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Abstract

Multispectral imaging has been gaining popularity and has been gradually applied to many fields besides remote
sensing. Multispectral data provides unique information about material classification and reflectance analysis in
general. However, due to the high dimensionality of the data, both human observers as well as computers, have
difficulty interpreting this wealth of information. We present a new software package that facilitates the visualization
of the relationship between spectral and topological information in a novel fashion. It puts emphasis on the spectral
gradient, which is shown to provide enhanced information for many reflectance analysis tasks. It also includes a
rich toolbox for evaluation of image segmentation and other algorithms in the multispectral domain. We combine
the parallel coordinates visualization technique with hashing for a highly interactive visual connection between
spectral distribution, spectral gradient and topology. The framework is released as open-source, has a modern
cross-platform design and is well integrated into existing established computer vision software (OpenCV).

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Photometry

1. Introduction

In Multispectral imaging, the camera captures the scene with
a higher spectral resolution in comparison to traditional color
cameras. Each image pixel holds a vector of intensity values
(instead of an R, G, B triplet), where each value corresponds
to the incoming light over a small wavelength range. This
may be achieved by capturing each band seperately with nar-
row color filters or by scanning the image with a spectrometer.
Until recently, multispectral imaging has been mainly em-
ployed in remote sensing. It has also been gaining popularity
in the fields of agriculture and cultural heritage. However,
technological advances in multispectral sensor design are
creating sensors that are faster and less expensive than before.
This makes it feasible to use multispectral data for traditional
scene and reflectance analysis. Furthermore, this analysis has
an impact on tri-chromatic image capture, since it helps in
developing new theories on how to best interpret RGB data.

Several software packages exist today that explicitly deal
with the processing and interpretation of multispectral data
[ITT10,BL02,Uni10, JM03,LFH08,RH08]. However, most
of them have a very application-specific interface and func-

tionality. A large percentage of them is expressly designed
for remote sensing. In addition to several preprocessing steps,
e. g. undistortion or data range normalization, the typical fo-
cus of such software lies on classification, which is often
based on semantic information. The classification results are
presented using false coloring, or in specific plots of data
classes. A significant portion of the information contained
in the image (other than material) is often either ignored or
treated as noise. Thus, it is not comprehensively presented to
the user.

To properly analyze the reflectance of a scene, it is vital
to understand how light, geometry and material interact with
each other. The different influences that lead to the observed
reflectance are hard to separate by inspecting single pixels,
or only statistical measures over a larger region of pixels.
Instead, spectral variations within a region and/or within
the same material class, often reflect the sought information.
Current visualization is based on the view of single bands and
statistical plots (e. g. presenting the mean and variance values
for a region). However, a complete visualization of the spectra
of all pixels in the region is more informative. For example, by
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examining neighboring pixels simultaneously, one may more
easily observe the effects of light source position relative to a
scene object, or be able to separate texture effects. Figure 1
illustrates how the effect of several reflectance phenomena
can be easily distinguished in such an examination format.

We propose a new paradigm for visual assistance of mul-
tispectral analysis that specifically addresses the lack of a
seamless integration of spectral distribution and topology.
Our software, called gerbil, allows the simultaneous visu-
alization of different types of spectral plots, as well as the
output of image analysis algorithms. Gerbils (the animals)
are known as hardy, efficient (in terms of locating and us-
ing food) and people friendly creatures. Our gerbil platform
exhibits similar attributes. It is powerful, efficient in both
time complexity and information discovery, and user-friendly.
Besides the informative visualization framework, gerbil:

• provides tools specifically designed for reflectance analysis
(spectral gradient)

• incorporates state-of-the-art segmentation techniques
• is well integrated with existing computer vision software
• has a modern cross-platform design
• will be released as open-source.

2. Previous Work

Software that processes multispectral data has a long history.
However, most often it is found to be very specific to as-
tronomical or remote sensing applications. A 2007 review
of publicly available software for processing hyperspectral
remote sensing image data is given by Larry Biehl [Bie07].
Below, we give a short overview on several software solutions
that have relevance today.

