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Abstract. 3-D image reconstruction from C-arm projections is a com-
putationally demanding task. However, for interventional procedures a
fast reconstruction is desirable. We present a method to reduce the num-
ber of actually back-projected voxels and ultimately the processing time
by 20–30% without affecting image quality. The proposed method de-
tects and skips subvolumes that are not visible in the current view. It
works with projection matrices and is thus capable of handling arbitrary
geometries. It can easily be incorporated into existing algorithms and is
also suitable for the back-projection step of iterative algorithms.

1 Introduction

Clinical applications – in particular interventional procedures – require fast 3-D
reconstruction of tomographic data. Therefore, means to reduce the reconstruc-
tion time are a strong research topic. Currently, the most wide-spread algorithms
in clinical X-ray CT reconstruction belong to the class of filtered back-projection
(FBP), e.g. the FDK method [1] for cone-beam data. Another class of reconstruc-
tion algorithms is based on iterative techniques which require multiple alternat-
ing back- and forward-projections. The latter can incorporate various correc-
tions and provide superior image quality in certain cases like sparse or irregular
data [2]. The fact that their complexity is a multiple of the FDK’s is a reason why
this class of reconstruction algorithms is less commonly used in clinical systems.
However, both classes of reconstruction algorithms benefit from an acceleration
of the back-projection step.

Several groups investigate acceleration using specialized hardware (e.g. FP-
GAs [3,4,5]), or general purpose high-performance hardware (Cell processor [6,7],
GPUs [8,9,10], Larrabee [11]).

Yu et al. [12] proposed to reconstruct only cylinder- or sphere-shaped region
of interest – approximating the Field-of-View (FOV) of the scan – to reduce
the number of back-projected voxels. Their method, however, requires a pri-
ori knowledge about the trajectory and offline computation of the FOV before
reconstruction.

Yu et al. further suggested data partitioning which is similar to the sub-
volumes approach used e.g. by Scherl et al. [6] and Kachelriess et al. [7]. They
used subvolumes to fit the problem into the 256 KB-sized local stores of the
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Fig. 1. Original back-projection step, called once for each projection image In.

for all voxels x do
Project voxel onto detector plane
Check if point lies on detector
Fetch projection values
Bilinear interpolation
Update fFDK(x)

end for

Cell processor. They also proposed that subvolumes improve caching on CPUs
resulting in better performance. However, they did not actually skip subvolumes
as proposed in this paper.

Our proposed method adapts dynamically to the FOV of each projection
image during back-projection. It uses projection matrices from the scanner and
requires no prior knowledge about the acquisition trajectory. It is easy to inte-
grate into existing reconstruction algorithms and does not affect image quality.

2 Materials and Methods

Algorithm 1 shows pseudo-code of the back-projection step of the FDK method.
It is called once for each projection image In and updates every voxel of the
reconstructed volume.

In cone-beam CT, the source position and the corners of a projection image
define a pyramid, the current FOV. Areas of the reconstructed volume that are
outside of the FOV are not visible on the detector. Hence, the current view
cannot contribute information about their content.

Algorithm 2 shows the modified back-projection step. Before a subvolume is
back-projected a check is performed to decide whether it is inside the current
FOV. Therefore, its corner voxels are projected to figure out its shadow. If the in-
tersection of the shadow with the detector has a positive area it is back-projected
as usual. Otherwise, the whole subvolume is skipped and processing continues
with the next one. The computation of a subvolume’s shadow involves 3-D-to-
2-D projections of its 8 corners, computation of the minimum and maximum of
the resulting 2-D coordinates, clamping of the coordinates and computation of
the shadow’s area. On the other hand, for every voxel contained in a skipped sub-
volume a 3-D-to-2-D projection, the coordinates check, 4× pixel access, bilinear
interpolation and the voxel update are saved.

The proposed method skips only subvolumes that did not contribute to the
current projection. Hence, there should be no difference in the result compared
to the reference method. The reconstruction benchmark RabbitCT [13] was
used to test our implementation for correctness and measure its performance.

Obviously, the performance of our new method depends on the acquisition
geometry. To rule out the possibility of“cooperative data” the method was evalu-
ated on two other clinical datasets, additional to the public RabbitCT dataset.
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Fig. 2. Modified back-projection step, called once for each projection image In.

