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Ray Contribution Masks for Structure Adaptive
Sinogram Filtering

Michael Balda, Joachim Hornegger and Bjoern Heismann

Abstract—The patient dose in CT imaging is linked to mea- that maximize the Detective Quantum Efficiency (DQE) [4]-
surement noise. Various noise-reduction techniques haveebn [7]. For filtered back projection (FBP)-based reconstorgi
developed that adapt structure preserving filters like anistropic [8], [9], projection- or image-domain filters are applied to

diffusion or bilateral filters to CT noise properties. We introduce d th ired patient d Th t filteri
a structure adaptive sinogram (SAS) filter that incorporates reduce the required patent dose. The most common hitering

the specific properties of the CT measurement process. It use Strategy applied in medical CT scanners consists in mauifyi

a point-based forward projector to generate a local structue the high-pass reconstruction kernel used for FBP in a way tha
representation called Ray Contribution Mask (RCM). The sim high frequencies are less amplified or blocked [10]. For most
ilarities between neighboring RCMs are used in an enhanced diagnostic tasks, the relevant information is supposedeto b
variant of the bilateral filtering concept, where the photometric . . N

similarity is replaced with the structural similarity. We e valuate ~Primarily contained in the lower-frequency componentshef t
the performance in four different scenarios: The robustnes image. Each CT manufacturer offers a broad spectrum of task-
against reconstruction artifacts is demonstrated by a scarof specific reconstruction kernels that block irrelevant frexcy

a high-resolution-phantom. Without changing the modulaton components and consequently noise.

transfer function (MTF) nor introducing artifacts, the SAS filter : : : .
reduces the noise level by 13.6 %. The image sharpness and s®i More advanced noise reduction techniques use adaptive

reduction capabilities are visually assessed on in-vivo pient filters. This type of filters steers the filter Strength a_C"mJJd.
scans and quantitatively evaluated on a simulated phantom. t0 a noise estimate and causes less smoothing in regions
Unlike a standard bilateral filter, the SAS filter preserves @&lge where noise is low, i.e. the X-ray intensity is less atteadat
information and high-frequency components of organ textues For jnstance, an adaptive filter for reducing noise induced

well. It shows a homogeneous noise reduction behavior thrgin- : : . .
out the whole frequency range. The last scenario uses a sinanéd streak artifacts in very strongly attenuated data is shawn i

edge phantom to estimate the filter MTF for various contrasts [11]. Kachelrie et al. [12] have introduced an adaptiveffilt
The noise reduction for the simple edge phantom exceeds 80 %.that is applied in projection domain and features non-linea
For low contrasts at 55 Hounsfield units (HU), the mid-frequeicy  filtering in channel, projection and-direction for various
range is slightly attenuated, at higher contrasts of approx100 HU types of projection data such as helical cone-beam CT. Ih [13
and above, the MTF is fully preserved. a method for wavelet-based denoising of projection data is
Index Terms—Computed Tomography, noise reduction, non- introduced. This approach is especially suited for duate®u
linear filters, dose reduction. data [14] with similar tube-voltage settings for two lowsgo
data-sets. It utilizes the noise correlations between W t
aligned data-sets to construct an adaptive wavelet-based fi
Well-known edge preserving filters have also been investi-
CT image quality is predominantly influenced by the signgated. Edge-preserving anisotropic diffusion filters [13p]
to noise ratio (SNR) and the image modulation transfer fungan be adapted to CT data as shown in [17]. The purpose of
tion (MTF). Noise reduction techniques are an essentidlitoo this filter is to smooth along but not across edges. It relies
medical CT as image noise greatly influences the detediabilbn gradient information and noise can deteriorate the edge
of details in a reconstructed CT volume and thus its diagnosinformation and erroneously preserve noise-inducedstres.
value. As the most dominant noise component in CT, quantuxg a consequence true edges are weakened or false ones are
noise, is directly related to detected X-ray intensity,cassful enhanced. This problem has to be avoided by carefully choos-
noise reduction leads to a reduction of patient X-ray do$e [Ing the smoothing parameters for the gradient estimatisedha
In general, dose efficiency of CT acquisitions is driven bgn local noise estimates. Schaap et al. [18] have developed
several means including dynamic exposure control [2], tula® image-based fast denoising method based on anisotropic
filters like the wedge filter [3] and optimized detector desig diffusion. This method features an adapted diffusion fitter
preserve small structures.
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(a) Normally distributed tube-profile. (b) Schematics of projection process.(c) Sampled projected tube-profilg(c,r1) for fixed
projectionp; .