A popular commercial tool that handles multispectral im-
ages is the ENVI software [ITT10] from ITT Visual Informa-
tion Solutions. It includes powerful modules especially for
remote sensing applications. However, its support of visual
inspection is restricted to viewing single bands of the image
or false-coloring.

MultiSpec is a freeware package by Larry Biehl and David
Landgrebe [BL02]. It can analyze multispectral images from
various sources and puts particular emphasis on classifica-
tion. It is being developed since the early 1990s and was still
maintained as of early 2010. The software is mainly targeting
general Earth science community; it does not provide a view
of the spectral distributions. The user can generate plots of
mean and standard deviation in the spectral domain, or a 1D
histogram from a selection of pixels. In 2008, Roberto and
Hofer presented Theia, a software also directed at multispec-
tral image analysis [RH08]. The major contribution according
to the authors is a more modern software design and efficient
handling of the data. However, it does not provide any im-
proved functionality over software like Multispec.

HyperCube, as released by the U.S. Army Geospatial Cen-

(a) (b)

(c)

(d)

Figure 1: Reflectance phenomena and their effect on the spec-
tral distribution of a single object (blue ball). (a) RGB view of
the image. (b) Manually labeled pixels in one spectral band.
(c) Spectral distributions of labeled pixels. (d) Spectral gradi-
ent distributions of labeled pixels. The different colored labels
correspond to: Blue: Primarily diffuse reflectance. Green:
Primarily specular reflectance. Red: Inter-reflections from
red materials. Magenta: Inter-reflection from green materi-
als. Images were obtained by gerbil.

ter, contains functions to filter, warp (register two images), cal-
ibrate and undistort, photogrammetrically project, and arith-
metically manipulate multi- or hyper-spectral data [Uni10].
However, its various visualization options do not directly
tackle the multispectral nature of the data, apart from allow-
ing one to scroll through image bands one by one.

For astronomical data, a very powerful imaging and data-
visualization software is available from the Smithsonian As-
trophysical Observatory, called ds9 [JM03]. It is the successor
to SAOtng, which dates back to 1995. One of its main focal
points is scale algorithms and color maps for the visualization
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of one or multiple frame buffers. It also allows binning and
filtering of data. Another one of its key features is its ability
to draw contour overlays. Unfortunately, the narrow scope
of ds9’s feature set makes it of limited use to other applica-
tions. Also focused on astronomical data is the more recent
approach of Li et al. [LFH08]. Bands are drawn in 3D space
either as an image-stack or as a volume-rendered model. Clut-
ter is reduced by applying transparency to individual values
based on their intensities. While their visualization can also
be useful for analysis of multispectral data in general, it is a
different approach than ours which focuses on topology.

A software framework for multispectral analysis that origi-
nated in the reflectance analysis community is the MultiSSA
and MultiSFAMS packages released by Angelopoulou et
al. in 2005 [APK10]. Amongst other features, they provide
spectral gradient computation and unsupervised mean-shift
segmentation on multispectral data. However, the software
does not provide any means of interactive visualization.

While there exists a range of high quality, well-maintained
software which visualizes multispectral images and/or pro-
vides a comprehensive toolset for data analysis, the current
state-of-the-art lacks: a) much-needed universality, and b)
support of reflectance analysis on multispectral data.

3. Spectral Gradient

Multispectral images provide a wealth of information that al-
lows one to better understand the complex behavior of image
formation. Most existing software focuses on segmentation
and classification. One of the goals of gerbil is to provide
more powerful reflectance analysis tools. An important step
in that direction is the introduction of the spectral gradient as
an additional feature for visualization.

The intensity values we obtain from a photosensitive sensor
correspond to the incident irradiance on the area of a pixel
on the sensor plane. In the notation of [Ang00, Ang07], the
amount of light reflected from each point ppp = (x,y,z) in the
scene results from a combination of the light incident on ppp
(determined by its spectrum e(λ) and its direction E(ppp)), and
the surface reflectance S(ppp,λ) of the surface at ppp:

I(ppp,λ) = e(λ) ·E(ppp) ·S(ppp,λ) , (1)

where λ denotes wavelength. The reflectance function S(ppp,λ)
depends on the surface material, the scene geometry and
the viewing and incident angles. The spectral derivative that
forms the spectral gradient is defined as the partial derivative
of the logarithmic image with respect to the wavelength λ,