Partition volume fFDK into subvolumes fFDK,i

for all subvolumes fFDK,i do
// Test if fFDK,i is visible
Compute shadow of fFDK,i by projecting corners
if ∅ == shadow ∩ In then

Skip fFDK,i

else
for all voxels x ∈ fFDK,i do

Project voxel onto detector plane
Check if point lies on detector
Fetch projection values
Bilinear interpolation
Update fFDK(x)

end for
end if

end for

All datasets were acquired with real C-arm systems using clinical protocols. Their
sizes are shown in table 1 where dataset A is the public RabbitCT dataset.

To show that the new method also improves the performance of highly op-
timized code it was incorporated into our vectorized and multi-threaded FDK
implementation for CPUs (described in more detail in [14]).

The new method was tested on two multi-core systems. The first system fea-
tured two Core i7 (“Nehalem”) quad-core processors at 2.66 GHz (85.12 GFlops
total) and was equipped with 12×1 GB of DDR3-1066 RAM. This system had a
very high memory bandwidth. The other one had four hexa-core Xeons (X7460)
at 2.66 GHz (255.35 GFlops total) and 32 GB of DDR2-1066 RAM. All tests
were performed using 64-bit Linux and the Intel compilers in version 11.1.056.
The “X7460” and “Nehalem” systems used in this report are preproduction sys-
tems. We expect production hardware to deliver similar performance levels.

3 Results

The reconstructed volume had a size of 5123 voxels. Table 1 shows the results
for both computer systems. The subvolume size was empirically chosen to be
128×64×4 as this performed overall best. In the worst case, this subvolume size
was about 5% slower than the best one. The large size in x-direction is justified
by the fact that neighboring voxels in this direction are stored successively in
memory and therefore supportive for the hardware prefetching mechanism.

Results for three different implementations are shown. The baseline is defined
by our vectorized and multi-threaded implementation [14] (“base” in table 1).
Using subvolumes allows to optimize the cache usage of modern processors by
re-using voxel data before storing it back to main memory. Consequently, the
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Number of Projection “Nehalem” X7460

Dataset projections size base cache skip base cache skip

A 496 1240 × 960 84.71 80.28 61.38 60.53 42.89 31.96

B 543 1240 × 960 92.89 87.56 67.39 66.04 48.77 35.08

C 414 1024 × 1024 70.54 68.23 54.54 50.59 36.05 29.21

Table 1. Description of the three datasets. Further, reconstruction times (seconds).
Results are shown for two systems (“Nehalem”and“X7460”) and three implementations
(“base”, “cache” and “skip”). The volume size was 5123, the subvolume size 128×64×4.

memory bandwidth restriction is relaxed (“cache”). Finally, the results of the
method proposed in this work (“skip”) are presented.

The optimized cache usage gives a speedup of at least 1.35× on the bandwidth-
starving “X7460” system. On the “Nehalem” system, however, it shows only little
effect (up to 1.06×). This result was expected due to the higher memory band-
width of the Nehalem architecture.

With the proposed method of skipping subvolumes the reconstruction time
is further reduced to about 72–80% compared to the cache-optimized version
on both systems (1.23–1.39×). The effectiveness of our approach can be seen
by looking on the numbers of a single dataset, e.g. A. Given the chosen size
of 128×64×4 voxels about 24% of the subvolumes are outside of the FOV. The
reconstruction time is 75 and 76% of the“cache”implementation’s on the“X7460”
and the “Nehalem” system, respectively.

4 Discussion

We have tried numerous different subvolume sizes and shapes and found out
that the optimal solution depends on several factors. Large subvolumes – e.g.
512×64×8 – provide better data locality and use less memory bandwidth if
caches are large enough. However, this advantage is absorbed by the fact that
they are less likely to be skipped since smaller subvolumes resemble the real
FOV more accurately. While small subvolumes can have skip-ratios of up to
32% (for 16×16×4 and dataset A) they come with the overhead of more shadow
computations and with reduced savings per skipped subvolume.

On the other hand, subvolume shape has an impact on other performance
factors. From a theoretical point, square-shaped subvolumes should be optimal
as their mean shadow size over all viewing angles is minimal. But given current
CPUs’ caching and prefetching algorithms it is a good idea to use subvolumes
which are longer in the direction of contiguous memory access.

The savings of the proposed method depend on the acquisition geometry,
namely the ratio between volume and FOV sizes. To show its relevance the
method was tested using three different clinical datasets. The proposed method
delivers a considerable speedup even to highly optimized implementations. Al-
though all datasets used here were circular trajectories the method is suitable for
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arbitrary trajectories. It requires no prior knowledge other than the projection
matrices. Since it works on-the-fly it can easily be incorporated into existing
algorithms.
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