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Iterative Closest Point Algorithm for Rigid Registration of Ear Impressions 

 

Introduction 

Registration of surface meshes is a fundamental task 

with numerous applications in different fields such as 

computer vision and medical imaging. The general 

registration task is defined by computing a 

transformation to align two or more surfaces. 

The state-of-the-art solution is usually based on an 

iterative closest point (ICP) algorithm. The algorithm 

was independently introduced by Besl and McKay [2], 

Chen and Medioni [4] and Zhang [10]. Besl et al. used 

the point-to-point metric, while Chen and Medioni 

developed the point-to-plane metric. Zhang proposed an 

efficient rejection strategy of invalid point pairs. Since, 

the first introduction of the ICP, many different 

variations were proposed [8]. 

In this work, a two-step version using the point-to-point, 

the point-to-plane metric as well as an efficient surface 

reduction and point-matching technique is proposed. Our 

aim is to compute a fast, robust and accurate registration 

of ear impressions, see Figure 1.  

 
Fig. 1: Example of an ear impression. Please refer to [5] 

for a detailed explanation of key anatomical features. 

 

An ear impression is acquired by placing a malleable 

material in the patient’s ear. The settled material is 

scanned afterwards using a 3-D scanner. The resulting 

mesh is a smooth open 2-D manifold. However, often 

the meshes contain huge amounts of noise in the area of 

the deepest point of the ear canal and the outer ear. Some 

example meshes are depicted in Figure 2. The ear 

meshes are processed utilizing a computer-aided-design 

(CAD) system to model customized in-the-ear hearing 

aids, see Figure 3. 

The goal of our work is to improve and speed up the 

preprocessing of the meshes in the CAD system. The 

CAD system as described in [9] utilizes anatomical 

important features detected on the meshes. Ear shapes 

show strong shape variations, the identification of 

features in a robust and reliable way is a complex task.  

 

 
Fig. 2: Two examples of ear surfaces including a subset 

of anatomical important feature points shown as blue 

dots. 

 

Similar work was done by Zouhar et al. [11] and Paulsen 

et al. [7]. The former registered left and right ear 

impressions using extracted anatomical feature points. 

The latter worked on the identification of a general ear 

shape based on features and mesh deformations. 

The organization of the paper is as follows. In the next 

section, we discuss the applied methods. This is followed 

by a description of the carried out experiments and the 

corresponding results. Finally, we conclude and discuss 

the achieved results. 

  

 
Fig. 3: In-the-ear hearing aids are typically build in three 

size categories: In-the-ear (ITE) devices (left), in-the-

canal (ITC) devices (middle) and completely-in-the-

canal (CIC) devices (right). 

Material and Methods 

The scanned ear impressions result in point clouds 

containing up to 30,000 vertices. To achieve a fast and 

robust registration of two of these meshes, we use two 

steps: 

1. Reduction of the surface mesh to a so-called 

centerline. Applying an ICP with point-to-point 

metric to achieve a coarse registration. 

2. Applying an ICP with point-to-plane metric on 

a sub sampled mesh to compute the final 

registration. 

The centerline of an ear surface is computed similar to 

an active contour (snake) [6]. Therefore, we utilize one 

property of the data – the opening at the bottom of the 

surface. It allows the definition of a plane, which is used 

to slice the mesh equidistantly beginning at the canal tip 

of the mesh. The resulting closed contours, more 

precisely the contour centers construct the initial 

centerline. Afterwards the centerline is refined and 

improved by applying internal and external forces on the 

line as defined below: 

ear canal 

concha cymba 
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E int (i) = l(i −1) + l(i +1) − 2l(i) , (1) 

E ext (i) =
1

N

xr,i

xr,ir =1

N

∑ , (2) 

l'(i) = l(i) + αE int (i) + βE ext (i). (3) 

In eq. (2), xr,i denotes the hit point with the mesh of a 

random ray r emitted from the centerline point l(i) and N 

is the number of rays. The final update rule of a 

centerline point l(i) is a weighted combination of the 

internal and external force, where α = 0.04 and β = 1.0. 

The centerline points are updated according to eq. (3) 

until convergence. An example for the initial and the 

refined centerline is given in Figure 4. 

 
Fig. 4: Centerline of an ear impression. The initial 

centerline is colored in red and the refined centerline in 

black.  

 

The centerlines are used in a preregistration step using 

the ICP algorithm. A critical step of the ICP is the 

matching of point pairs, which can be computational 

expensive. We use the fact that the centerlines are 

ordered from top to bottom for an efficient point 

matching technique. We shift the shorter centerline along 

the longer, adjust the size of the longer one and compute 

the point matches based on the point indexes. For every 

shift step, we compute the ICP and store the 

transformation matrix and the registration error. For the 

final registration only the best transformation matrices 

are kept. 

To solve the ICP, we utilize the SVD-based strategy 

proposed by Arun et al. [1]. The basic optimization 

problem is formulated in eq. (4):  

 

ε = Rpi + t − qi

2

i=1

N

∑ , (4) 

where qi ∈ Q is the closed point to pi ∈ P. In a first step, 

the translation is decoupled from the rotation by utilizing 

the center points of the point clouds. 

 

p =
1

N
pi

i=1

N

∑ ,      p'i = pi − p   

q =
1

N
qi

i=1

N

∑ ,      q'i = qi − q   

ε = Rp'i −q'i
2

i=1

N

∑  (5) 

Using the translated point clouds P’ and Q’, we can build 

a matrix  

H = p'i q'i
i=1

N

∑ . 

The application of the SVD yields H = UΣV
t
. R = VU

t
 

then gives the desired rotation matrix R. Afterwards the 

translation can be computed using 

t = q − Rp . (6) 

As result we obtain a vector of transformations, which 

can be used as starting point for the second ICP. 