Lλ(ppp,λ) =
∂(ln(I(ppp,λ)))

∂λ
. (2)

According to [Ang00], for diffuse surfaces, the spectral
derivative is the normalized partial derivative of the surface
albedo ρ(ppp,λ) offset by a constant illumination term c:

Lλ(ppp,λ)≈ ρλ(ppp,λ)
ρ(ppp,λ)

+
c

e(λ)
, (3)

Figure 2: Gerbil user interface. (a) Spectral distribution view.
(b) Spectral gradient distribution view. (c) Spatial view of a
single image band.

where ρλ(ppp,λ) = ∂ρ(ppp,λ)/∂λ is the partial derivative of the
albedo with respect to wavelength. Albedo itself is a material
property, independent of illumination and geometry.

Similarly, for purely specular reflectance, the spectral
derivative becomes the normalized partial derivative of the
Fresnel term offset by the same constant illumination term
[Ang07]:

Lλ(ppp,λ)≈ Fλ(ppp,λ)
F(ppp,λ)

+
c

e(λ)
. (4)

where Fλ(ppp,λ) = ∂F(ppp,λ)/∂λ is the partial derivative of the
Fresnel term with respect to wavelength. The Fresnel term is
also a material property, but unlike albedo it also depends on
geometry [FvDFH95].

The spectral gradient is the discrete approximation of spec-
tral derivatives obtained by finite differencing. By definition,
spectral gradients are a powerful tool for image analysis be-
cause:

• In purely diffuse surfaces, the spectral gradient is invari-
ant to geometry. When the illuminant spectrum does not
change over the topology of the image, this means that
spectral gradient values stay constant within a material.

• Specular regions in the image can be separated from diffuse
ones using the spectral gradient.

Often the spectral gradient is better suited for analysis of
the captured scene when compared to the original spectral
data. In the visual inspection of an image, the spectral gradient
feature-vectors can offer a view that focuses more on data
aspects that are directly related to material properties and
the image formation process (for more details please refer to
[Ang07]). Therefore, spectral gradients are also incorporated
into the visualization.

4. Gerbil

The goal of gerbil is to help the user with: a) the interactive
inspection of multispectral images and b) the evaluation of
algorithms applied on them. We want to present the wealth
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of information that a multispectral image contains in a mean-
ingful, comprehensible way. The graphical user interface is
depicted in Figure 2. It concentrates around three key ele-
ments, which we refer to as viewports:

1. The spectral distribution view of the current image. It
shows the spectral vector distributions of (a) the entire
image, or (b) several disjoint pixel sets in the image, which
are distinctly colored for improved discernability.

2. The distribution view of the corresponding spectral gradi-
ent as defined in Eq. 2, with the same functionality.

3. One or several dockable/floating windows that depict user-
selected bands of the image or its spectral gradient. They
may also show an RGB representation of the image.

A powerful aspect of the software is how these are combined.
The user has several tools at hand to work on the different
viewports simultaneously. Tracking of the mouse cursor re-
sults in real-time updates in all viewports. A labeling of data
can be performed in each viewport, and propagated to the
others. Such a workflow helps the user to explore the data
step-by-step and is recognized as a valuable tool for under-
standing complex data [FH09]. This is further explained in
Section 4.2 below, after Section 4.1 describes the technical
details behind the spectral distribution views.

As previously mentioned, the user may work with pixel
labels. Labels are vital for differentiation and comparison,
and do not necessarily need to be created by the user man-
ually. Instead, state-of-the-art segmentation algorithms can
be employed. Segmentation not only assists the user in label-
ing data, but also plays a key role in several types of scene
analysis. We integrate both supervised and unsupervised seg-
mentation methods. These work either with or without topo-
logical information (i. e. based solely on the density of the
image data). The integration of these algorithms is discussed
in Section 4.3.

Multispectral imaging is a helpful tool in studying effects
of different lighting on various computer vision algorithms.
It can also reveal the effects of metamerism in human percep-
tion and RGB data. Gerbil assists in analysis related to these
topics through the application of different illuminants to the
image data (see Section 4.4). An RGB image is then created
based on human visual perception (see Section 4.5).

