
Automatic Detection and Segmentation of Focal Liver Lesions in Contrast Enhanced
CT Images

Arne Militzer1,2, Tobias Hager1, Florian Jäger1,
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Abstract—In this paper a novel system for automatic detec-
tion and segmentation of focal liver lesions in CT images is
presented. It utilizes a probabilistic boosting tree to classify
points in the liver as either lesion or parenchyma, thus
providing both detection and segmentation of the lesions at the
same time and fully automatically. To make the segmentation
more robust, an iterative classification scheme is integrated,
that incorporates knowledge gained from earlier iterations into
later decisions. Finally, a comprehensive evaluation of both
the segmentation and the detection performance for the most
common hypodense lesions is given. Detection rates of 77%
could be achieved with a sensitivity of 0.95 and a specificity of
0.93 for lesion segmentation at the same settings.
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I. INTRODUCTION

Liver cancer is among the most frequent types of cancer-
ous diseases, showing responsible for the deaths of 600,000
patients worldwide in 2001 alone [1]. The incidence of liver
metastases is even higher, as many common cancer types,
like colorectal, lung and breast cancer, tend to metastasize
into the liver. Computed tomography (CT) images, acquired
after intravenous injection of a contrast agent, are widely
used by clinicians for diagnosis, treatment planning and
monitoring of liver tumors. These procedures, however,
require information about size, shape and precise location of
the tumors, for which their segmentation is a prerequisite.
As the liver can stretch across well over 150 slices in a
CT image and contain up to dozens of lesions, manual
segmentation is tedious and prohibitively time consuming for
a clinical setting. Automatic segmentation on the other hand,
is a very challenging task. Despite the different contrast
enhancement behavior of liver tumors and parenchyma,
the image contrast between these tissues can still be low
due to individual differences in perfusion and scan timing.
Moreover, lesion shape, texture, and size vary considerably
from patient to patient.

Proposed automatic algorithms involved, e.g., combina-
tions of adaptive multi thresholding and morphological
operators [2] or k-means clustering on mean shift filtered
images [3]. However, these histogram based methods require

a good contrast between lesions and parenchyma. More
flexible machine learning techniques, such as AdaBoost,
have been used in semi-automatic approaches to locate le-
sion boundaries by classifying 1-D histograms and dynamic
programming [4], as well as in automatic settings to classify
image textures [5]. The approach most closely related to
ours was proposed by Shimizu et al. [6]. They trained two
AdaBoost classifiers with a set of grey value statistical
and gradient features calculated on normalized images, as
well as features based on a convergence index filter, that
enhances blob-like structures. One classifier was trained for
segmenting large, the other for segmenting small lesions.
After applying both classifiers to an image, their results were
merged to a final output.

II. METHODS

Object detection and segmentation are usually considered
two separate tasks, where in practice often the user has to
do the detection and provide some kind of initialization
to a semi-automatic segmentation algorithm. On the other
hand, approaches like the one by Shimizu et al. [6] or the
one proposed here perform both tasks in a single step by
deciding for each point in the image, whether it is part of
a lesion or not. The only input that has to be provided to
our system is a CT image of the liver with venous contrast
enhancement. This phase shows maximum enhancement of
the liver parenchyma and thus guarantees ideal conditions
for lesion detection, as most liver lesions exhibit a lower
uptake of contrast agent than the parenchyma.

The presented algorithm comprises four steps: First, the
liver is automatically segmented. Second, the input data is
normalized to compensate for variations in contrast enhance-
ment. Next, the classification system assigns a value to each
point in the liver, representing its probability of belonging to
a lesion. Last, during post processing lesion candidates are
generated from this probability map and returned as final
detections of the system. Although we focus on mainly
hypodense lesions here, the system is in principle also
suitable for segmenting more complex hyperdense lesions.
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A. Liver segmentation

Automatic segmentation of the liver not only constrains
the search space to relevant areas, saving computation time.
It also reduces the complexity of the feature space making
the classification task more feasible and reducing the risk of
spurious detections. The method adopted here is based on
[7]. Ling et al. model the liver by a hierarchical mesh-based
shape representation. First, the liver is detected estimating
its pose and location on the coarsest level using the marginal
space learning scheme. Then, the model is refined applying a
learning-based boundary localization which helps the system
to become reliable to heterogeneous intensity patterns. The
liver surface is decomposed into patches depending on
the surrounding anatomic structures, and patch dependent
classifiers are employed to cope with the different texture
patterns.

