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Ray Contribution Masks for Structure Adaptive
Sinogram Filtering

Michael Balda, Joachim Hornegger and Bjoern Heismann

Abstract—The patient dose in CT imaging is linked to mea-
surement noise. Various noise-reduction techniques have been
developed that adapt structure preserving filters like anisotropic
diffusion or bilateral filters to CT noise properties. We introduce
a structure adaptive sinogram (SAS) filter that incorporates
the specific properties of the CT measurement process. It uses
a point-based forward projector to generate a local structure
representation called Ray Contribution Mask (RCM). The sim-
ilarities between neighboring RCMs are used in an enhanced
variant of the bilateral filtering concept, where the photometric
similarity is replaced with the structural similarity. We e valuate
the performance in four different scenarios: The robustness
against reconstruction artifacts is demonstrated by a scanof
a high-resolution-phantom. Without changing the modulation
transfer function (MTF) nor introducing artifacts, the SAS filter
reduces the noise level by 13.6 %. The image sharpness and noise
reduction capabilities are visually assessed on in-vivo patient
scans and quantitatively evaluated on a simulated phantom.
Unlike a standard bilateral filter, the SAS filter preserves edge
information and high-frequency components of organ textures
well. It shows a homogeneous noise reduction behavior through-
out the whole frequency range. The last scenario uses a simulated
edge phantom to estimate the filter MTF for various contrasts:
The noise reduction for the simple edge phantom exceeds 80 %.
For low contrasts at 55 Hounsfield units (HU), the mid-frequency
range is slightly attenuated, at higher contrasts of approx. 100 HU
and above, the MTF is fully preserved.

Index Terms—Computed Tomography, noise reduction, non-
linear filters, dose reduction.

I. I NTRODUCTION

CT image quality is predominantly influenced by the signal
to noise ratio (SNR) and the image modulation transfer func-
tion (MTF). Noise reduction techniques are an essential tool in
medical CT as image noise greatly influences the detectability
of details in a reconstructed CT volume and thus its diagnostic
value. As the most dominant noise component in CT, quantum
noise, is directly related to detected X-ray intensity, successful
noise reduction leads to a reduction of patient X-ray dose [1].

In general, dose efficiency of CT acquisitions is driven by
several means including dynamic exposure control [2], tube
filters like the wedge filter [3] and optimized detector designs
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that maximize the Detective Quantum Efficiency (DQE) [4]–
[7]. For filtered back projection (FBP)-based reconstructions
[8], [9], projection- or image-domain filters are applied to
reduce the required patient dose. The most common filtering
strategy applied in medical CT scanners consists in modifying
the high-pass reconstruction kernel used for FBP in a way that
high frequencies are less amplified or blocked [10]. For most
diagnostic tasks, the relevant information is supposed to be
primarily contained in the lower-frequency components of the
image. Each CT manufacturer offers a broad spectrum of task-
specific reconstruction kernels that block irrelevant frequency
components and consequently noise.

More advanced noise reduction techniques use adaptive
filters. This type of filters steers the filter strength according
to a noise estimate and causes less smoothing in regions
where noise is low, i.e. the X-ray intensity is less attenuated.
For instance, an adaptive filter for reducing noise induced
streak artifacts in very strongly attenuated data is shown in
[11]. Kachelrieß et al. [12] have introduced an adaptive filter
that is applied in projection domain and features non-linear
filtering in channel, projection andz-direction for various
types of projection data such as helical cone-beam CT. In [13],
a method for wavelet-based denoising of projection data is
introduced. This approach is especially suited for dual source
data [14] with similar tube-voltage settings for two low-dose
data-sets. It utilizes the noise correlations between the two
aligned data-sets to construct an adaptive wavelet-based filter.

Well-known edge preserving filters have also been investi-
gated. Edge-preserving anisotropic diffusion filters [15], [16]
can be adapted to CT data as shown in [17]. The purpose of
this filter is to smooth along but not across edges. It relies
on gradient information and noise can deteriorate the edge
information and erroneously preserve noise-induced structures.
As a consequence true edges are weakened or false ones are
enhanced. This problem has to be avoided by carefully choos-
ing the smoothing parameters for the gradient estimation based
on local noise estimates. Schaap et al. [18] have developed
an image-based fast denoising method based on anisotropic
diffusion. This method features an adapted diffusion filterto
preserve small structures.