The framework is written according to modern coding stan-
dards and software design paradigms. The C++ code builds
on the powerful and mature Qt toolkit from Nokia [Nok10].
This provides a good foundation for platform-agnostic de-
velopment. We maintain the software on all major operating
systems, including GNU/Linux-based systems as well as Mac
OS X and Windows. Furthermore, processing of the image
band data is done through the well-established OpenCV com-
puter vision software library [Bra00], which enables the easy
integration of common image analysis algorithms. Section 4.6
explains how the internal data structure helps in extending
the framework.

4.1. Spectral Distribution View

In the spectral distribution view, the information available
in the entire image (or a subset of its pixels) is presented at
once. To display the high-dimensional spectral vectors, we
employ the Parallel Coordinates [ID90] method as explained
below. It is a well established technique for visualizing high-
dimensional geometry and analyzing multivariate data, e. g.
in financial applications or geographic information systems.
It is based on connecting multimodal data points. The tradi-
tional spectral visualization is just a specific instantiation of
parallel coordinates visualization. By employing this method
we can now incorporate the state-of-the-art tools for high-
dimensional data presentation.

The D-dimensional feature space (resulting from D spec-
tral bands) is projected onto a two dimensional view as fol-
lows. D parallel vertical lines denote the D axes, i.e. the D
spectral bands. To display the spectral vector of a pixel, a
polyline is drawn with its vertices lying on the vertical axes.
The y-coordinate of the vertex on the ith axis corresponds to
the value of the pixel at band i. When this is done iteratively
for all pixels, the display may easily get cluttered and single
polylines may not separate well from the rest of the data.
However, coloring and transparency, as well as interactively
highlighting specific data of interest, significantly improve
the perceptibility of the data. Additionally one can use clutter
reduction techniques for parallel coordinates (e. g. [ED06]).

Next to clutter, drawing speed becomes an important is-
sue when dealing with multispectral images of high spatial
resolution. We significantly reduce the amount of polylines
drawn by histogramming. A D-dimensional histogram (each
dimension reflecting a spectral band) is built with N evenly
distributed bins in each dimension. N is user-adjustable be-
tween 2 and the dynamic range of the captured data (typically
28 or 216). The histogram is visualized using the aforemen-
tioned parallel coordinates. For each non-zero entry a polyline
with varying opacity α is drawn. α is determined by the rela-
tionship between the number of pixels lying in the bin, nbin,
and the total number of processed pixels, ntotal . To avoid
the case that sparsely filled bins are hard to perceive, the
logarithm is applied:

α =
log(nbin +1)

logntotal
. (5)

Building such a sufficiently fine-grained histogram in the
multispectral data space is not feasible in general. However,
we can rely on the spatial resolution as a strong limiting
factor to the histogram denseness. A concrete example is
the publicly available CAVE multispectral image database
[YMIN08]. It provides images with 31 bands of 16 bit inten-
sity data. For such data the histogram covers a space of 216·31

possible values. If we partition each band into 256 bins, we
end up with a total of 2248 bins. However, the histogram is
very sparse. The reason is, that the spatial resolution of the
image restricts the total amount of different data points we
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may observe. An image from the CAVE database has a spa-
tial resolution of 512×512, leaving only 218 possible values.
Therefore, the histogram can be built and read in a time and
space efficient manner through the use of an ordinary hashing
algorithm. Hash collisions only rarely occur.

The technical requirements for this operation are moder-
ate. The software can be operated interactively on a current
desktop machine, or even a mobile computer. To achieve this,
OpenGL is employed for drawing all viewports. The user is
given control of the number of bins N per dimension, and can
therefore find a good trade-off between detail of view and
drawing speed. On a laptop with Intel Core 2 Duo 2.93 GHz
CPU and Nvidia Quadro FX 2700M mobile GPU, the CAVE
datasets can be conveniently analyzed. When downsampled
versions of the same images with a resolution of 128x128
pixels are used, no noticeable lag occurs, even when setting
N to the maximum.

