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Abstract. In this paper, we propose an automatic method to directly
extract 3D dynamic left ventricle (LV) model from sparse 2D rotational
angiocardiogram (each cardiac phase contains only five projections). The
extracted dynamic model provides quantitative cardiac function analysis
and overlay of the model onto 2D real-time fluoroscopic images provides
valuable visual guidance during cardiac intervention. Though containing
severe cardiac motion artifacts, an ungated CT reconstruction is used
in our approach to extract a rough static LV model. The initialized LV
model is projected onto each 2D projection image. The silhouette of the
projected mesh is deformed to match the boundary of LV blood pool.
The deformation vectors of the silhouette are back-projected to 3D space
and used as anchor points for thin plate spline (TPS) interpolation of
other mesh points. The proposed method is validated on 12 synthesized
datasets. The extracted 3D LV meshes match the ground truth quite
well with a mean point-to-mesh error of 0.51±0.11mm. The preliminary
experiments on two real datasets (included a patient and a pig) show
promising results too.

1 Introduction

The real time angiocardiogram on a C-arm system is the workhorse imaging
modality for many cardiac interventions. Nowadays it is becoming desirable
to create a dynamic 3D left ventricle (LV) model automatically, which could
be served to 1) quantitatively evaluate cardiac function, such as LV volume,
LV ejection fraction (EF) and regional wall motion during the intervention, 2)
provide visual guidance during intervention by overlaying this model onto 2D
fluoroscopy, and 3) reduce motion artifacts for 3D image reconstruction [1]. A
direct approach is to segment the LV from cine CT volumes, which are de-
rived by electrocardiogram (ECG) gated reconstruction [2]. However, the X-ray
source/detector needs to sweep 5-6 times to capture enough 2D projection data
for each cardiac phase. The patient is required to hold breath during the whole



Fig. 1. Flowchart of the extraction of 3D dynamic left ventricle meshes.

procedure of 30 s (which is difficult to a very sick patient) to remove the respi-
ratory motion. Furthermore, longer acquisition time incurs more radiation dose,
which is a big concern nowadays.

Alternatively, one can generate a dynamic mesh directly from 2D projections.
There are some previous studies using biplane and multi-view systems to recover
thorax and lung [3, 4] and the LV surface [5–7]. In Lotjonen et al.’s work, a prior
model, which is a representative of average anatomy, is projected onto each 2D
angle. The virtual projection is matched with input image using free form defor-
mation [3, 4]. Veistera et al. used triangulated mesh of the LV segmented from
an MR image as prior model and projected the mesh onto each 2D projection.
Manually annotated contour is used to deform the mesh. Moriyama et al. [6]
proposed an iterative framework to recover LV mesh from multi views by fitting
a 4D surface model based on B-splines. However, the geometry is limited to a
star shape due to the spherical coordinates used.

In this paper, we propose a fully automatic method to fit a dynamic 3D LV
model using projection images generated by a single rotation of C-arm. The pro-
posed method has several advantages: 1) Since the prior LV model is segmented
from an ungated volume reconstructed from the 2D projections, the 3D to 2D
mapping is straightforward. 2) The detection of LV blood pool boundary is effi-
cient. The searching is confined to the profiles of silhouette points of projected
mesh, without filtering the entire image. 3) Thin plate spline (TPS) interpola-
tion is used to compute the deformation of the whole mesh. The inclusion of
smoothing factor in TPS allows correction of outliers in estimated deformation
vectors.

2 Method

The main steps of our approach are illustrated in Fig. 1 with the intermediate
results shown in Fig. 2. Firstly a 3D CT volume is reconstructed using all 2D
projections. Though with significant cardiac motion artifacts, the image quality
is good enough for automatic extraction of a rough 3D LV endocardium mesh
model using the approach proposed in [8] (Fig. 2a). We then project this static
mesh onto each 2D image (Fig. 2b). The silhouette is extracted from the pro-
jected mesh and adjusted along the normal direction to the optimal position
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Fig. 2. Intermediate results of the proposed method. (a) Ungated 3D reconstruction
volume overlaid with a static left ventricle (LV) mesh. (b) Projected static mesh (green)
and its silhouette (red). (c) Deforming the silhouette to fit the LV blood pool boundary
(blue). (d) Converting 2D deformation to 3D. (e) Warping the whole mesh using the
silhouettes as anchor points. (f) Re-projection of deformed mesh. (g) Comparison of
the mesh silhouette (red), segmented (blue) and annotated (yellow) LV blood pool.