Bilateral filtering [19] tries to achieve a similar goal by
combining spatial- and intensity-based smoothing. This filter
type steers the smoothing locally according to distance and
similarity of neighboring intensity values. In CT, frequency-
based noise reduction filters are usually applied in the pro-
jection domain as the spectral noise properties in the CT-
image or -volume domain can hardly be derived analytically.
The image noise is inhomogeneous and non-stationary andTMI-2011-0767.R1
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(a) Normally distributed tube-profile.
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(c) Sampled projected tube-profileµ̄L(c, r1) for fixed
projectionp1.

Fig. 1. Illustration of the working principle of the projection operatorPP(r, µ̄(r)). A complete result ofPP(r, µ̄(r)) is displayed in Fig. 2.

estimating local noise properties is complex, for instance
Borsdorf et al. [20] demonstrate how to estimate local variance
and analyze noise correlations in the image domain for CT-
data reconstructed with indirect FBP. Manducha et al. [21]
introduced a noise-adaptive bilateral filter on projectiondata
where the photometric similarity is computed on an estimate
of the actual quantum numbers.

All of these strategies have one common goal: Reducing
the noise level of the reconstructed images while maintaining
a desired level of image sharpness and details.

CT noise-reduction filters can be divided into two main cat-
egories: Pre- and post-reconstruction filters. Pre-reconstruction
filters like [11]–[13], [17], [21] are applied to the projection
data. The FBP filter-kernel described in [9] is usually used as a
simple pre-reconstruction kernel to steer the trade-off between
noise suppression and image sharpness. The advantage of
filtering in this domain is the simplicity of the noise char-
acteristics: In the projection-space, the noise is almost white,
only minor noise correlations are introduced by the detection
process, for instance due to the optical crosstalk of scintillators
[22]. These effects have minor influence and usually can be
neglected when designing noise-reduction filters. Additionally,
the magnitude of the noise can easily be estimated from the
measured attenuation values which allows for noise adaption
of the filter. Edge-preserving pre-reconstruction filters are,
however, limited by the inferior contrast-to-noise ratio in
sinogram space. Low-contrast structures in the imaged object
can hardly be identified in projection space due to the noise
in CT projections at standard dose levels. Additionally the
contrast and CNR level even of homogeneous structures varies
throughout the projections. Non-linear edge-preserving filters
may not be able to preserve those structures throughout the
whole sinogram which generally leads to a loss in sharpness.
It also may cause inconsistencies in the projection data which
results in artifacts in the reconstructed image. Consequently,
pre-reconstruction filters may deal with noise properties well,
but have a weakness in recognizing the structure of the signal.

Post-reconstruction filters such as [18], [23]–[25] operate
on reconstructed images and thus cannot produce or intensify

reconstruction artifacts. However, the noise properties are
much more complicated in the reconstructed image as most
reconstruction steps introduce noise correlations by filtering
and interpolation [20]. Furthermore, the structure and thelocal
magnitude of the noise is dependent on the whole object in-
stead of merely the local attenuation. As a consequence, edge-
preserving frequency-based post-reconstruction filters need to
model the projection noise and measurement noise and the
whole reconstruction process.

We introduce an Structure Adaptive Sinogram (SAS) filter
that operates in the projection domain and uses a projection
model to recover local structures in the projection space from
a pre-reconstructed image. It yields an individual local filter
kernel for each measurement value. This local kernel adaptsits
smoothing directions to the local structures, thus the projection
noise level can be strongly reduced while the sharpness of
low-contrast structures can be preserved. It basically uses
two parameters which allow steering its filter strength and
smoothing properties so it can be adapted to the demands of
specific diagnostic tasks. The filter is an extension of the bilat-
eral filter [19]. It replaces the photometric similarity measure
with a more robust, CT-specific structural similarity term.It
incorporates the measurement process by using a point-based
projector and a pre-reconstructed image. The filter itself is not
noise adaptive, but can be combined with projection-domain
noise adaption techniques such as [21] which steer the filter
accordingly.

II. T HEORY

The SAS filter uses a point-based forward projector to gen-
erate a local structure representation called Ray Contribution
Mask (RCM). The similarities between neighboring RCMs
are used to compute an individual, non-linear filter kernel
for each projection value. Additionally, a RCM-driven range
adaption is applied to avoid inconsistencies which may cause
reconstruction artifacts.
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Fig. 2. Result of point-based projection operator for all channels and
projections at a fixed locationr (scale: arbitrary units). For visualization
purposes, an extremely large X-ray focus of 9 mm full width-half maximum
(FWHM) was used.