4.2. Interactive Inspection

We tackle the lack of a seamless integration of spectral distri-
bution and topological relationship in two steps. First, we im-
plement an efficient visualization of the spectral distribution,
as was explained above. Second, we provide rich human in-
teraction that intuitively combines spatial (band) and spectral
view. The user can interactively transfer information between
one view and the other in both directions.

An initial step of intuitively exploring data is to grasp in-
dividual portions of it. Instant feedback to a mouse-driven
manual selection of specific image pixels (or data points in the
spectrum) gives valuable assistance in understanding the for-
mation of the captured data. To make this possible, a suitable
highlight, or overlay, in yellow color is drawn in the spectral
and spatial viewports. Highlights and overlays are updated
simultaneously and in real-time, while the mouse movement
is tracked. In a spectral viewport, the mouse can be used to
highlight all pixels that fall into a particular value-range in a
specific band. It can also be used in dynamically introducing
and modifying range limits in each band. The former can
instantly reveal the effect of different spectral clusters on an
observed intensity. The latter is a less convenient, yet more
powerful method of picking specific spectra. In both methods,
the highlight in the spectral viewport is realized by draw-
ing the polylines associated with the selection of histogram
bins in yellow and fully opaque. In the spatial viewports it
is displayed by drawing a yellow cross over all pixels that
fall into the selected bins. When the mouse is navigated over
the spatial viewports, the spectrum of the pixel under the cur-
sor is displayed as an overlay in the corresponding spectral
viewports.

For a more thorough analysis, highlights need to be made
permanent. For this, the user can choose from a set of five
different labels, which are identified by all primary and sec-
ondary colors except yellow. This number was chosen as

more labels at once would be rarely needed and the choice
of colors makes them most discernible. Label colors are ap-
plied on the grayscale data in the spatial viewports, as well
as the drawing operations in the spectral viewports. To draw
different labels in the spectral viewports, a separate sparse
histogram is computed for each label. As discussed above,
the user may interactively highlight specific spectra with the
mouse, which then appear in yellow. Accordingly, if the user
highlights labeled spectra, a touch of yellow is added to their
label color to make highlights distinguishable.

The current overlay, whether it originated from a spectral
or a spatial viewport, can be added to or subtracted from
any label set. Each image pixel can belong to one label set
at a time. This enables the user to iteratively refine labels
according to either topology or spectrum. The user can then,
not only examine the whole spectral distribution of a specific
region at once, but also compare different portions of the
scene in the spectral view. This is a vital tool in manually
distinguishing different materials or reflectance phenomena
(see Figure 1). An additional benefit provided by gerbil is the
employment of segmentation algorithms for labeling.

4.3. Segmentation

In a typical inspection session, the user often needs to mark
several regions of the image, e. g. objects, or specularities,
to compare them against others. A valuable tool would then
be the possibility to automatically separate image regions ac-
cording to initial user input. Recent work in the area of seeded
image segmentation includes graph cuts, random walker, and
shortest path optimization algorithms. In 2009, Couprie et
al. introduced the Power Watersheds framework [CGNT09].
In that framework, a general formulation is proposed that
combines several seeded segmentation methods.

Our software provides access to these methods as follows:
From user-provided seeds, a bipartitioning (foreground, back-
ground) of the image is performed. The user seeds image
regions by marking foreground and background exemplar
pixels. The algorithm performs the bipartitioning either on
(a) the currently visible band, or (b) the spectral vectors of
the image, or (c) the spectral gradient vectors. The resulting
foreground pixels are then associated with the current label,
which may already hold other pixels, therefore enabling the
consecutive composition of a label set.

In order to segment the multispectral image, existing algo-
rithms need to be extended to work on multispectral input.
The segmentation problem is posed as a graph problem. A
graph is constructed where each node represents an image
pixel. Nodes are connected by edges based on the image
topology (typically a 4-connected lattice). The weights as-
signed to an edge denote the similarity between its endpoints.
Couprie et al. [CGNT09] propose to set the weight wi j for an
edge between nodes i and j to

wi j = exp(−β(Ii− I j)
2) , (6)
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where Ii is the 1D pixel intensity (e. g. of a grayscale image)
corresponding to node i and β is a free parameter. This can
be adjusted to multispectral pixel vectors by using either the
Euclidean or the χ

2 distance. In the latter case,

wi j = exp

(
−β(

D

∑
k=1

(Ik
i − Ik

j )
2

Ik
i + Ik

j
)

)
. (7)

The Euclidean distance is a natural first choice that is
widely used in RGB and multispectral images. χ

2 was intro-
duced in gerbil in the hopes of reducing the effects of noise.
The intensity differences obtained in each band are analyzed
in relation to the intensity values themselves.