Fig. 1. lllustration of the working principle of the projémt operatorPp (r, ii(r)). A complete result ofPp (r, i(r)) is displayed in Fig. 2.

estimating local noise properties is complex, for instangeconstruction artifacts. However, the noise properties a
Borsdorf et al. [20] demonstrate how to estimate local varéa much more complicated in the reconstructed image as most
and analyze noise correlations in the image domain for Cileconstruction steps introduce noise correlations byrifilge
data reconstructed with indirect FBP. Manducha et al. [2&hd interpolation [20]. Furthermore, the structure andakal
introduced a noise-adaptive bilateral filter on projectitata magnitude of the noise is dependent on the whole object in-
where the photometric similarity is computed on an estimastead of merely the local attenuation. As a consequence; edg
of the actual quantum numbers. preserving frequency-based post-reconstruction filteesdrto
All of these strategies have one common goal: Reducifigodel the projection noise and measurement noise and the
the noise level of the reconstructed images while mainginiwhole reconstruction process.
a desired level of image sharpness and details. We introduce an Structure Adaptive Sinogram (SAS) filter
CT noise-reduction filters can be divided into two main cathat operates in the projection domain and uses a projection
egories: Pre- and post-reconstruction filters. Pre-rdoactson model to recover local structures in the projection spaocefr
filters like [11]-[13], [17], [21] are applied to the projémh a pre-reconstructed image. It yields an individual locdeéfil
data. The FBP filter-kernel described in [9] is usually used a kernel for each measurement value. This local kernel adlapts
simple pre-reconstruction kernel to steer the trade-affben smoothing directions to the local structures, thus thequtan
noise suppression and image sharpness. The advantag&oige level can be strongly reduced while the sharpness of
filtering in this domain is the simplicity of the noise charlow-contrast structures can be preserved. It basicallys use
acteristics: In the projection-space, the noise is almdstey two parameters which allow steering its filter strength and
only minor noise correlations are introduced by the dedecti Smoothing properties so it can be adapted to the demands of
process, for instance due to the optical crosstalk of siituis  specific diagnostic tasks. The filter is an extension of tiet-bi
[22]. These effects have minor influence and usually can Beal filter [19]. It replaces the photometric similarity nseize
neglected when designing noise-reduction filters. Addilty, with a more robust, CT-specific structural similarity tertn.
the magnitude of the noise can easily be estimated from tifgorporates the measurement process by using a point-base
measured attenuation values which allows for noise adaptiprojector and a pre-reconstructed image. The filter itsetfat
of the filter. Edge-preserving pre-reconstruction filterg, a noise adaptive, but can be combined with projection-domain
however, limited by the inferior contrast-to-noise ratio inoise adaption techniques such as [21] which steer the filter
sinogram space. Low-contrast structures in the imaged:bbjaccordingly.
can hardly be identified in projection space due to the noise
in CT projections at standard dose levels. Additionally the
contrast and CNR level even of homogeneous structuressvarie
throughout the projections. Non-linear edge-preserviter Il. THEORY
may not be able to preserve those structures throughout the
whole sinogram which generally leads to a loss in sharpnessThe SAS filter uses a point-based forward projector to gen-
It also may cause inconsistencies in the projection dat&twhierate a local structure representation called Ray Cortiwitou
results in artifacts in the reconstructed image. Consetjyenmask (RCM). The similarities between neighboring RCMs
pre-reconstruction filters may deal with noise propertieiw are used to compute an individual, non-linear filter kernel
but have a weakness in recognizing the structure of thelsigrifar each projection value. Additionally, a RCM-driven rang
Post-reconstruction filters such as [18], [23]-[25] operatdaption is applied to avoid inconsistencies which may e€aus
on reconstructed images and thus cannot produce or ingenséconstruction artifacts.
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space. Figure 2 depicts these contributions for a specific
The simplest variant featuring ideal integration, no cross
talk and ideal temporal sampling reads:

+oo
B—cAp (Br.vio2,)
M <TB) * Np (B),
1)

This equation models the sampling of a normally dis-
tributed, projected tube profile by the detector. The operat

x denotes the convolutiorj\/,fﬂwﬁw)(6) is the tube profile
projected onto the detector for projection p. Its mean value

is the detector channel angle corresponding to the location
and the gantry angle and its standard deviatios, , is the
standard deviation of the tube profite: times a stretch factor
determined by the pinhole projection model indicated in. Fig
1b. Ag is the fan angle between two channelg;) is the
rectangle function of width, centered a8 = 0. The fan beam
geometry is illustrated in Fig. 3.

¢/'=—00

Projection index p
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Detector

Fig. 2. Result of point-based projection operator for albmhels and
projections at a fixed locatior (scale: arbitrary units). For visualization NC = 0
purposes, an extremely large X-ray focus of 9mm full widgtFhmaximum .
(FWHM) was used.