A. Point-Based Analytic Projection

In practice, CT projections deviate from the ideal line-
projection model. This is for instance caused by sampling and
discretization effects, finite focal spot sizes and detector cross-
talk. We use a flexible model of the projection process called
point-based analytic projection which can take into account
these effects. We denote this single detector row variant
PP (r, µ̄(r)). The continuous 2-D function̄µ(r) denotes the
reconstructed attenuation values of a CT slice. This operator
yields the contribution of a delta impulse at positionr to
the measured values at discrete channel indicesc ∈ Z and
line projectionsp ∈ Z. It may include effects like the focus
beam profile and size and detector channel characteristics.The
projectionsp correspond to the sampled gantry anglesν, so
ν = p · ∆ν with the angular sample distance∆ν. In a CT
system, this sampling process features a temporal integration
of the projections during the reading time. The function
PP(r, µ̄(r)) yields the information where the contributions
from a single point in the object space appear in the sinogram.

Figure 1 illustrates an exemplatory output of the projec-
tion operatorPP(r, µ̄(r)) for a single gantry angle without
temporal smearing of the projected tube profile. It featuresa
normally distributed tube profile model (Fig. 1a), a geometric
projection model (Fig. 1b) and a detection model (Fig. 1c). The
latter may include detector pixel geometry, sampling properties
like active pixel areas and detector cross talk.PP (r, µ̄(r))
can be viewed as a transform that takes the function of local
attenuation values in object spaceµ̄(r) as an input and yields
for a given locationr all contributions ofµ̄(r) in projection

space. Figure 2 depicts these contributions for a specificr.
The simplest variant featuring ideal integration, no cross-

talk and ideal temporal sampling reads:

PP(r, µ̄(r)) = µ̄(r) ·
+∞
∑

c′=−∞

u
(

β − c′∆β

∆β

)

∗N (βr,ν ,σ
2

r,ν
)

p (β),

(1)
This equation models the sampling of a normally dis-

tributed, projected tube profile by the detector. The operator

∗ denotes the convolution.N (βr,ν ,σ
2

r,ν
)

p (β) is the tube profile
projected onto the detector for projection p. Its mean valueβr,ν

is the detector channel angle corresponding to the locationr

and the gantry angleν and its standard deviationσr,ν is the
standard deviation of the tube profileσT times a stretch factor
determined by the pinhole projection model indicated in Fig.
1b. ∆β is the fan angle between two channels,u(β) is the
rectangle function of width1, centered atβ = 0. The fan beam
geometry is illustrated in Fig. 3.

Detector

Origin
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c = 0

c(β, ν)

r

l̂ ν,
β
(α
)

l̂ν,0
(α)

ν

Fig. 3. Schematics and notation for fan-beam geometry.

For a source positionsν ∈ R
2 and a source-detector distance

of dSD we get the projected point location:

rD,ν = sν + dSD · (r− sν)

‖r− sν‖2
. (2)

From this we can compute the corresponding channel angle
βr,ν with the rotated channel locationr′D,ν :

r
′

D,ν = R−νrD,ν + (dSD, 0)
T (3)

βr,ν = arctan2(r
′

D,ν,y, r
′

D,ν,x) (4)

with
r
′

D,ν = (r′D,ν,x, r
′

D,ν,y)
T (5)

The functionarctan2 is the well-known variation of the
arctangent function for polar coordinate transforms andR−ν

is the rotation matrix that rotates a point by−ν.
The standard deviationσr,ν,r can be computed as follows:
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σr,ν =
‖rD,ν − r‖2
‖sν − r‖2

· σT (6)

B. Ray Contribution Masks

We use the point-based projection operatorPP(r, µ̄(r)) to
calculate the contribution of a local measured value to its
neighbors by sampling the projection ray that corresponds
to the measured attenuation atĉ, p̂. A single point in the
projection space approximately corresponds to a line in object
space (̂lν,β(α) in Fig. 3). See Figs. 4a – 4c for examples on
a simple phantom. We sample this line at distinct locations
indexed byk and call the sampled locationŝrĉ,r̂,k. Then
we compute all point-projectionsPP(r̂ĉ,p̂,k, µ̄(r̂ĉ,p̂,k)) for the
samples points on the line. The sum of all point-projections
is the RCMRĉ,p̂(c, p):