Performing the segmentation in the multispectral domain
has both advantages and disadvantages. Multispectral seg-
mentation is a harder task compared to the 1D case as the
distance measurement suffers from the high dimensionality
of the data [BGRS99]. On the other hand, the segmentation
may more accurately detect borders in the image that are
not found by analyzing isolated spectral bands. In experi-
mentation we found that segmentation accuracy often profits
from the additional information in the whole image data, or
spectral gradient data compared to single band intensities.

Another interesting aspect of multispectral data analysis is
then clustering or segmentation of the image in the spectral
domain. A well-established unsupervised clustering method
that does not take topology into account is the mean-shift den-
sity gradient estimator [CM02]. In gerbil, we include Multi-
SFAMS [APK10], a software package that already adapts
mean-shift to multispectral data.

4.4. Scene Lighting

An important aspect in reflectance analysis is the illumina-
tion of the scene and how it can affect appearance. Accord-
ing to Eq. 1 (see page 3) the captured spectrum I(ppp,λ) is
formed by a combination of the illumination spectrum e(λ)
and geometrical and material effects, which are independent
of e(λ), R(ppp,λ) = E(ppp)S(ppp,λ). Different illuminants result
in changes of the captured intensities. This can pose prob-
lems to computer vision algorithms based on color cues, e. g.
tracking, stereo, image retrieval. In multispectral data, assum-
ing homogeneous scene illumination, the illuminant can be
exchanged by a straightforward calculation. The effects of
such a change can be presented to the user within our spectral
visualization framework.

If the spectrum e(λ) of the incident light is known,
the normalized reflectance of a pixel becomes: R(ppp,λ) =
I(ppp,λ)/e(λ). Available multispectral images are often already
normalized with respect to illumination and sensor sensitivi-
ties. In either case, a new illuminant spectrum e′(λ) can then
be applied by setting I′(ppp,λ) = R(ppp,λ) · e′(λ).

Due to the spectral sampling, the intensity of a certain band
does not contain the information of a single wavelength but

the integral over a range of wavelengths. Therefore, applying
these calculations to the image bands is only an approxima-
tion. However, these approximations can be justified by the
typically narrow filter bandwidth of multispectral sensors
and the widely-accepted observation that the spectra of most
surfaces and illuminations are smooth functions.

Several reference illuminants are available for image re-
lighting. We model them as black body radiators [WS00].
They, in turn, can be described by Planck’s law, where the
illuminant color is parametrized by the color temperature
T in Kelvin. Daylight has a color temperature T ≈ 6500K,
while tungsten light bulbs have a temperature T ≈ 2800K.

4.5. Human color perception

Research on multispectral data is not disconnected from the
research on traditional image formation, or human visual per-
ception. Multispectral data capture can help to obtain insights
that also apply to traditional RGB color images. To assist in
that research and also make the examination more intuitive
to the user, we implement methods to produce RGB output
according to the human perception of color. The resulting
RGB image is incorporated into the interactive user interface.

The transformation from a spectrum to its RGB values is
done via the CIE XYZ color space [WS00]. The transform
to CIE XYZ requires the CIE standard observer functions,
which are defined according to human color perception. They
model the light sensitivity of the three types of cones in the
human eye. Transforming CIE XYZ values to RGB colors
involves the definition of a reference white. Gerbil uses the
sRGB color space with reference white D65, as it is specifi-
cally designed for computer displays [SACM96].

