domain using
a pilot density from an estimation with a constant kernel size
and knowledge about the sample variance. The intersections
of these intervals determine the adaptive kernel sizes. The
method results in small widths in regions with high variance
compared to areas with low variance, where larger values of
the kernel size tend to decrease the mean squared error (MSE)
between the estimate and the true PDF. The authors show that
an estimator using adaptive kernel widths produces estimates
with less variance in the MSE.

B. Quasi-Adaptive Kernel Widths

A disadvantage of adaptive, anisotropic kernel widths applied
to image registration is the increased computational complexity
for both the estimator and the formulation of its derivative. The
efficient representation presented in Section II-C-II cannot be
used in estimators with varying kernel sizes. Therefore, we pro-
pose a novel combination of an adaptive binning scheme with
nonvarying kernel sizes for the PDF estimation. Instead of deter-
mining different kernel widths for an equidistantly-spaced his-
togram we propose to approximate the PDF using a histogram
with varying bin sizes. The corresponding bin centroids define
a quantization characteristic that is used to map the input inten-
sities to requantized output values. These, in turn, can be rep-
resented with an equidistantly-spaced histogram. A density es-
timation on this requantized intensity space then does not have
to account for different bin widths of the histogram and the pro-
posed estimation scheme of Section II-C-II can again be applied.

For its application in multimodal medical image registration,
a statistical similarity measure has to rely on PDF estimates
for the reference, template and joint intensities. A major draw-
back of estimating the discrete PDFs using equidistantly-spaced
histograms is that intensities of a single tissue class may end
up in different bins. Intensities measured in medical imaging
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rarely follow a uniform distribution because the probabilities
for all tissue classes would have to be equal, which is obviously
not the case. Additionally, the dimensions of the organs inside
the human body vary between individuals and the extent of the
background region depends on the field-of-view. Adapting the
bin sizes to the structure of the PDF, therefore, leads to a better
representation with respect to a smaller quantization error. This
approach has been proposed previously by Knops et al. [8] who
applied intensity clustering. In this paper, we follow an alter-
native approach by Lloyd [35] and Max [36]. It is well known
that the Lloyd-Max scheme yields a minimum-error quantiza-
tion with a minimal noise power for a given number of bins

and a set of bin center locations. The th bin is defined by an
intensity interval with the centroid . The noise power
of the requantization with respect to the signal PDF is

(21)

According to Lloyd [35], a fixed point iteration scheme can be
applied to optimize an adaptive layout of the bins that minimizes
(21). The update steps during each iteration are

(22)

If applied to the quantization of images, and can simply
be chosen as the minimal and maximal image intensity values.
Again, denotes the unknown true PDF. However, it can be
approximated using an equidistantly-spaced histogram with an
adequately small bin size and a large number of samples, prefer-
ably the entire image domain. In practice, medical images are
usually stored with 16-bit accuracy or less, which allows for a
discrete representation of with bins. Note that this his-
togram and the fixed point iteration to minimize (21) have to be
computed only once.

C. Selection of the Number of Histogram Bins

The histogram binning introduces quantization errors and,
therefore, a loss of accuracy compared to the optimal density.
Thus, the question becomes how many bins are a good com-
promise between efficiency and accuracy. An empirical result
states that the optimal number of bins for a joint histogram used
in NMI is 64 [8]. From a theoretical point of view, there is no
explanation why 64 bins should be the best possible choice. As
the final quantization error is also dependent, for instance, on
the image content and the number of samples (see also Fig. 3),
the general nature of this result is questionable. We, therefore,
propose to estimate this parameter specifically corresponding to
the input images.