Rĉ,p̂(c, p) =
∑

k

PP (r̂ĉ,p̂,k, µ̄(r̂ĉ,p̂,k)) (7)

It quantifies contributions of the projection line atĉ, p̂ to the
complete sinogram. For sampling the projection line, we use
a maximum sample distance of one pixel spacing in object
space. Best results are achieved for sampling distances of
approx.0.75 to 1 pixel spacing. For larger sampling distances
small image features could be missed. Smaller sampling
distances do not contribute any additional information and
would just slow down the computation.

The RCM drops very fast with respect to distance from the
center position(ĉ, p̂) so in practice, it can be limited to a
neighborhood of 5 to 11 projections. We call this parameter
∆pmax. The size limitation in terms of channels can be
determined by computing the outmost non-zero points of the
integrated projections.

In order to reduce the RCM to the most dominant structures,
we neglect all ray samples for which̄µ(r) falls below a
given fractionpS of the maximum attenuation value along
the sampled ray, sôrĉ,p̂,k includes only the samples above the
scaled maximum value. This percentage is an important filter
parameter which is calledstructure preservation parameter ps
consecutively. In practice, values in the range ofps = 0.75 to
ps = 0.95 lead to best results.

Figure 4d shows an example of some RCMs with∆pmax =
7 for different rays and different local structures. The pro-
jection line corresponding to example I intersects no specific
dominant structures, so allPP (r̂ĉ,p̂,k, µ̄(r̂ĉ,p̂,k)) have identical
weights and the contributions of the water background are
spread evenly on an hour-glass shape. Example II contains the
small circle, which appears as a dominant structure, therefore
the RCM consists mostly of the trajectory of this structure in
the sinogram. Example III contains two dominant structuresat
very different image locations. These appear as two trajectories
in the RCM.

C. Structural Similarity

The RCM shape can be interpreted as follows: The value of
Rĉ,p̂(c, p) contains the information on how much of the total
attenuation measured at(ĉ, p̂) appears in the value measured

at (c, p). Due to this property, the neighboring RCMs are
very similar in regions where the dominant structures are
very similar, so it can be used as a basis for the SAS
filter kernel. For locations where local structures differ,the
similarity between RCMs decreases and major contributions
from other dominant structures may prevent strong smoothing
in these directions. The averaging between these values hasto
be blocked. As the RCM is a measure for the local structure,
it is perfectly suited to detect those structural changes. We can
determine the structural similaritysĉ,p̂(ĉ′, p̂′) between neigh-
boring measurement values at(ĉ, p̂) and(ĉ′, p̂′) by comparison
of the RCMs at both locations.

The structural similaritysĉ,p̂(ĉ′, p̂′) can be calculated from
the RCMs in various ways by employing any similarity or
correlation measure on pairs of RCMs. The following variant
describes a very simple approach using the sum of absolute
differences as a dissimilarity measure:

ŝĉ,p̂(ĉ
′, p̂′) =

∑

ĉ′′

∑

p̂′′

{|Rĉ,p̂(ĉ
′′, p̂′′)−Rĉ′,p̂′(ĉ′′ − ĉ′, p̂′′ − p̂′)|}

(8)
The expression̂sĉ,r̂(ĉ′, r̂′) actually yields a non-normalized

dissimilarity by computing the shifted difference of the two
RCMs. We normalize this measure and convert it to a simi-
larity measure by computing:

sĉ,p̂(ĉ
′, p̂′) = 1− ŝĉ,p̂(ĉ

′, p̂′)
∑

ĉ′
∑

p̂′ ŝĉ,p̂(ĉ′, p̂′)
(9)

with sĉ,p̂(ĉ
′, p̂′) ∈ [0, 1], pairs of measurement values with

an equal RCM-structure get ansĉ,p̂(ĉ′, p̂′)-value of 1.

D. SAS Filter Calculation

With the similaritiessĉ,p̂(ĉ′, p̂′) we can compute the final
local filter fĉ,p̂(ĉ

′, p̂′) by constructing a bilateral filter-type
kernel using a spatial neighborhood filtering component and
the structural neighborhood component of Eq. (9).