A. Point-Based Analytic Projection

In practice, CT projections deviate from the ideal line-
projection model. This is for instance caused by samplirdy an
discretization effects, finite focal spot sizes and detextoss-
talk. We use a flexible model of the projection process called
point-based analytic projection which can take into actoun
these effects. We denote this single detector row variant
Pp (r, i(r)). The continuous 2-D functiom(r) denotes the
reconstructed attenuation values of a CT slice. This operakig. 3. Schematics and notation for fan-beam geometry.
yields the contribution of a delta impulse at positionto
the measured values at discrete channel indicesZ and  For a source positios, € R? and a source-detector distance
line projectionsp € Z. It may include effects like the focusof dgp we get the projected point location:
beam profile and size and detector channel characteristies.
projectionsp correspond to the sampled gantry anglesso DL, = S, + dsp - (r—s)) . )
v = p - Av with the angular sample distangsv. In a CT ’ lr—sul,

system, this sampling process features a temporal integrat grom this we can compute the corresponding channel angle
of the projections during the reading time. The functiop ith the rotated channel locatiar,  :
Pp(r, i(r)) yields the information where the contributions v

from a singlt_a point in the object space appear in the sinog_ram v}, , =R_,rp, + (dsp,0)” 3)
Figure 1 illustrates an exemplatory output of the projec- ’

tion operatorPp(r, i(r)) for a single gantry angle without

temporal smearing of the projected tube profile. It featares Br,, = arctana (1, 7D o) 4)

normally distributed tube profile model (Fig. 1a), a geoiaetr ith

projection model (Fig. 1b) and a detection model (Fig. 16 T vl = (r} T (5)

latter may include detector pixel geometry, sampling proee Dy = A Dya vy

like active pixel areas and detector cross tals (r, fi(r)) The functionarctany is the well-known variation of the

can be viewed as a transform that takes the function of loaakctangent function for polar coordinate transforms &d,

attenuation values in object spagé&r) as an input and yields is the rotation matrix that rotates a point by.

for a given locationr all contributions ofzi(r) in projection The standard deviation, , , can be computed as follows:

Source



TMI-2011-0767.R1 4

at (¢,p). Due to this property, the neighboring RCMs are

Ory = llrp., —xfl, P (6) Very similar in regions where the dominant structures are
’ [sv —rll, very similar, so it can be used as a basis for the SAS
filter kernel. For locations where local structures diffgre
B. Ray Contribution Masks similarity between RCMs decreases and major contributions

We use the point-based projection opera®pi(r, fi(r)) to from other dominant structures may prevent strong smogthin
calculate the contribution of a local measured value to it these directions. The averaging between these value®has
neighbors by sampling the projection ray that Correspongg blocked. As the RCM is a measure for the local structure,
to the measured attenuation &t 5. A single point in the it is perfectly suited to detect those structural changescen
projection space approximately corresponds to a line ieatbj determine the structural similarity. ;(¢', p') between neigh-
space I, () in Fig. 3). See Figs. 4a — 4c for examples oROriNg measurement values(atp) and(¢’, p’) by comparison
a simple phantom. We sample this line at distinct locatiod the RCMs at both locations.
indexed byk and call the sampled locations » . Then The structural similaritys; 5(¢/, p’) can be calculated from
we compute all point-projectior®Bp (£z 5.« fi(fe,5.%)) for the the RCMs in various ways by employing any similarity or
samples points on the line. The sum of all point-projectiog®rrelation measure on pairs of RCMs. The following variant
is the RCM R; 5(c, p): describes a very simple approach using the sum of absolute

differences as a dissimilarity measure:

Rep(e,p) =Y Pp (Fopr: filRepk)) @)
k

~ Al Al - - AN J A Al Al A
It quantifies contributions of the projection linedatp to the Sep(CP) = Z;Z;HRW(C 1) = Rerpr (€7 = &.p7 =)}
complete sinogram. For sampling the projection line, we use or (8)
a maximum sample distance of one pixel spacing in objecttq expressioi, +(¢',#) actually yields a non-normalized

space. Best results are achieved for sampling distancesysimilarity by computing the shifted difference of theotw
approx.0.75 to 1 pixel spacing. For larger sampling distanceégcms, We normalize this measure and convert it to a simi-
small image features could be missed. Smaller samplipgity measure by computing:

distances do not contribute any additional information and
would just slow down the computation. o 805,79

The RCM drops very fast with respect to distance from the sep(p) =1— S Z 5o @) 9)
center position(¢,p) so in practice, it can be limited to a & L' Sep\CHP
neighborhood of 5 to 11 projections. We call this parameteryith se.s(&,p') € [0,1], pairs of measurement values with
Apmax- The size limitation in terms of channels can bgn equa| RCM-structure get agayﬁ(é/,f)/)_vajue of 1.
determined by computing the outmost non-zero points of the
integrated projections.