The quantization error criterion (13), which is used for the
adaptive histogram binning, can also be utilized to determine a
suitable number of bins. The continuous density estimate may,
for this purpose, be approximated by a discrete histogram using
the methods described above. It could be based on the full inten-
sity resolution, i.e., bins for a 16-bit quantized image, and all

Fig. 3. Optimal kernel width parameter values for various numbers of samples
and bins. (a) shows a slice of a CTA scan, (b) the corresponding optimal values
for the kernel widths and their standard deviations due to random sampling with
different number of samples (100, 1.000, and 10.000). The results are from 100
subsequent runs.

intensity values could be stored in the image grid. Such a huge
number of bins is undesirable for a computationally efficient
distance measure computation. We suggest that one defines a
lower threshold for the discretization error between this high
resolution and the discrete estimate . The number of bins
can now be computed in an iterative procedure starting from an
initial, minimal value, e.g., 16 bins. Equation (13) is solved for
each discrete estimator built with this number of histogram bins.
The iteration stops if falls below the defined threshold. As the
integrals over the discrete density estimates are normalized to
sum-up to one, the threshold is invariant to the image content
and a universally reasonable value can be chosen. In the per-
formed experiments we evaluate the sensitivity of this threshold
on the registration accuracy and motivate that a value of 0.005
is a reasonable tradeoff between accuracy and runtime. Fig. 4
shows an example for the computation of the number of bins
needed for the reference (CT) and template (PET) image. The
quantization error drops heavily in the beginning of the iterative
process and converges slowly towards zero as the number of bins
increases. The adaptive binning proposed in Section III-B yields
a smaller number of bins compared to equidistant bin spacings
at the same error level.

D. Coincidence Weighting

Medical images are the result of discrete modality specific
reconstruction methods based on physical measurements. In
reality, these measurements are affected by detector noise and
physical effects, for example beam hardening or scattering
in CT. This noise is propagated through the reconstruction
chain. Problems for image registration algorithms arise from
structured noise that, unfortunately, is not only dependent on
the reconstructed object itself, but also partly on the acquisition
geometry. Although the noise may occur in all parts of an
image, the major problems are primarily caused by artificial
structures in the otherwise completely homogeneous back-
ground. The resulting transformation of the object becomes less
accurate because the image registration algorithm tends to align
the structured noise as well. In the case of medical images one
typically assumes that intensities belonging to the background
are at the lower end of the intensity range. Some authors have
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Fig. 4. Automatic selection of the number of bins for a reference CT and tem-
plate PET image (a) The quantization error curves for the CT (b) and the PET
(c) have been computed with respect to a 16-bit high resolution density esti-
mate. The plots show that the adaptive binning results in a smaller quantization
error compared to uniform binning. A threshold level of 0.005 in this case yields
values between 40 and 50 for the number of bins.

tried to eliminate this problem by using intensity thresholds
within the joint histogram for a standard and coincidence
thresholding [32], [33] or by masking the background region
of the images [14]. The standard thresholding is similar to
applying a mask to the background. Only those joint intensities
are taken into account with both the reference and the template
intensity value being above the corresponding background
threshold. Therefore, only the overlap between the object parts
is incorporated into the distance measure and combinations
with the background regions are discarded. Thus, the robustness
of the registration decreases, as large initial misalignments with
a small object overlap cannot be recovered anymore.

To account for these blind spots in the object-to-background
relations, Rohlfing and Beier [33] have proposed a thresholding
that only affects alignments between background parts of the
images. Elements in the joint histogram are discarded if they
correspond to intensities below both the reference and the
template background thresholds. They called this technique
coincidence thresholding and reported a reduction of the max-
imum registration error without loss of accuracy in cases with
a minor noise level. For an implementation of this technique,
the threshold values for the reference and the template back-
ground intensities have to be specified. The authors provided

Fig. 5. Intensity histograms for the images in Fig. 4(a) Plot a) shows the his-
togram for the CT with the computed threshold marked as vertical line at around
���� ��, plot b) is analogue for the PET.

experimentally determined values, however, these thresholds
are very modality- and image-specific. Even if the intensities
are related to a specific type of tissue (e.g., Hounsfield units
in CT), the images may still differ in content and contrast. For
example, cardiac CT images have a different intensity distribu-
tion than whole body scans. Depending on the field of view, the
background may not even be included within the image.