Note that it is theoretically possible to construct filter
kernels with a range of more than one projection. However,
this can make the filter prone to produce artifacts at high
contrast objects since filtering over projections tends to cause
minor inconsistencies in the data. Therefore we provide a 1-
D kernel which performs filtering only within one projection.
It is a univariate Normal distribution with extends in channel
direction:

N (σ2)
ĉ,p̂ (ĉ′, p̂′) =

1√
2πσ

· exp
{

(ĉ′ − ĉ)2

σ2

}

(10)

Its mean value is placed at the center position of the filter
ĉ, p̂ and σ should be linked to∆pmax so that contributions
beyond this range are negligible. Thus, only∆pmax steers the
overall filter strength. The resulting local filter kernel isthe
normalized product of the spatial and structural similarity term

f̃ĉ,p̂(ĉ
′, p̂′) = sĉ,p̂(ĉ

′, p̂′) · N (σ2)
ĉ,p̂ (ĉ′, p̂′). (11)
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(a) Example sinogram (box indicates the magnified excerpt ofFig.
(b)).
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(b) Excerpt with marked sample measurements.

(c) Reconstructed slice with corresponding measurement lines. (d) RCMs.

Fig. 4. Example for correspondences between projection andobject space: (a) shows a sinogram of a simple phantom (Intensity window center (c):5.25,
width (w): 10.5, no unit), (b) shows a magnified excerpt with markers at sample locations, (c) shows the reconstructed slice (c:−250HU, w: 1500HU)
with the ray lines in corresponding colors to the markers of Fig. (b) and Fig. (d) shows the RCMs for the measurement lines (Roman numerals indicate the
correspondences, HU is Hounsfield units).
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fĉ,p̂(ĉ
′, p̂′) =

f̃ĉ,p̂(ĉ
′, p̂′)

√

∑

ĉ′
∑

p̂′ f̃ĉ,p̂(ĉ′, p̂′)2
(12)

The normalized similarity masksfĉ,p̂(ĉ′, p̂′) for the sample
locations shown in Fig. 4b are depicted in Fig. 6. These images
demonstrate the basic properties of the filter: In homogeneous
regions, the shape of the RCMs is similar and a high structural
similarity causes strong smoothing into these directions.At
borders with changing the local structure, no smoothing takes
place and edges are preserved. This ensures strong noise
reduction by an automatically steered averaging accordingto
the similarity of the measured values.

Fig. 5. Schematics of the SAS-filter data flow. Static data andpre-
computation steps are marked gray.

This approach fulfills the requirement stated above: Max-
imal smoothing between values with similar local structures
according to their common attenuation and smoothing over
values with different local structures is blocked. The struc-
tures are not estimated in the projection domain but from a
projection model.

E. Adaptive Filter Range

The RCM-similarity can also be used to perform a dy-
namic, homogeneity-driven range adaption. This measure is
used to reduce the overall filter influence in regions with
large structural inhomogeneity or transitions between different
dominating local structures. In practice, it has a positive
influence on the overall image quality of the RCM filter
results. We choose a very simple homogeneity adaption which
incorporates the required properties. It scales the standard
deviationσ of the spatial filter component defined in Eq. (10)
with a homogeneity term. For the filter kernel of Eqs. (11) and
(12) with a filter range of one projection and∆pmax channels,
the scaling factor is defined as follows:

hĉ,p̂ =

ĉ+∆pmax/2
∑

ĉ′=ĉ−∆pmax/2

sĉ,p̂(ĉ
′, p̂′)/∆pmax. (13)

i. e. σ is replaced withσ · hĉ,p̂ . In case of total structural
homogeneity in the neighborhood of(ĉ, p̂), hĉ,p̂ = 1 and no
size adaption is performed. With increasing inhomogeneity,
hĉ,p̂ decreases and thus the filter range is decreased which
reduces the overall filter strength. This can be combined with
a noise model-driven filter range adaption.