Fig. 3. Mesh silhouette extraction. Left: Splitting candidate silhouette edges (red)
at the intersection (point C). Right: Edge following, which consistently follows the
right-most edge.

using a learning based boundary detector (Fig. 2c). The 2D deformation vec-
tor is then back-projected to 3D (Fig. 2d). Typically one C-arm rotation takes
about 5 s and generates 133 images. For a patient with a typical heart rate of
60 bpm, each cardiac phase has only five projections. Thus each cardiac phase
has about five silhouettes with known 3D motion. The deformation of those sil-
houette points are used as anchor points for TPS interpolation of all the points
(Fig. 2e). In this way a sequence of 3D meshes are generated. The estimated
dynamic mesh can further be re-projected to corresponding 2D angiographic
images for further refinement again. The iterative procedure converges in a few
iterations.

2.1 Mesh Silhouette Extraction

On a 2D projection image, the LV blood pool filled with contrast agent is the
most salient image boundary. In our approach, we deform the LV mesh to make



its silhouette match the blood pool boundary. An efficient approach is proposed
to extract the silhouette of a projected mesh based on the the connectivity of
mesh edges. It should be noted that the silhouette is not only composed with full
length of original mesh edges. Two edges not coplanar in 3D may intersect in a
2D projection and only part of each is on the silhouette (Fig. 3). The general
procedure is as follows. 1) Select candidate mesh edges for the silhouette; 2)
Split the candidate edges at the intersection points; and 3) Edge following to
extract silhouette. The efficiency of our approach comes from two facts: 1) The
first step is accomplished by topological analysis of the projected mesh. For a
triangulated mesh (e.g., our heart model), an edge cannot be on the silhouette if
it is shared by two triangles on the opposite sides of this edge. Thus most edges
are excluded for further investigation in this step. 2) The second step determines
whether an intersection point exists or not for every remaining edge pairs. The
computation of intersection is time consuming. It is sped up by performing a
quick condition check based on bounding box, which uses light operations to
reject majority of the non-intersecting edge pairs. Thus the time consuming
intersection computation is applied to only a few edge pairs.

Finally, an edge following procedure is taken to extract the silhouette from
the split edges (Fig. 3). It is initialized with the right-most point of the projected
mesh, which is guaranteed to be on the silhouette. Initialized with the upward
search direction, it iteratively follows the right-most edge until coming back to
the starting point. The whole path composes the extracted mesh silhouette.

2.2 Blood Pool Segmentation

During the training stage, the manually annotated LV blood pool boundary
is given as input. For each boundary point, the steerable features [8] of pixels
along the normal direction of this point are taken to extracted for a probabilistic
boosting tree (PBT) classifier, which is a combination of the decision tree and
AdaBoost classifier.

Let’s assume the silhouette is composed of N points. During the segmentation
stage, for each silhouette point n, a profile with predefined length K along the
normal direction is extracted. A probability value is computed for each pixel on
the profile based on PBT. Thus an N ×K 2D array A(n, kn) can be computed,
where n denotes the silhouette point index and kn represents the pixel index
along profile n. It is desirable to deform the silhouette contour to pixels with
maximized summation of probability value, under some smoothness constraint
that the difference of displacements between neighboring points is not allowed
to exceed λ. Mathematically the optimization problem has the form as:

max

N∑
n=1

A(n, kn), (1)

It can be solved with an optimal graph search algorithm [9], where a 1D loop
surface can be detected in a 2D graph.



2.3 Back-Projection of Deformation Vectors

To estimate the 3D motion, we assume that each mesh point is moving along its
surface normal. It is a reasonable assumption since the LV motion is dominated
by the contraction and dilation of the chamber. For each silhouette point M, we
project its 3D normal vector n onto 2D to compute the 2D normal vector nP

nP =
(P(M4 + n4)−PM4)3

‖P(M4 + n4)−PM4‖
, (2)

where P is a 4×3 projection matrix for 3D to 2D mapping. Superscript 4 denotes
representation of bracket contents using the four-dimensional homogeneous co-
ordinate, while superscript 3 means converting to the three-dimensional vector.
The amount of 3D displacement (t) can be calculated by solving the following
equation,

P(M4 + n4t) = M′4
P , (3)

where M′
P is the position of blood pool boundary, which is also the projection

of the mesh point’s new location M′. By expanding Eqn. (3), we get

P11(Mx + nxt) + P12(My + nyt) + P13(Mz + nzt) + P14Mw

P31(Mx + nxt) + P32(My + nyt) + P33(Mz + nzt) + P34Mw
= M ′

Pu, (4)

where Pij the element at the ith row and jth column of projection matrix P.
(Mx, My, Mz, Mw) is homogeneous representation of the 3D mesh point M, and
M ′

Pu is the x coordinate of the 2D blood pool boundary point.

2.4 TPS Interpolation

The 3D positions of non-silhouette mesh points need to be interpolated. The
thin plate spline (TPS) [10] is a popular coordinate interpolation approach by
minimizing a physical energy function,

E =

k∑
i=1

‖f(xi)− yi‖2 + λ

∫∫
R2

[
(
∂2z

∂x2
)2 + 2(

∂2z

∂x∂y
)2 + (

∂2z

∂y2
)2
]
dxdy, (5)

where the first term is the interpolation error of the anchor points and the second
term is the bending energy of the transformation of a “thin plate.” The param-
eter λ is tuned appropriately to control the balance between exact mapping of
anchor points and rigidness of deformation.