In the following, we propose a novel alternative to coinci-
dence thresholding that does not require fixed threshold values.
Thévenaz et al. [14] have applied a Max-Lloyd quantization al-
gorithm to binarize a low pass-filtered version of the image. To-
gether with the filtering, the algorithm computes the bin widths
for a histogram of size two. The boundary between the two bins
is assumed to separate intensities in the background from ob-
ject values. Fig. 5 shows results of this algorithm for the ex-
ample CT and PET images provided in Fig. 4(a). Thévenaz et
al. used the resulting Max-Lloyd threshold to mask out inten-
sity values in PET images. The determined threshold may also
be used in the coincidence thresholding for other modalities.
We further relax the strict thresholding constraint and propose
a novel weighting-based method instead. In some acquisitions,
the field of view is placed totally inside the boundaries of the pa-
tient’s body. If coincidence thresholding is applied to the joint
density with the resulting Max-Lloyd threshold, the algorithm
loses information about low-intensity structures between the ob-
jects. Therefore, we propose a tradeoff that does not clamp the
coincidence region in the joint density to zero, but rather applies
a weighting to the background-aligning probabilities. The prob-
abilities for object and for background joint intensities
are calculated from the joint histogram

(23)

Here, and denote the bin indices that contain the cor-
responding Max-Lloyd threshold values, is the number of
histogram bins for the reference image and the number of
histogram bins for the template image, respectively. Fig. 6 il-
lustrates the regions within the joint histogram that are
used to calculate and . The following equation defines
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Fig. 6. Illustration of the regions used for the calculation of the coincidence
weights within an exemplary sketch of a joint histogram ��� . The lower
left rectangular region corresponds to the background-to-background, the upper
right region to object-to-object intensity mappings.

the value for the weighting factor to ensure that the back-
ground combinations do not contribute more to the joint density
than object-to-object alignments.

if
otherwise. (24)

The histogram weighting factor is then applied to all histogram
entries with joint bin indices in the range of to .
The histogram is normalized afterwards to sum-up to one, and
the Parzen-window estimation (15) is performed. Fig. 7 pro-
vides examples for the joint density estimation of the images
Fig. 4(a) at an initial starting position. Although the image pair
shows a large amount of background information, the proposed
weighting scheme leads to similar joint density estimates, even
when the number of samples is strongly reduced.

E. Implementation Roadmap

We suggest incorporating the methods proposed in the pre-
vious sections at specific points of a registration algorithm. To
minimize the computational overhead, some of the data-driven
schemes can be performed only once in a preprocessing step
before the actual multilevel registration is started. Primarily,
the preprocessing is necessary in order to achieve a non-
linear requantization for the quasi-adaptive kernel estimation
and to compute the background intensity thresholds for the
coincidence weighting. The requantization can be efficiently
combined with the creation of a multiresolution image pyramid,
which is used in a multilevel nonlinear optimization afterwards.
The main registration loop usually implements an iterative
numerical scheme over several resolution levels to optimize the
transformation between the images. We assume that the optimal
kernel widths for the Parzen-window estimation can be used for
an entire nonlinear optimization on a single level. Therefore,
we introduce a preprocessing step also for a single level, where
the data-driven kernel width computation is performed. During
the nonlinear optimization the resulting kernel width values are
used for the actual PDF estimation with the efficient discretiza-
tion scheme for the Parzen-window technique. The remaining
steps, to complete the registration algorithm, may vary between
different applications and have been omitted for the sake of
clarity and generality. The following listing summarizes the

required implementation steps and provides references to the
corresponding sections in this paper.

PREPROCESSING

• Compute background intensity thresholds (Sec-
tion III-D).

• Compute the number of bins for the reference and the
template image (Section III-C).

• Calculate adaptive histograms (Section III-B).
• Use adaptive binning information to determine non-

linear requantization characteristics (Section III-B).
• Requantize image intensities and threshold values.
• Create multiresolution image pyramids for multilevel

optimization.
MAIN REGISTRATION LOOP

1) Multilevel Preprocessing
• Estimate optimal kernel width values for the current

resolution of input images and number of samples
(Section II-C-II).

2) Nonlinear Optimization until Convergence
• Determine the joint histogram by sampling (Sec-

tion II-B).
• Apply coincidence weighting with the thresholds

found in the preprocessing step (Section III-D).
• Estimate the joint PDF using the efficient dis-

cretization scheme for the Parzen-window approach
with the optimal kernel widths for this level (Sec-
tion II-C-II).