III. M ATERIALS AND METHODS

A. Implementation Details

Our implementation ofPP(r, µ̄(r)) features a pin-hole
projection model and a numerical temporal integration for
the sampling of the projection angles. The beam profile was
assumed to follow a Normal distribution. The FWHM of the
Normal distribution at the tube focus point was set to 0.9 mm
in all evaluations. The used detector sizes were 678 or 736
channels and 1152 projections per rotation were acquired. In
the measured data a detector quarter channel offset and an
indirect fan-beam reconstruction was used. In simulations, no
quarter offset was assumed and a direct fan-beam reconstruc-
tion was used. In most experiments, the pre-reconstructionand
the final reconstruction both were performed with a Ram-
Lak or a Shepp-Logan reconstruction kernel. Other kernel
combinations are explicitly mentioned. Figure 5 visualizes the
data flow for a complete SAS-filtered reconstruction.

B. Optimization

Some essential optimizations have to be performed for a
practical implementation of the algorithm. A naive realization
of the formulas presented above would require a huge amount
of computations. The resulting computation time would render
the filtering impractical. Fortunately, the computation can
be reformulated to exploit symmetries and enable a pre-
computation of intermediate results that only depend on
the system geometry and not on the imaged object. These
computations have to be performed only once for a fixed
scanner set-up and may be reused for each scan. They may
include measurement effects like the temporal integrationof
projections during one projection.

The pre-computation makes use of the fact that the shape
of all point-based forward projections does not depend on the
absolute projection angle. The point-based analytic projections
can be very expensive operations, so we want to ensure that
as little projections as possible are computed and that no
projections have to be computed during the filtering phases.
It is sufficient to compute all forward projections for a single
projection. These forward projections can be stored and re-
used for further filter computations as only the scale of the
projections depends on the actual data whereas the shape is
fully dependent on the scanner geometry. So the first step of
the optimized algorithm is the pre-computation phase, where
all sample locations on all rays of the X-ray fan for a fixed
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(a) I (b) II (c) III

Fig. 6. Normalized RCM similarity masks for the examples given in Fig. 4. The Roman numerals indicate the correspondencewith the markers in Fig. 4b
and the lines in Fig. 4c. The center line corresponds to the shape of the filter kernels with a range of one projection.

projection angle are determined. For each sample, the point-
based forward projections (Eq. 1) are computed for a neutral
local attenuation valuēµ(r) of one.

The filtering itself involves the following steps: First of
all, a pre-reconstruction with a sharp filter kernel has to be
performed. It is used for the RCM computation of Eq. (7):
One RCM corresponds to one sampled ray path. The ray
path has to be rotated according to the projection angle, then
the pre-reconstructed slice is interpolated at the according
sample locations, the main contributions are identified anda
weighted addition of the according pre-computed projection
masks is performed. The interpolated values ofµ̄(r) are used
as weights. The result of this operation is one RCM for each
channel and projection which are held in memory for the next
step.

The filter computation step of Eq. (11) can be carried out in
a straight-forward fashion. The required similarity measures
of Eqs. (8) and (9) can be computed on demand from the
RCMs from the previous steps. A re-usage of similarity values
computed earlier in the filter computation phase is unlikely
to bring significant advantages as due to the storage and
organization overhead.

The application of the filter is the final step. The filter
changes for every sinogram location. This property leaves little
room for high-level optimization, but the computational costs
of these steps are negligible.

The overall complexity is dominated by the RCM computa-
tion. It scales linearly with the product channels× projections
× samples per ray.

C. Phantoms and Experiments

Four different phantom set-ups were used for the perfor-
mance evaluations (Tab. I): The first (A) one consists of a
CT-scan of a high resolution phantom of aluminum insets in
PMMA (Catphan HR1, see Fig. 7a). It was used to assess noise
and sharpness of the SAS filter.

Set-up B involves in vivo CT-scans of live patients. In
order to visually assess the influence of this filter on image
data, we use several patient data sets acquired with a Siemens

1Catphan 500,http://www.phantomlab.com/catphan.html, The Phantom
Laboratory, Salem, NY, USA

Object Type Evaluated quantities

A Catphan HR phantom measured MTF, noise, artifacts
B Patient data measured Noise, visual image

quality
C Complex phantom simulated Noise, MTF
D Low contrast inset in water simulated MTF, noise

TABLE I
OVERVIEW OF CONDUCTED EXPERIMENTS.

SOMATOM Definition (Siemens AG, Forchheim, Germany).
All scans were conducted at140 kVp tube voltage,1.2mm
slice width, no flying focal spot. The integration time was set
to 433µs at a rotation time of0.5 s. The selected tube currents
were in the range of55mA to 80mA.