For the second ICP, we used the point-to-plane metric, in 

contrast to the point-to-point error metric; it utilizes the 

surface normal (ni) information and allows that smooth 

or planar areas of the meshes slide over each other 

easily. Hence, the optimization problem is defined as 

ε = Rpi + t − qi( )ni

2

i=1

N

∑ . (7) 

In eq. (7) qi denotes a point on the tangent plane si [4]. 

Given that we have an initial alignment, we can linearize 

the problem by approximating cosα = 1 and sinα = α, 

which allows the approximation of the rotation matrix R: 

R =

1 −γ β

γ 1 −α

−β α 1

 

 

 
 
 

 

 

 
 
 

. (8) 

Substitution of eq. (8) into (7) yields 

ε = pi − qi( )ni + tni + rai[ ]
2

i=1

N

∑ , (9) 

where a = p × n and r = (α β γ)
t
. To minimize eq. (9), 

the partial derivatives can be used. The derivatives can 

be collected an expressed in matrix form (eq. (10)) 

allowing the representation of the optimization task as 

Ax = b. Eq. (10) can be solved using standard methods 

like Cholesky or LU-decomposition [11]. 

Results 

For our experiments we acquired a sample set of 400 

meshes. In order to compute an exact registration error 

we evaluated the registration a sample with itself. To 

simulate the real task the samples were modified. The 

modifications included a cutting of the mesh to remove 

approximately 25 percent of the mesh, a rotation about 
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i=1
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∑ . (10) 

 

10 degrees followed by the application of random noise, 

see Figure 5. 

 

 

 
Fig. 5: Modified samples for the registration evaluation. 

The first picture shows a sample, which was cut at the 

bottom. In the middle the applied rotation is shown and 

at the bottom the rotation in combination with random 

noise is depicted. 

 

In our experiments we focused on how to select points, 

how to reject point pairs and if weighting of point pairs 

is beneficial. If not denoted otherwise, we utilized 1000 

point pairs, a two value threshold rejection technique and 

no point pair weighting. The registration error is defined 

as the average sum of squared distances between the 

modified samples (computed using the original sample). 

We compared random and uniform point selection. As 

reference, we also computed the registration error for all 

points. The results are listed in Table 1 and visualized in 

Figure 6. 

 
Fig. 6: Comparison of the cumulative registration error 

of the three selection techniques. 

 

Point selection Error  Time in sec 

Full 0.0244 25.8 

Random 0.0478 1.6 

Uniform 0.0657 1.7 

Tab. 2: Results of the different point selection strategies, 

showing the average registration error and the average 

computation time. Note: The computation time includes 

data loading and modification. 

 

The results clearly indicate that the uniform selection of 

points is far worse than selection of random points. 

Naturally, selecting all points yields the best result. 

However, the random selection error is only slightly 

larger. In addition, the random selection is 

approximately 16 times faster.  

To handle the implicit assumption of full overlap of the 

surfaces being registered and the theoretical assumption, 

that the points are exact rather than measured, a 

maximum matching threshold (dmax) is applied [8,10]. 

We compared five rejection strategies, including not 

using rejection at all. The simplest one is rejection of 

point-pairs based on a threshold value. We investigated 

two variations: one iteration with a medium threshold 

dmax = 2 and one iteration with a large threshold dmax = 

2.5 followed by one with a small dmax = 1.0 threshold. 

Furthermore, we evaluated the rejection of the worst 

pairs and rejection based on the standard deviation of the 

point pair distance [8]. In the former we excluded the 

worst 10 percent and in the latter we excluded point-

pairs with a distance greater than dmax = 2.5σ, where σ is 
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the standard deviation. The results are listed in Table 2 

and visualized in Figure 7. 

 

 
Fig. 7: Comparison of the cumulative registration error 

of the five rejection techniques (No rejection not shown). 

 

Point pair rejection Error  Time in sec 

No rejection 1.1088 1.8 

One threshold 0.0800 1.1 

Two thresholds 0.0477 1.7 

Worst pairs 0.0488 1.2 

Standard deviation 0.0491 1.1 

Tab. 2: Results of the different point pair rejection 

strategies, showing the average registration error and the 

average computation time. 

 

Obvious from the results in Table 2, is that a rejection 

strategy is necessary. If no rejection is used the 

decomposition of matrix A in eq. (10) does fail, resulting 

in a large registration error. The simple rejection strategy 

with a single threshold works better, but is significantly 

worse than the more adaptive techniques. The best 

technique uses two thresholds, but its accuracy is bought 

dearly considering the average time needed to compute 

the registration. The best trade off considering time and 

accuracy is offered by the worst pairs and standard 

deviation rejection.  

Finally, we evaluated the weighting of the point pairs 

based on their distance and normal compatibility [13]. In 

our case no improvement considering convergence speed 

or accuracy could be achieved, probably due to the two 

step approach and a suitable rejection strategy in place. 

All in all, we achieved a very good registration result 

(error ≈ 0.05) in a reasonable amount of time (≈1.1 

seconds). 

Discussion 

We presented a variation of the famous ICP algorithm 

specifically adapted to the case of registering ear 

impression surfaces. The proposed algorithm uses a two-

step approach. At first, a rough registration is computed 

using a reduced data representation and the point-to-

point error metric. Second, an ICP using the point-to-

plane error metric is applied for the final registration. 

We evaluated the approach using a sample set containing 

400 ear surfaces. The achieved registration results are 

very good even in case of noise and non-overlapping 

data (averaged sum of squared distances ≈ 0.05 mm).  

In the next steps, we want to utilize the acquired 

registration information to improve the preprocessing of 

ear shapes in a CAD system. 
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