IV. RESULTS

The described methods have been integrated into the NMI
distance measure of a state-of-the-art rigid registration appli-
cation. An evaluation based on the retrospective image regis-
tration evaluation project (RIRE version 2.0) database of brain
images was performed. The database consists of CT, MR, and
PET images. For some of the MR images, the database contains
corrected images regarding scanner-dependent geometry distor-
tions. These images are marked by the term rectified. The entire
evaluation consists of CT–MR, PET–MR, as well as MR–MR
image pairs, which yields 114 registrations in total. West et al.
[37], [38] proposed a gold standard registration based on the
detection of fiducial markers and evaluated the target registra-
tion error (TRE) for the transformations. The markers have been
erased before the distribution of the data for a blind study.

Using the RIRE data we compared the data-driven parameter
selection methods to standard settings found in literature and
also to a manual registration by a medical expert. To our knowl-
edge, this is the first time that manual registration results are
published for this database. The following parameter selection
methods are compared.

S Standard parameter settings.

K Automatic Parzen-window kernel width selection.

C Coincidence weighting.

R Adaptive requantization with an automatic selection of
the number of histogram bins.

M Manual registration by a medical expert.
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Fig. 7. Joint density estimates for a PET-CT image pair after automatic selections of the number of bins, calculation of the adaptive bin layout, coincidence
weighting and automatic calculation of the kernel width for the Parzen-window estimation. The number of samples for the estimation has been reduced to 10%
(a), 1% (b), 0.1% (c), and to 0.01% (d) of the overlap domain in the highest resolution of the images.

Combinations between the techniques are also evaluated: for
example the parameter-free NMI approach is achieved by the
combination KCR. The effect of the number of bins used for the
histograms, with respect to the registration accuracy, is analyzed
as well. For the combinations without requantization (no R), the
values 16, 64, and 256 denote the fixed setting for the histogram
sizes. When R is enabled, the values are used as initializations in
the minimization of the quantization error that yields the number
of bins. For most of the medical images, the estimated number
of bins is in the range of 30–60. The minimum requirements of
64 or 256 bins already fulfill the quantization error criterion in
most of the cases and the resulting number of bins are then 64
or 256, respectively. For a comparison between the number of
bins in the R combinations, we, therefore, suggest that one uses
results from the entries for 16 and 256 bins presented in the fol-
lowing tables and plots. Quasi-random sampling was performed
using Halton sequences with a length of 10% of the voxels con-
tained within the overlap domain at the current iteration. A min-
imum number of 10 000 samples was used for lower resolutions.
The jittering and partial volume interpolation was always per-
formed, even when using S. These algorithm combinations not
containing a specific identifier use the standard settings instead.
For example, the CR method applies the default kernel widths
instead of data-driven estimates. We used an Intel Core 2 Duo
2.6-GHz computer with 3 GB of main memory. The average
registration time took approximately 20 s for a single CT-MR
image pair and 10 s for MR-PET pairs, compared to several min-
utes needed with larger numbers of samples.

A. Manual Registration

The manual registration was performed with a rigid registra-
tion software which has been integrated into the commercial
volume rendering application InSpace. It allows to interactively
rotate and translate the template image within three adjustable
multiplanar reconstruction views of the reference volume. The
transformation parameters can be refined by mouse movements
in a drag and drop fashion. The current registration accuracy can
be directly assessed by a fusion visualization with color overlay
or a linked side-by-side visualization with a duplicate cursor that
points onto the corresponding position within the other image.
The effect of the mouse movement onto the scale of the trans-
formation parameter can be controlled by the zoom factor of
the view. During the manual registration process, only the vi-
sual feedback was provided to the medical expert. Particularly,
no additional information about the similarity measures for the

current transform parameters was accessible in order to achieve
unbiased manual registration results.

It took the medical expert an average (standard deviation)
time of 3.5 min for one registration and 6 h and 37 min
in total for all image pairs. These measurements do not include
the loading of data or breaks during the registration process.