3 Experiments

We first validate the proposed method on synthesized datasets using the 3D LV
meshes extracted from 12 4D CT scans, on which we know both the 2D and 3D
ground truth. The whole system is also tested on two real datasets, including a
patient and a pig.



Fig. 4. Validation on synthesized data. Left: LV volume error (ml) of 12 mesh se-
quences plotted against the number of iterations; Right: The estimated LV volume
curve and ejection fraction (EF) against the ground truth for one sequence.

3.1 Validation on Synthesized Data

In this experiment, we validate the basic assumptions (e.g., the 3D motion di-
rection along the surface normal and TPS interpolation) used in the proposed
method without considering the blood pool segmentation error. The LV meshes
extracted from the dynamic CT scans are used. The 3D dynamic meshes are
projected onto 2D and the mesh silhouette on each 2D projection is extracted
as the segmented blood pool. An averaged mesh of the whole cardiac cycle is
computed as the initial 3D LV model. Given the static averaged 3D LV mesh and
contours of the blood pool on 2D projections, the proposed method is applied to
estimate the dynamic 3D meshes, which are then compared to the original 3D
meshes to measure the accuracy.

LV volumes and point-to-mesh error are used to measure the difference be-
tween computed meshes and ground truth. Fig. 4 shows the convergence of LV
volume error on 12 sequences through five iterations of the algorithm, where the
error is reduced quickly in the first two iterations. The initial volume error is
about 30 ml. We achieve a mean volume error of 3.27 ± 0.71 ml and relative
volume error of 4.0 ± 4.4%. As shown by the volume curve in Fig. 4, the esti-
mated LV volume matches the ground truth quite well. The estimated ejection
fraction (EF) of 43.7% is close to the true value of 45.8%. For the point-to-mesh
error, the initial mean error is 2.19±0.56 mm, and the final error is significantly
reduced to 0.51±0.11 mm, which is smaller than the mesh resolution (the mean
mesh edge length is 4.29 mm).

3.2 Validation on Real Data

The proposed method is also validated on two real rotational angiographic
datasets, including a patient and a pig. For the patient dataset, about five car-
diac cycles were captured in the image sequence with 133 projection images.
The frame rate of the pig dataset was set much higher, resulting in 395 2D
projection images, spanning 13 cardiac cycles. The ECG signal is recorded to
assign a cardiac phase to each 2D projection. Since we do not have ground truth
of the 3D mesh, we measure the distance of the mesh silhouette to the anno-
tated blood pool boundary. The error of the automatically segmented blood pool



Fig. 5. Estimated 3D mesh (green mesh) and the re-projected mesh silhouette (red
contour) on two angiographic images. For comparison, the automatically segmented
blood pool boundary (blue) and manual annotation (yellow) are also shown.

Fig. 6. Reconstructed CT volumes using the estimated 3D motion for the patient
dataset. Left: Ungated reconstruction. Middle and Right: Motion-compensated re-
construction for the end-diastolic and end-systolic phases, respectively.

(using the approach presented in Section 2.2) is also validated, with the mean
error of 2.35± 1.32 mm on the patient data. The error of the re-projected mesh
silhouette is slightly higher, 2.84 ± 1.44 mm. The 2D angiographic images are
very noisy and the LV could be occluded by other highly contrasted structures,
e.g., the aorta and the diaphragm. To study the inter-observer variability, two
clinicians were asked to annotate the blood pool independently. The mean error
between the two manual annotations is 1.60 ± 0.87mm. Fig. 5 shows the ex-
tracted LV mesh and the projected silhouette on two frames. Our approach is
also tested on a pig dataset, where the image contrast is much lower and there
are strong confounding boundaries nearby such as the LV epicardium. The mesh
silhouette error after four iterations is 5.60± 2.05mm.

Using the estimated 3D cardiac motion, we perform motion-compensated
reconstruction [11]. As shown in Fig. 6 on the patient dataset, the trabeculations
of the LV is clearly visible after motion compensated.

4 Conclusion

We proposed a novel method to automatically extract the 3D dynamic LV model
from 2D rotational angiographic images captured in a single rotation of a C-
arm system. The estimated dynamic model can be used to extracted several
important measurements (e.g., volume and EF) of the LV function and it can also
be overlaid onto 2D fluoroscopic images to provide visual guidance during cardiac
interventions. The experiment on synthesized data validated the appropriateness



of the proposed method. The feasibility study on two real datasets (a patient
and a pig) showed promising results and we plan to test on more real datasets
in the future. Our approach can be extended to extract other organs with cyclic
motion (e.g., other heart chambers and the aorta).
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