4.6. Extensibility

For some applications it may be necessary to introduce new
functionality to the framework. Hence, the source code of
the software is readily available under a free software license.
Equally important, gerbil provides a powerful, easy to use
programming interface to the image data. It is built on an
internal representation of multispectral images that combines
two different data structures as described below. These enable
convenient, yet efficient access for reading and writing. Fur-
thermore, they are applicable to different acquisition methods,
e. g. tunable filters, push broom sensors, etc.

1. As is common for storage (and most often capture), a
multispectral image is represented by an array of intensity
images, each describing a specific spectral band. This rep-
resentation has the advantage that any algorithm suitable
for an intensity image can be applied on the band data
individually. The widely adopted OpenCV code-library
provides a rich set of functions that are commonly used
in computer vision [Bra00]. Therefore, we let OpenCV
handle the image bands and use the OpenCV API to create
and access them.
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2. For many applications including ours, it is necessary to
work with the full spectral information on a per-pixel ba-
sis. It is, therefore, preferable to have the whole pixel data
available in memory in a continuous fashion. The existing
memory layout would become suboptimal, as it would
prevent hardware pre-fetching. This can eventually lead
to highly degraded computational performance [Dre07].
Hence, we also store an array of pixel vectors representing
the image (redundant pixel cache). This array is accompa-
nied by a “dirty bit” map, where each bit defines whether
the corresponding vector is still valid or not. Depending
on the application, the pixel cache may be updated on
write, or as soon as a vector is accessed.

This internal format of a multispectral image makes it easy
to extend the software with new functionality. Specific bands
or pixels can easily be read and written back using a simple
C++ API. Many image operations can be directly performed
by the OpenCV library, without necessitating data duplication
or even conversion. Note that OpenCV itself provides images
with more than three, and by default up to 64 channels. This
limit is hard-coded. The number of channels must be known
at compile time. It is also often cumbersome in OpenCV to
work on selected channels only.

Our software design allows the user to incorporate his own
algorithms into the software, leveraging both the OpenCV
functionality, and the input/output, data handling and visual-
ization functionality of the gerbil framework.

5. Usage Examples

For a better insight on the user interface of Gerbil, we present
two example uses of gerbil. For this, we use images from the
CAVE multispectral image database [YMIN08].

Materials: Figure 3 shows the result of segmenting var-
ious fake and real foods. In the spectral view, the effects of
geometry on the band intensities is clearly visible. However,
the differences between fake and real pepper could be mis-
takenly attributed to brightness only. The spectral gradient
helps to easily distinguish between the different materials by
omitting geometrical effects.

Reflectance: In Figure 4, diffuse and specular regions are
compared. A closer examination of the segmented speculari-
ties (red and blue) shows that the spectral gradient reveals the
material-dependency of the Fresnel effect. In order to indicate
this effect all pixels that exhibit a specific intensity at 650 nm
are highlighted. Note the smooth transition in the gradient
plots from purely specular pixels (blue) to those exhibiting a
mixture of diffuse and specular reflectance (green).

6. Conclusions

We presented a new visualization framework for multispectral
data that is highly interactive and allows for thorough analysis.

Given its intuitive interface, it is also well suited for educa-
tional purposes. Gerbil enables a new workflow in visual
inspection of multispectral images due to: (a) its real-time
view of spectral distributions, spectral-gradient distributions,
and single band images and/or an RGB representation of the
image; (b) the strong interactivity of these viewports and their
connection, where the user can highlight and label data in
a feedback cycle; and (c) the integration of supervised and
unsupervised segmentation algorithms.

The software as presented is released under a free software
license at http://sf.net/p/gerbil. Thus, researchers
are able to apply it on their own analysis tasks and extend
it with further functionality as seems fit. This adaptability is
fostered by the internal design of the software, its embedding
of the major existing computer vision library and platform
independence.
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Figure 3: Screenshot of gerbil working on the Fake and Real Food image. Labels obtained by graph cut segmentation.
Blue: Real pepper. Red: Fake pepper. Green: Fake apple.

Figure 4: Screenshot of gerbil working on the Fake and Real Peppers image. Labels obtained by graph cut segmentation.
Green: Primarily diffuse reflectance on red pepper. Blue: Primarily specular reflectance on red pepper. Red: Primarily specular
reflectance on yellow pepper. The highlight shows how different specular regions are separable by their spectrum.
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