B. Registration Approach and Standard Parameter Settings

A state-of-the-art registration typically consists of a multires-
olution representation of the input data and a numerical opti-
mization scheme for the similarity measure values. The regis-
tration algorithm incorporates several multiresolution stages to
increase the robustness. In our case, we applied a linear interpo-
lation scheme to create multiresolution pyramids of both input
images down to a minimal size of 32 along each direction. A
single coarsening step reduces the number of voxels in each di-
mension to half the size. In cases of highly anisotropic voxel
spacings, for example when the spacing between two slices is
substantially bigger than the in-plane resolution, the coarsening
is restricted to the dimensions of the smallest voxel spacing in
favor of more isotropic image resolutions within the down-sam-
pled images. As optimization scheme, a simple hill-climbing
is used, which does not require the gradients of the similarity
measure and solely relies on the numerical values at the param-
eter positions. Therefore, we can assure that no side effects from
the similarity measure derivatives influence the comparison be-
tween the parameter selection methods. The same convergence
criteria for the nonlinear optimization and the same pyramid
coarsening schemes are used for the entire comparison between
the parameter setting methods. The typical scheme for an im-
plementation of a rigid registration is described, for instance,
in [39].

The default method S consists of a Parzen-windowing with
a fixed kernel size. The density estimation makes use of recur-
sive Gaussian filtering of the discrete histogram with the value
of set to the square of the bin width. Neither the proposed co-
incidence weighting nor the requantization of the intensities is
applied.

C. Sampling Percentage and Binning Threshold

The proposed approach contains two parameters that are
not estimated automatically, namely the sampling percentage
and the quantization error, which is determined by the binning
threshold. In order to examine the effect of those parame-
ters on the registration algorithm, both the accuracy of the
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Fig. 8. Accuracy and runtime performance of the registration process evaluated
on a subset of the RIRE database using different numbers of samples in the
KCR 256 approach a) and varying values for the histogram binning tradeoff
b). The accuracy is determined by the mean landmark TRE in mm, the runtime
is provided in percentage of the largest mean registration time. Separate curves
are shown for the accuracy values with respect to CT-MR and PET-MR (dashed
lines), as well as the relative runtime of the registration process (solid lines).

resulting registration and its runtime have been compared to
different settings. A subset of the RIRE database (Patient_001,
Patient_005), consisting of 12 registrations for each setting
between the rectified MR, CT and PET images, has been used
in this experiment. Fig. 8(a) shows how the accuracy and the
runtime of the registration process increases with a growing
number of samples and smaller quantization errors for the
histograms. For these results, a minimum number of 1000
samples has been used. In the first evaluation on the sampling
percentage, the KCR approach has been applied with at least
256 histogram bins to exclude possible side effects from the
histogram quantization. The accuracy is measured as the mean
TRE between the fiducial markers. The runtime is provided in
percentages of the largest mean registration time. A sampling
rate of 10% has shown to be a good tradeoff between the re-
sulting accuracy and the required processing time. In Fig. 8(b),
the same data has been used to examine the effect of the binning
threshold on the KCR method with at least 16 histogram bins.
The smaller the threshold for the histogram quantization error,
the larger the number of bins for the histogram becomes. In the
CT registration cases the threshold values have no significant
influence on the registration accuracy. For the PET cases, a
larger number of histogram bins provides an additional im-
provement, however, the runtime drastically increases. Given
these results, a sampling rate of 10% together with a binning
threshold of 0.5% for the histogram quantization have been
chosen for the following comparison between the parameter
selection methods.

In addition, the minimum number of samples has been in-
creased to 10 000 in order to stabilize other methods within
the lower resolutions of the images, as we encountered prob-
lems with the Parzen-window density estimation using the fixed
standard thresholds in the coarse image registrations. Although
we did not reduce the image sizes to less than 32 voxels along
each dimension, some PET and MR images have less slices in
their original resolution already and 10% of the number of ini-
tially overlapping voxels may be very low. The KCR approach
is less variant to the minimal number of samples. For the other
methods, however, it helps to eliminate misregistrations and to
increase the accuracy. This is shown in Fig. 9, where we com-
pare the effects of using a minimum number of samples of 1000

Fig. 9. Accuracy with respect to varying sampling rates using the CR approach
with 256 bins and 1000 a) and 10 000 b) minimum number of samples. Note that
some values in the second plot coincide for small sampling rates, as the number
of samples was raised to 10 000 in those cases.

and 10 000 for the CR approach with 256 bins. A comparison
between the plots in Fig. 8(a) and Fig. 9(a) shows that the KCR
approach is less variant to the number of samples and, therefore,
more robust than the CR approach.