In order to reduce the RCM to the most dominant structurd3, SAS Filter Calculation
we neglect all ray samples for which(r) falls below a
given fractionpg of the maximum attenuation value alonqo
the sampleq ray, S, mcl_udes only the §amp|_es above th ernel using a spatial neighborhood filtering component and
scaled maX|m_um_vaIue. This percentage_ls an important fllﬁ;]re structural neighborhood component of Eq. (9).
Eg;i?:&g\r/:{;mlz ;gﬂilf:r3§tfspirrﬁgig%gggzmoet% i’g Note th_at it is theoretically possible to_ co_nstruct filter

: ' ’ kernels with a range of more than one projection. However,

ps = 0.95 lead to best results.

Figure 4d shows an example of some RCMS Wity — this can make the filter prone to produce artifacts at high

7 for different rays and different local structures. The proqqntragt Obje.Cts since fllterlng over projections tendsem_ se
.minor inconsistencies in the data. Therefore we provide a 1-

jection line corresponding to example | intersects no SmeBCID kernel which performs filtering only within one projection

dominant structures, so e (¥e,p k. fi(Fe,5.5)) have identical |\, " o iaie Normal distribution with extends in chahn
weights and the contributions of the water background are

spread evenly on an hour-glass shape. Example Il contagns %recnon.

small circle, which appears as a dominant structure, thezef ) 1 (@ — &)

the RCM consists mostly of the trajectory of this structure i /\/C(‘; )(é’, p) = : eXp{ 5 } (10)

the sinogram. Example 11l contains two dominant structates ' V2ro g

very differentimage locations. These appear as two tr@je=  |ts mean value is placed at the center position of the filter

in the RCM. ¢,p and o should be linked toAp,.x SO that contributions
beyond this range are negligible. Thus, ofly,,.. steers the

C. Structural Smilarity overall filter strength. The resulting local filter kerneltlse

The RCM shape can be interpreted as follows: The value '3prmalized product of the spatial and structural simyeterm

R; 5(c,p) contains the information on how much of the total
A AL

~ 2
attenuation measured &t, p) appears in the value measured fep(@ D) =sep(@,p) Nc(‘; (@&, p). (11)

With the similaritiess; (¢, ') we can compute the final
cal filter f;;(¢',p’) by constructing a bilateral filter-type
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Projection index p

Projection index p

100 200 300 400 500 600 700

Channel index ¢ 339 343 347 351 355 359

Channel index ¢

(a) Example sinogram (box indicates the magnified excerpigf (b) Excerpt with marked sample measurements.

(b)).

7 0 7 ¢C
(c) Reconstructed slice with corresponding measurempes.li (d) RCMs.

Fig. 4. Example for correspondences between projectionodett space: (a) shows a sinogram of a simple phantom @ityewindow center (c)5.25,
width (w): 10.5, no unit), (b) shows a magnified excerpt with markers at sanfgtations, (c) shows the reconstructed slice{€50 HU, w: 1500 HU)
with the ray lines in corresponding colors to the markers igf Fb) and Fig. (d) shows the RCMs for the measurement lilResm@an numerals indicate the
correspondences, HU is Hounsfield units).
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fep(@,9) (12) et Apmax /2
hep= Y, 56p(@0)/ APmax- (13)

¢'=E—Apmax/2

fep(@,p) =

T T Fenl@ )2

The normalized similarity maskg ;(¢’,p’) for the sample . . .
locations shown in Fig. 4b are depicted in Fig. 6. These irmage I . o is replaced witho - he,5 . In case of total structural

demonstrate the basic properties of the filter: In homogwe@pmogdenet'.ty n the rf1e|ghbdorr\}8_(;: .(ﬁ’ﬁ)’ h”’ .:ﬁ and no it
regions, the shape of the RCMs is similar and a high structypy” acaption 1s pertormed. Vilth increasing inhomogeneity

similarity causes strong smoothing into these directidkts. he,p decreases and _thus the filter range 1s decreased Wh'Ch
borders with changing the local structure, no smoothings*.akre‘ju.Ces the overgll f||t<_er strength. This can be combinetl wit
place and edges are preserved. This ensures strong nBid®'Se model-driven filter range adaption.

reduction by an automatically steered averaging accortting

the similarity of the measured values. [1l. M ATERIALS AND METHODS

A. Implementation Details

T . Projection Our implementation ofPp(r, i(r)) features a pin-hole
seometry data projection model and a numerical temporal integration for

the sampling of the projection angles. The beam profile was

assumed to follow a Normal distribution. The FWHM of the
Point-projection FBP Normal distribution at the tube focus point was set to 0.9 mm
pre-computation reconstruction in all evaluations. The used detector sizes were 678 or 736
; | channels and 1152 projections per rotation were acquired. |
4 the measured data a detector quarter channel offset and an
RCM indirect fan-beam reconstruction was used. In simulafions
computation quarter offset was assumed and a direct fan-beam reconstruc
and SAS filtering tion was used. In most experiments, the pre-reconstruation
V the final reconstruction both were performed with a Ram-
Lak or a Shepp-Logan reconstruction kernel. Other kernel
FBP combinations are explicitly mentioned. Figure 5 visuaditiee
reconstruction data flow for a complete SAS-filtered reconstruction.
%