B. Intensity standardization

In order to normalize the intensities and thus make
the images more comparable, a non-rigid matching of the
histogram of each target image to the histogram of one
reference data set previously chosen from the database is
conducted as proposed in [8]. Subsequently, the estimated
mapping is applied to the intensities of the target image.

C. Voxel classification

In the main step of the proposed segmentation method,
each voxel within the liver is classified as either lesion or
parenchyma by a previously trained classifier. The highly
variable appearance of parenchyma and lesions makes it
difficult for a single classifier like AdaBoost or a support
vector machine to globally find an appropriate model for
each target class and thus an optimal decision boundary in
the input space. While Shimizu et al. used two AdaBoost
classifiers to be able to account for at least different lesion
sizes, we chose to adopt the recently proposed probabilistic
boosting tree (PBT) [9] in combination with AdaBoost and
decision stumps. Due to its hierarchical nature, the PBT
is able to capture the full variability within the classes. In
the training stage it recursively learns a tree, where at each
node a strong classifier is trained, e.g., with AdaBoost. This
strong classifier is then used to split the training set into
a negative and a positive subset, which form the input for
training the left and right subtrees, respectively. Training
samples, for which the strong classifier generates an output
close to the decision boundary, however, represent hard
examples and are put into both subsets. This procedure
recursively subdivides the feature space, generating more
detailed decision problems for nodes deeper in the tree,
similar to a decision tree. Moreover, it was shown in [10] that
an AdaBoost classifier H approaches logistic regression for
a pattern x and posterior probabilities p(y|x), y ∈ {−1, 1}

by

H(x) ≈ 1

2
ln

p(y = +1|x)
p(y = −1|x)

, (1)

allowing the computation of approximate posterior probabil-
ities for x as

q(±1|x) = exp(±2H(x))

1 + exp(±2H(x))
. (2)

To classify a new pattern with a trained PBT, the root
node’s strong classifier calculates its posteriors q(±1|x).
Depending on the result the pattern is passed into the
subtrees and the procedure is repeated recursively all the way
down the tree. Each node then combines the results from its
subtrees and returns them to its parent node. That way the
PBT combines the classification results of its internal nodes
into the overall approximate posterior distribution p̃(y|x) at
the root. This is a true probability value and can be used to
trade off the tree’s sensitivity vs. its specificity via a single
threshold.

The features we used for classification can be grouped into
three sets. The first contains grey value statistical features,
like min, max, mean, and median intensities, contrast, range,
variance, skewness over 3-D neighborhoods of various sizes,
as well as gradients in 2-D and 3-D. The second group
comprises 3-D Haar-like features in various scalings. In con-
trast to other approaches [4], [6], the neighborhoods are all
computed not on a voxel but on a millimeter scale, making
the approach robust against the use of images acquired with
different CT scanners and acquisition protocols.

One drawback of the voxel classification approach is the
fact, that it treats the classification of each point as an inde-
pendent problem, which is obviously not true when segment-
ing contiguous objects. Usually, one tries to compensate for
this wrong assumption by incorporating context information,
e.g., by designing special features or averaging features over
some neighborhood. An entirely different approach is pro-
posed by Morra et al. in [11]. They directly use the fact that
neighboring points with similar properties tend to belong to
the same class. Similar to their approach, we train a cascade
of PBTs, each of which receives not only the described
image features as input, but also features calculated from
the output probability image of the preceding classifier (Fig.
1). That way, when classifying a point, previously gained
knowledge of the classes of surrounding points can function
as a prior. The features we calculate from this probability
image for each point are the point’s own probability, the
mean, median, Gaussian-weighted sums in 2-D and 3-D in
some neighborhood, as well as the sum of the surrounding
points without the point itself.