D. Significance Tests

A two-tailored paired -test at a 5% level of significance
was used in analyzing the statistical differences between the
various approaches on the basis of the median TRE values.
Tables I and II present the TRE values for the CT-MR and
PET-MR RIRE data registrations.

The first tests comprise a statistical comparison between the
proposed fully automatic NMI approach, i.e., the KCR method
with an initialization of 16 bins, and an implementation using
standard parameters from literature with 16, 64, and 256 his-
togram bins. KCR yields a significantly higher accuracy com-
pared to S for 16, 64, and 256 bins. A comparison with the
manual registration also results in a significantly higher accu-
racy in favor of KCR. The amount of improvement in accuracy
slightly degrades when comparing KCR with 256 bins (cf. note
above) and S (6.1% level of significance), and also KCR 256
with M (5.5% level of significance).

We also examined whether a specific number of histogram
bins performs better than another. There is indeed a significant
difference within the results achieved by S 16 compared to S 64
and S 256, especially in the PET-MR registrations. Between
S 64 and S 256, however, the observed improvement in per-
formance was not so significant. In comparison, the proposed
KCR approach performs consistently well, independent of the
number of histogram bins.

E. Target Registration Errors

Figs. 10–12 show the mean TRE values of the various tech-
niques along with the standard deviations for all the evaluated
modality pairs. For the MP-Rage sequences all presented tech-
niques achieve similar accuracies and a single, outstanding ap-
proach cannot be identified. The automatic CT-to-MP-Rage reg-
istrations show a slightly increased accuracy compared to the
medical expert, which is the inverse of the MP-Rage-T2 pairs.
In the plots of Fig. 10, which show the results of the CT-MR
registrations, a clear improvement of most of the techniques is
evident for the rectified MR sequences. In these cases, the au-
tomatic registration techniques yield accuracy improvements of
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TABLE I
MEDIAN TRE VALUES FOR CT AND MR MODALITY PAIRS. N DENOTES THE NUMBER OF PATIENTS AVAILABLE FOR EACH MODALITY COMBINATION

TABLE II
MEDIAN TRE VALUES FOR PET AND MR MODALITY PAIRS. SEE NOTES IN TABLE I

up to one millimeter. The NMI implementation with all data-
driven parameter selection methods enabled (KCR) shows con-
sistently good performance for all image pairs. Similar state-
ments can be made for the results of the PET-MR image pairs
in Fig. 11. The coarse resolution of the PET data results in larger
TRE values. The geometry correction of the MR images seems
to play a more important role for PET combinations compared
to CT. Again, the proposed KCR technique is performing very
well for all PET-MR image pairs. The overall mean TRE mea-
sured for all image pairs (CT-MR, PET-MR and MR-MR) is
2.34 mm for the KCR technique with 16 bins, compared to 2.54
mm for the manual registration and 6.48 mm for a standard im-
plementation with 64 bins.

F. Acceptance Rates

Besides the median and mean TRE analyses, we also inves-
tigated the overall landmark acceptance rates of the fully auto-
matic KCR approach for the NMI starting with 16 number of

bins compared to the standard approach with 64 bins and the
manual registration. The acceptance rate AR is determined, for
a specific error threshold, as the ratio between the number of
landmarks with a TRE smaller than the threshold and the total
number of landmarks. Values for the acceptance rate are, there-
fore, in the range of . The plots in Fig. 13 show the in-
crease in the acceptance rates as the error threshold increases.
The visual appearance of the curves allows to directly compare
the performance of the techniques for various modality pairs.
One can think of the acceptance rate curves as a special form
of receiver operating characteristics (ROC) curves, which are
heavily used in pattern recognition [40]. Apart from small land-
mark error levels in the PET-MR rectified images, the KCR ap-
proach performs better than the standard. It yields a 90% accep-
tance rate for a TRE of 2.5 mm for distortion corrected CT-MR
and 6 mm for PET-MR combinations. The manual registration
by the medical expert achieves higher acceptance rates only for
the PET combinations with the noncorrected MR images. In all
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Fig. 10. Mean and standard deviation TRE values for CT to MR registrations: (a) CT-to-PD, (b) CT-to-T1, (c) CT-to-T2 and between the distortion corrected MR
sequences (d) CT-to-PD rect., (e) CT-to-T1 rect. and (f) CT-to-T2 rect. For informations regarding the plot style see Fig. 12.