/ SAS-filtered / B. Optimization

reconstructed data Some essential optimizations have to be performed for a
practical implementation of the algorithm. A naive redliaa
Fig. 5. Schematics of the SAS-ilter data flow. Static data gme- Of the formulas presented above would require a huge amount
computation steps are marked gray. of computations. The resulting computation time would end

) _ . the filtering impractical. Fortunately, the computationnca
This approach fulfills the requirement stated above: Mage reformulated to exploit symmetries and enable a pre-
imal smoothing between values with similar local Str“‘mr%omputation of intermediate results that only depend on
according to their common attenuation and smoothing ovgjs system geometry and not on the imaged object. These
values with different local structures is blocked. The &tru computations have to be performed only once for a fixed
tures are not estimated in the projection domain but from@,ner set-up and may be reused for each scan. They may

projection model. include measurement effects like the temporal integratibn
_ _ projections during one projection.
E. Adaptive Filter Range The pre-computation makes use of the fact that the shape

The RCM-similarity can also be used to perform a dyef all point-based forward projections does not depend en th
namic, homogeneity-driven range adaption. This measureaissolute projection angle. The point-based analytic ptiges
used to reduce the overall filter influence in regions witban be very expensive operations, so we want to ensure that
large structural inhomogeneity or transitions betweefeddht as little projections as possible are computed and that no
dominating local structures. In practice, it has a positiyerojections have to be computed during the filtering phases.
influence on the overall image quality of the RCM filtedt is sufficient to compute all forward projections for a dimg
results. We choose a very simple homogeneity adaption whigtojection. These forward projections can be stored and re-
incorporates the required properties. It scales the stdndased for further filter computations as only the scale of the
deviationo of the spatial filter component defined in Eq. (10projections depends on the actual data whereas the shape is
with a homogeneity term. For the filter kernel of Egs. (11) anfdilly dependent on the scanner geometry. So the first step of
(12) with a filter range of one projection akp,,,, channels, the optimized algorithm is the pre-computation phase, eher
the scaling factor is defined as follows: all sample locations on all rays of the X-ray fan for a fixed
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(@ | (b) 1l (©)

Fig. 6. Normalized RCM similarity masks for the examplesegivin Fig. 4. The Roman numerals indicate the correspondertbethe markers in Fig. 4b
and the lines in Fig. 4c. The center line corresponds to tlapestof the filter kernels with a range of one projection.

projection angle are determined. For each sample, the-point  Object Type Evaluated quantities
based forward projections (Eq. 1) are computed for a neutrah  Catphan HR phantom measured  MTF, noise, artifacts
local attenuation valuﬁ(r) of one. B  Patient data measured Noise, visual image
. . . . . - quality

The filtering itself _mvolyes the foIIov_vmg steps: First of complex phantom simulated Noise, MTF
all, a pre-reconstruction with a sharp filter kernel has to bep Low contrast inset in water  simulated MTF, noise
performed. It is used for the RCM computation of Eq. (7): TABLE |
One RCM corresponds to one sampled ray path. The ray OVERVIEW OF CONDUCTED EXPERIMENTS

path has to be rotated according to the projection angl®, the
the pre-reconstructed slice is interpolated at the acogrdi
sample locations, the main contributions are identified and
weighted addition of the according pre-computed projectiSOMATOM Definition (Siemens AG, Forchheim, Germany).
masks is performed. The interpolated valueg:(f) are used All scans were conducted d#0kVp tube voltage,1.2 mm
as weights. The result of this operation is one RCM for eadfice width, no flying focal spot. The integration time was$ se
channel and projection which are held in memaory for the neta 433 us at a rotation time 0.5 s. The selected tube currents
step. were in the range 055 mA to 80 mA.
The filter computation step of Eq. (11) can be carried out in In some experiments, a Shepp-Logan kernel was used for
a straight-forward fashion. The required similarity measu pre- or final reconstruction instead of a Ram-Lak kernel.eier
of Egs. (8) and (9) can be computed on demand from tllee reconstruction quality for realistic application saeas
RCMs from the previous steps. A re-usage of similarity valuand the visual influence of filter parameters was inspected
computed earlier in the filter computation phase is unlikegnd compared to a standard FBP with adapted reconstruction
to bring significant advantages as due to the storage awmnel and a standard bilateral filter result. The filter pagter
organization overhead. of the FBP reconstruction and the bilateral filter where ad-
The application of the filter is the final step. The filtejusted so that an approximately similar overall noise saatd
changes for every sinogram location. This property leats | deviation was achieved. The standard deviation of voxeiesl
room for high-level optimization, but the computationabt in homogeneous tissue regions of the reconstructed images
of these steps are negligible. were taken as an estimate for the image noise. The FBP kernels
The overall complexity is dominated by the RCM computaare referred to as CEXX kernels whereXXX stands for a
tion. It scales linearly with the product channelsprojections two or three digit number indicating the cut-off frequengy