D. Post Processing

The final probability map generated by the classification
step is smoothed by means of a median filter. Then, a
morphological opening operation with a kernel size of
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Figure 1. In the iterative classification, output probabilities of each step
function as additional features for the next one.

3× 3× 3 is performed to eliminate small and isolated false
positive detections. Finally, the image is converted into a
lesion candidate mask by thresholding the probability values.

III. RESULTS AND DISCUSSION

The system was evaluated using a total of 15 CT liver
datasets with venous phase contrast enhancement from three
different clinical sites. The voxel resolution varied from
0.547 to 0.832 mm in x and y directions, and 1 to 3 mm
in z direction. For training and testing, datasets were sub
sampled to a slice thickness of 3 mm where applicable.
The contained lesions were all hypodense, i.e. they appeared
darker than the parenchyma in the images. Apart from some
(benign) cysts, most of the lesions were malignant ones such
as hepatocellular carcinoma or metastases of various sizes,
which form the most common malignant focal liver lesions
in the clinic.

For each reported experiment a 5-fold cross-validation
was performed, using 12 datasets for training and the re-
maining three for testing. For segmentation quality assess-
ment, receiver operator characteristics (ROC) curves were
calculated by varying a threshold on the probability map
generated by the classifier. Thus, the curves represent the
classification performance, with no post processing. Fig. 2(a)
shows the effect of the iteration scheme. The calculated
probability features were extensively used by the classifiers,
such that the second and third classification stage both
outperformed the first one, while the performance gain in the
first step was bigger than in the second. The improvement
achieved by training more than three iterations turned out to
be marginal. From Fig. 2(b) it is clearly visible how crucial
the proposed intensity standardization is. For these curves,
the outputs of two classifiers at the last stage of the iterative
scheme were compared, one of them trained and applied
with standardization, the other without. The standardization
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Figure 2. Effect of the iterative scheme (a) and the intensity standardization
(b) on the classifier’s performance.

increased the system’s robustness and thus improved the
classification. At a false positive rate (1-specificity) of 0.05,
e.g., the sensitivity improved from 0.82 to 0.92.

To allow a fair judgement of the system, lesion detection
has to be assessed separately. Unfortunately, this is rarely
done in literature. Massoptier and Casciaro [3] do report fig-
ures on lesion detection performance, however, they do not
clearly state their criteria for considering a lesion correctly
detected or not, which makes a comparison difficult. Here,
we consider a lesion candidate a false positive if it is covered
by the reference lesion mask by less than 50%. A reference
lesion r is considered detected (true positive) if (1) its centre
of gravity lies inside a candidate and that candidate’s centre
of gravity lies inside r, or if (2) r is covered by lesion
candidates by more than 50% (taking into account only
candidates that were not marked false positive). The entire
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Figure 3. Segmentation result (dotted contours) with ground truth (solid).

analysis is restricted to objects with a volume larger than
0.125 ml. Applying these criteria to the final output of the
system at threshold 0.44, we achieved a detection rate of
71% at a precision of 0.17, meaning that there were 4.8
false positive detections for each true positive or 14.4 false
positives per patient. While this false positive rate appears
very high, closer examination shows, that most of these false
positives were located at the liver boundary or in fissures and
exhibit characteristic shapes, and can thus be filtered using
another classifier. The segmentation result at this threshold
on the other hand was 0.95 sensitivity and 0.93 specificity.
Figure 3 shows a typical detection result of the system.

IV. CONCLUSION AND OUTLOOK

The presented system for detection and segmentation of
focal liver lesions is able to reliably segment the lesions in
the used patient database. Successive training of several clas-
sifiers using additional probability features proved useful,
as did the proposed standardization method. For satisfying
lesion detection, however, false positive rates have to be
further reduced. An integration of multiple contrast phases
into the classification process might also be helpful when
adapting the system for the segmentation of hyperdense
lesions.
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