Fig. 11. Mean and standard deviation TRE values for PET to MR registrations: (a) PET-to-PD, (b) PET-to-T1, (c) PET-to-T2 and between the distortion corrected
MR sequences (d) PET-to-PD rect., (e) PET-to-T1 rect. and f) PET-to-T2 rect.

other cases, the automatic registration using the KCR approach
outperforms the manual registration as well.

G. Influence of MR Distortion Correction

West et al. [37] have statistically analyzed whether the
geometry correction of the PD, T1 and T2 MR sequences
yields a better registration accuracy. They found significant

differences between the registrations of MR images with and
without corrections only for CT-T2 pairs in one out of eleven
registration approaches. Other registrations showed minor im-
provements for CT-T2 and CT-T1 (10% level of significance).
In contrast, statistical tests on our results confirm that the
distortion correction yields a significant increase in perfor-
mance. A comparison between the median TRE values with
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Fig. 12. Mean and standard deviation TRE values for MP-Rage MR sequence
image pairs: (a) CT to MP-Rage and (b) MP-Rage to T2 combinations. The ver-
tical bars depict the mean TRE for a specific parameter estimation technique
together with the standard deviations (vertical lines). The solid horizontal line
is the mean TRE of the medical expert, the horizontal gray band marks the cor-
responding standard deviation range. Results for 16, 64, and 256 bins for each
parameter estimation technique are presented in order to examine the effects of
the histogram size on the registration accuracy.

and without correction leads to 95% confidence intervals of
for CT-MR images and for

PET-MR pairs.

V. DISCUSSION AND CONCLUSION

In this paper, we have presented implementation aspects of
estimating optimal parameter settings which are needed for mul-
timodal similarity measures. The joint density between a refer-
ence and a template image is the basis for current state-of-the-art
voxel based intensity similarity measures. The methods pro-
posed in this article have been applied to NMI. For a discretiza-
tion of the joint density, knowledge about the numerical details
is crucial in order to avoid being trapped in a false optimum
during the registration. We have briefly summarized problems
that occur with regular sampling at grid positions and how jit-
tering or quasi-random sequences provide acceptable solutions.

The estimation of the discrete joint density can be tackled
by various approaches. Some authors use histograms, others
utilize continuous representations with Parzen-window estima-
tions. We propose a combination of both and picked up an ef-
ficient discretization scheme proposed by Hermosillo et al. [6]
based on recursive filtering of the histogram. In our method, the
bin layout was nonlinearly adapted to minimize the quantization
error for a specific number of bins, which is also determined
automatically, and yields quasi-adaptive kernel widths for an
adaption to the structure of the underlying PDF. The Max-Lloyd
algorithm was used to calculate the bin sizes and also a binary
threshold for the identification of background within the images.
In medical images the percentage of background voxels may
be very high, especially for molecular images. The otherwise
homogeneously dark background region is overlaid with struc-
tured noise and other types of reconstruction artifacts that impair
the registration accuracy. Ideally, the automatically calculated
threshold separates the object from the background and can be
applied for masking or coincidence thresholding. We loosened
the rather strict application of a hard threshold and proposed
the use of coincidence weighting instead. It ensures that back-
ground-to-background alignments are not dominating the entire
similarity measure and that the robustness of the algorithm is
not affected in a negative way.

The presented data-driven parameter estimation techniques
have been integrated into a state-of-the-art rigid registration
application. We have carried out a comparison of automatic
registrations using eight parameter estimation methods, each
with three histogram size setups. In addition, a manual regis-
tration has been performed by a medical expert in this field of
research. In order to get objective results, the RIRE database
of human head images was used as input. The results for each
method have been acquired from 114 individual registrations
of CT-MR, PET-MR and also MR-MR image pairs. The gold
standard was developed by West et al. and is based on the de-
tection of implanted fiducial markers which had been removed
prior to disclosure. The datasets were registered without knowl-
edge about the position of the markers. Several aspects have
been evaluated.