x samples per ray. relative to the Nyquist frequencfy. Cos50 represents a kernel
with a cut-off frequency ab0% of the Nyquist frequency,
C. Phantoms and Experiments Cos675 meang. = 0.675 - fn.

Four different phantom set-ups were used for the perfqr-The calculation rule for the discrete filter of lendtbamples

mance evaluations (Tab. I): The first (A) one consists of '§ @S follows:

CT-scan of a high resolution phantom of aluminum insets in P i

PMMA (Catphan HR, see Fig. 7a). It was used to assess noise Ki)=K(l—-i-1)= T ( - ) (14)
r ZC

and sharpness of the SAS filter.
Set-up B involves in vivo CT-scans of live patients. In ¢,, {i eNj0<i< 1.1} The cut-off index is defined as
order to visually assess the influence of this filter on image _ ; " . jnq N is t2he number of projections per rotation.

. . . . C
data, we use several patient data sets acquired with a S&emMgg, pijateral filter was chosen to have roughly the same

LCatphan 500, http://wwwphantomiab.conveatphanhtmi, The Phantom SPatial extent as the SAS filter and the photometric sintylari
Laboratory, Salem, NY, USA parameter was selected in a way that the estimated noise
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amplitude matches the other two results.

The purpose of set-up C is a quantitative performance
comparison of the SAS filter and a standard bilateral filtex. W
conducted 1000 simulations and reconstruction of an anthro
pomorphic, simulated phantom with complex structures.(Fig
8a). The large number of repetitions was chosen so that the
filtered images could be averaged to eliminate noise-infesn
and the MTF curves only contain frequencies of the noise-
free averaged signal. The filter strengths were again chimsen
have the same spatial extent and exact same SNR gain. We
used an signal amplitude over noise standard deviation & SN
definition. Here we compare the edge MTF [26] on the edge of
a elliptic contrast probe placed in the phantom. Higher MTF
values indicate that the filter sacrifices less image shagpne
for reducing the image noise.

Scenario D also uses simulated data. Here we evaluate the
edge MTF for varying CNR levels on a cylindrical water phan-
tom with a circular inset of varying densities was simulated (a) Measured Catphan HR phantom.
with an analytic forward projector for four different coasts
between inset and water (see Fig. 7b). For each contrast, 250
to 1000 scans were simulated and the filter was applied (the
lowest contrasts required 500 resp. 1000 scans due to the low
CNR). The edge between inset and water was used for an
MTF estimation.

IV. EVALUATION AND RESULTS

A. High Resolution Phantom “ __‘

Figure 9 shows the MTF estimates for the standard FBP and
an SAS filtered version. We can see only marginal changes
in terms of relative contrast throughout the whole freqyenc
range. This is due to the fact that the introduced filter ¢tjear
identifies the high-contrast structures throughout the levho
sinogram and adapts the filters appropriately. No averaging
takes place between components containing structure and
background. In this case, the image sharpness is not affecte “ ‘
and no additional reconstruction artifacts can be detedted
SAS filter manages to achieve a noise reduction of about (b) Contrast insets in cylindrical water phantom.
13.6% from a standard deviation 10.3HU without filter tdig. 7. Phantoms used for evaluation. Figure (a) shows thtph@a
8.9 HU with fiter (SNR increased from 97.0 to 112.3). DuEig fesolilon phartom wih auminur nsets s PN (45,
to its many small high-contrast inlays this phantom can b&yure (b) shows the four different contrast insets in a watentom used for

considered as a benchmark for robustness against reconstedge MTF evaluation (c: -387 HU, w: 1655 HU). The noise stathdieviation
tion artifacts is approx. 43HU and the contrasts are 55HU, 109 HU, 213 HU dacH®).