The first investigation concerned the accuracy of the com-
pletely data-driven estimation of the parameter values for the
joint density estimation, thus the entirely parameter-free NMI
implementation. The proposed method (KCR with 16 initial
bins) resulted in an overall mean TRE value of 2.34 mm com-
pared to 2.54 mm for the manual registration and 6.48 mm for
the best standard method with 64 bins. The parameter-free
NMI implementation reached high accuracy values for all
modality combinations. Registration accuracies of approxi-
mately 0.7 mm for CT with MR and 2.0 mm for PET with
MR modality combinations have been achieved. According to
West et al. [37] a retrospective registration technique with TRE
values of 0.55 mm for CT- and 2.33 mm for PET-MR image
pairs yields a similar accuracy as the gold standard. For the
CT experiments, this accuracy was not exceeded in our re-
sults. However, the results for the PET registrations are very
promising. In order to achieve further accuracy, it is possible
to combine our proposed approach with the NPW method of
Dowson et al. [22]. As the computational costs for the NPW
density estimator are very high, it could be used only in just a
few iterations in order to improve the registration result after
our method has converged.

As part of our study we investigated the impact on the regis-
tration of the number of histogram bins. Experiments of some
authors lead to conclusions that a specific number of histogram
bins is favorable. There is indeed a significant difference be-
tween 16 and 64 bins, when the kernel widths are set to fixed
values, and between 256 bins if the background information
dominates the joint histogram (K and KR). In the latter case,
the automatic kernel width estimation is impaired by the strong
background peak in the PDF. The median TRE values showed
a significant difference for comparisons of S between 16 and
64 bin setups and a minor significance between 256 bins. The
situation is different for the fully automatic approach, which in-
cludes the coincidence weighting. The results for KCR showed
no statistically significant deviations between an automatically
determined number of bins (usually 30–60) and a default value
of 256.

Our acceptance rate analysis suggested that the parameter-
free NMI reaches higher landmark accuracies compared to an
NMI implementation with standard parameter settings. It also
achieved better rates than the medical expert, except for the non-
corrected PET-MR registrations.
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Fig. 13. Landmark acceptance rates for the modality combinations CT-MR (PD, T1, T2) (a), CT and geometric distortion corrected MR (b), PET-MR, (c) and
PET with corrected MR d). The curves are plotted for the registration using the completely data-driven parameter selection for the NMI, a standard parameter set
and the medical expert.

Finally, we compared registration results for MR images that
were provided with and without a geometric distortion correc-
tion. A statistical analysis of our results showed that the correc-
tion leads to a significant improvement of the registration accu-
racy for all methods. The higher accuracy may be explained from
the fact that the distortion correction helps limit non-stationary
effects within the reconstructed MR images, i.e., intensity inho-
mogeneities also known as bias fields. A bias field on an MR
image leads to a representation of the same tissue by different
voxel intensity values. Therefore, this tissue contributes to sev-
eral histogram bins—an effect that impairs the estimation of the
intensity statistics and yields less accurate registration results.
In addition to the preprocessing described in this article, a bias
field correction may be performed on the MR images in general
to achieve a higher registration accuracy for the MR cases.

Our results show that the joint density estimation for
multimodal similarity measures can be implemented with auto-
matically determined, data-driven parameter selection. On the
RIRE data the parameter-free NMI implementation performs
very well for all modality combinations and independent of the
number of bins, which is not the case for the NMI with standard
settings. The geometric distortion correction yields additional
registration accuracy and better results for the automatic com-
pared to the manual image registration by the medical expert.

For PET and MR image pairs the accuracy approaches the
gold standard. The various data-driven approaches for the
parameter selection have been presented using the example of
NMI integrated into a rigid registration algorithm. Of course,
they can also be applied to nonrigid registrations (with some
limitations on the sparse sampling for nonparametric nonrigid
techniques). However, there is currently still a lack of a gold
standard evaluation for nonrigid registrations. We would like
to conclude our paper with a comment about the manual
registration. The medical expert thoroughly investigated the
registrations and allocated more time for specifying the trans-
formations than would usually be available during the everyday
clinical workflow. We, therefore, expect slightly worse manual
registration results if performed under the usual time constraints
and clinical stress.

The methods for density estimation grew out of the research
on image registration. The generality of the presented ap-
proaches, however, allows the application to a wide range of
pattern recognition problems beyond image registration.
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