B. Patient Data a decrease in sharpness is well visible compared to the SAS
Figures 10 and 11 show comparisons between standard RBBult. In Fig. 11, more complex structures are containet an
reconstructions, a standard bilateral filtered and SA8kétt the Bilateral filter fails to detect and preserve the most of
reconstructions of two different patient scans. Althoubbk t the structure and causes strong visible blurring. The noise
estimated noise amplitudes are approximately similar @sFi shaping characteristics are also very different: The eoker-
10b, 10c and 10d resp. 1la, 11b and 1llc, the SAS filteel attenuates high frequency noise components very syrong
causes visibly less blurring, especially at edges with &éighwhereas low frequency noise passes the filter, consequbatly
CNR and high frequency components, for instance, the orgaoise grains are rather big and smooth. The noise in the SAS
tissue textures are preserved better. At very high CNR edggiser result (Fig. 10d) has a different frequency distribat
like the transition between air and tissue, the SAS filter cavhich resembles the original noise structure more cloJddg.
cause a minor amplification of the edge strength. At theseise reduction is more homogeneous throughout the whole
edges, the standard bilateral filter also preserves theamdggequency range. Regarding this property, the result of the
sharpness. In the example of Fig. 10, the standard bilatestdndard bilateral filter ranges in between Cosine-kerndl a
filter manages to preserve at least some of the structure BA#S filter result.
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(a) Simulated phantom slice. (b) MTF comparison result.

Fig. 8. Evaluation set-up C: The line in (a) marks the locatim which the edge MTF evaluation was performed.

the noise amplitude of a standard FBP with a C0s525 kernel
—cCoss0 (SNR increases fron33.0 to 37.5). This indicates that the
== RCM-Filtered + Cos80)| pre-reconstruction kernel has a clearly visible influencete
SAS filtering result and can be used to influence the filter
properties of the SAS filter.

1.4

1.2r

C. MTF Comparison Between Bilateral and SAS Filter

This experiment provides a quantitative verification of the
findings from set-up B. Figure 8b shows the edge MTF
extracted from the 1000 realizations. The overall SNR in
homogeneous soft tissue part of the phantom was increased
almost equally for both filters from 47.8 to 98.9 (bilateral)
resp. 105.5 (SAS). The MTF evaluation shows that the stan-
dard bilateral filters fails to preserve the edge sharpness a

o 1 2 3 7 5 6 it cannot distinguish the structures in the projection data
Resolution (line pairs per cm) It basically degrades to a low-pass filter and reaches the

noise reconstruction goal by sacrificing image sharpndss. T
Eig-k9- F;e:%triviarti:gngﬁﬁ; ?fe Saolstt?;r?saf% Jgggf}ﬁg:gg ;ne:'\:i:s;tlsstfncd results in blurring the edges of the structure and leads to a
tigrﬁ I?(-:r?nuerllwith acut—uofffrequenc; at 80 % of the detectoquigstfrequengy. reduc'[.'on of the higher frequenges in the MTF curve. The
SAS filter mostly blocks smoothing across the the borders of
the structure’s trace in the sinogram space and conseguentl
its edge MTF has higher values throughout the whole mid

The noise shaping characteristics can be influenced éyd high frequency range. It sacrifices much less sharpoess t
altering the filter parameters. In general, the noise slyapireach the same noise reduction performance. The small peak
characteristics of SAS filtering are less intuitively linkéo in the MTF of the bilateral filter ad.6 mm~! can most likely
the filter parameters than for standard reconstructionetern be attributed to a very small reconstruction artifact which
However, a desired specific noise shaping characteristic agppeared systematically in the bilateral filter resultayéwer,
be achieved by adapting the filter kernel of the final recomeither method caused a considerable increase in reconstru
struction of the SAS filter result. For instance, a smoothépn artifacts compared to the standard reconstructiohowit
post-reconstruction kernel leads to stronger smoothinthef non-linear filtering. This corresponds to the visual impies
SAS filter result. A smoother pre-reconstruction filter allso of the image sharpness in the patient images of set-up B. The
fluences the SAS filter. This property is visualized in Figd11 sharpness gain of the SAS method can be sacrificed for dose
Here we investigate the influence of the pre-reconstructiomduction by choosing a softer reconstruction kernel agvaho
kernel. We used a Shepp-Logan kernel instead of a Ram-Fig. 11.

Lak kernel for the pre-reconstruction. This leads to a Vésib

decrease in sharpness and noise, however the sharpnats id2st Noise Reduction and MTF for varying contrasts

better than for the standard bilateral filter result (Fig)1The This evaluation addresses the frequency transfer behavior
amount of noise reduction of approx2% corresponds to of the SAS filter. This is done by measuring the image MTF

Relative contrast
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(a) Reconstructed slice. (b) Cos625 reconstruction.

(d) SAS result.

(c) Standard bilateral filter reconstruction.

Fig. 10. Filter results for first patient dataset: (a) Rank-lraconstruction of the data-set used as input image for &® fiter, (b) magnified excerpt
(Cos625 kernel), (c) result of the standard bilateral fiked (d) result of the SAS filter9(x 9 RCM size, 0.225 smoothing, structure preservati@n9,
homogeneity adaption on). The water scaling was omitteché@se tests, so no intensity windows are given. Original esagre a courtesy of Prof. Dr.
Andreas H. Mahnken, RWTH Aachen, Germany. The box in (a) mé#rk region where the excerpts shown in (b)-(d) were taken.
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(d) RCM with Shepp-Logan pre-reconstruction.

(c) Standard bilateral filter reconstruction.
Filter results for second patient dataset: (a) Nfaghexcerpt (Cos575 kernel), and (b) result of the RCM fi{@rx 9 RCM size,0.5 smoothing,

Fig. 11.
structure preservatiofi.8, homogeneity adaption on), (c) bilateral filter result adyiresult with Shepp-Logan filtered pre-reconstructionigibal images are
a courtesy of Prof. Dr. Andreas H. Mahnken, RWTH Aachen, Genyn
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Contrast ~ Std. dev. original ~ Std. dev. filtered Noise Reductin depends only on the number of channels and projections and

55 HU 27.7HU 3.87HU 86.0% required about two to three seconds on average. This leads to
%(1)2 :8 ggg :8 21(5):8 2(2);3//0 a filter times of approx. 1 minute per slice. Additionally the
315 HU 33.9HU 6.54 HU 80.3% pre-reconstruction and the reconstruction of the SAS tesul

have to be carried out. The computation time from sinogram
to reconstructed and filtered slice totals to about 2 minpé&zs
slice. The memory consumption is dominated by the size of
the pre-computed point-based projection table and the RCM
table. Not all tables have to reside in memory completely.
of a standard Ram-Lak filtered FBP and an SAS filteregince the sizes are usually not critical on current hardware
reconstruction on an edge phantom_ We chdse to 1000 Wwe did no optimizations regarding this issue. It our Set'hﬂ) t
repetitions depending on the examined CNR level. pre-computed table size is approx. 100 MB, the peak memory
Figure 12 shows the resulting azimuthal edge MTFs f&@nsumption is about 4 to 8 GB for eight parallel threads.
four different contrasts. The noise standard deviationgh@
Ram-Lak filtered original and the processed versions arengiv V. CONCLUSIONS
in Tab. II. For the 55HU low contrast case we can observe alhe RCM-based SAS filter presented in this paper is a novel
slight reduction of the MTF in the mid-frequency range, i thapproach to structure-preserving spatial filtering in @ctpn
109 HU case, the MTFs are very similar between original arftta. We showed that this approach can detect and preserve
filtered case. The two higher contrast cases show a slighsfuctures in the projection domain while making use of the
edge enhancing property of the filter at higher frequencigg0od contrast in the reconstructed data. The filter progeerti
whereas low frequencies are attenuated slightly. Thisalevewere assessed on measured and simulated phantom data as
the frequency transmission behavior of the projectionrfiltévell as measured patient data. The patient data tests showed
when it is fully adapted to the edge shape in the sinograns THnat image sharpness is superior to a standard FBP recon-
causes the edge to be visibly enhanced in the filtered simogr&truction and a bilateral filter result with the same totakao
The total noise reduction achieved for these examples igrshol he image MTF and high-frequency texture is well preserved
in Tab. Il. It shows the standard deviation of the noise for @en for low contrasts. A test on a simulated complex phantom
Ram-Lak reconstruction and the RCM filtered reconstructiophowed that SAS is able to detect and preserve structures in
In this simplified scenario a very strong noise reduction @fojection space that are blurred by a standard bilatetet fil
over80% can be achieved. More dominant structures slightlith the same noise reduction potential. The noise reductio
reduce the total noise reduction. This can be seen in tifea simple edge phantom case exceeded 80 %, in scenarios
standard deviations of th€09HU to 315HU cases. In the With complex structure, a noise reduction of approx. 15% is
55HU case, we used a cosine reconstruction kernel for tRgtimated for similarly sharp results. We also demonsirate

pre-reconstruction, therefore the noise in the originadges that the filter can deal with structures that are prone toeaus
is already slightly lower. However, the relative noise retthn ~ reconstruction artifacts. The modulation transfer bebraof
agrees with the other cases. the filter was evaluated on simulated phantom data. The
filter MTF is contrast dependent. For small contrasts around
50HU, a reduction of the mid-frequencies can be observed,
for higher contrasts it follows the original MTF closely and
All computations were carried out on a standard desktegnds to enhance higher frequencies and attenuate low- and
computer equipped with an Intel Core i7 860 CPU at 2.8 GHnid-frequencies in the reconstructed image.
and 8 GB of DDR3 RAM. The filter computation consists of
three phases: The initialization of the forward projectiotine REFERENCES
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