In some experiments, a Shepp-Logan kernel was used for
pre- or final reconstruction instead of a Ram-Lak kernel. Here,
the reconstruction quality for realistic application scenarios
and the visual influence of filter parameters was inspected
and compared to a standard FBP with adapted reconstruction
kernel and a standard bilateral filter result. The filter parameter
of the FBP reconstruction and the bilateral filter where ad-
justed so that an approximately similar overall noise standard
deviation was achieved. The standard deviation of voxel values
in homogeneous tissue regions of the reconstructed images
were taken as an estimate for the image noise. The FBP kernels
are referred to as CosXXX kernels whereXXX stands for a
two or three digit number indicating the cut-off frequencyfc
relative to the Nyquist frequencyfN. Cos50 represents a kernel
with a cut-off frequency at50% of the Nyquist frequency,
Cos675 meansfc = 0.675 · fN.

The calculation rule for the discrete filter of lengthl samples
is as follows:

K(i) = K(l− i− 1) =
i

l
· π

Nr
cos

(

π · i
ic

)

(14)

for
{

i ∈ N|0 ≤ i < 1
2 · l

}

. The cut-off index is defined as
ic = l · fc

fN
andNr is the number of projections per rotation.

The bilateral filter was chosen to have roughly the same
spatial extent as the SAS filter and the photometric similarity
parameter was selected in a way that the estimated noise
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amplitude matches the other two results.
The purpose of set-up C is a quantitative performance

comparison of the SAS filter and a standard bilateral filter. We
conducted 1000 simulations and reconstruction of an anthro-
pomorphic, simulated phantom with complex structures (Fig.
8a). The large number of repetitions was chosen so that the
filtered images could be averaged to eliminate noise-influences
and the MTF curves only contain frequencies of the noise-
free averaged signal. The filter strengths were again chosento
have the same spatial extent and exact same SNR gain. We
used an signal amplitude over noise standard deviation as SNR
definition. Here we compare the edge MTF [26] on the edge of
a elliptic contrast probe placed in the phantom. Higher MTF
values indicate that the filter sacrifices less image sharpness
for reducing the image noise.

Scenario D also uses simulated data. Here we evaluate the
edge MTF for varying CNR levels on a cylindrical water phan-
tom with a circular inset of varying densities was simulated
with an analytic forward projector for four different contrasts
between inset and water (see Fig. 7b). For each contrast, 250
to 1000 scans were simulated and the filter was applied (the
lowest contrasts required 500 resp. 1000 scans due to the low
CNR). The edge between inset and water was used for an
MTF estimation.

IV. EVALUATION AND RESULTS

A. High Resolution Phantom

Figure 9 shows the MTF estimates for the standard FBP and
an SAS filtered version. We can see only marginal changes
in terms of relative contrast throughout the whole frequency
range. This is due to the fact that the introduced filter clearly
identifies the high-contrast structures throughout the whole
sinogram and adapts the filters appropriately. No averaging
takes place between components containing structure and
background. In this case, the image sharpness is not affected
and no additional reconstruction artifacts can be detected. The
SAS filter manages to achieve a noise reduction of about
13.6 % from a standard deviation 10.3 HU without filter to
8.9 HU with filter (SNR increased from 97.0 to 112.3). Due
to its many small high-contrast inlays this phantom can be
considered as a benchmark for robustness against reconstruc-
tion artifacts.

B. Patient Data

Figures 10 and 11 show comparisons between standard FBP
reconstructions, a standard bilateral filtered and SAS-filtered
reconstructions of two different patient scans. Although the
estimated noise amplitudes are approximately similar in Figs.
10b, 10c and 10d resp. 11a, 11b and 11c, the SAS filter
causes visibly less blurring, especially at edges with higher
CNR and high frequency components, for instance, the organ
tissue textures are preserved better. At very high CNR edges,
like the transition between air and tissue, the SAS filter can
cause a minor amplification of the edge strength. At these
edges, the standard bilateral filter also preserves the image
sharpness. In the example of Fig. 10, the standard bilateral
filter manages to preserve at least some of the structure but

(a) Measured Catphan HR phantom.

(b) Contrast insets in cylindrical water phantom.

Fig. 7. Phantoms used for evaluation. Figure (a) shows the Catphan
High Resolution phantom with aluminum insets in PMMA (c: 346HU, w:
2751 HU). The distances between insets ranges from 1 lp/cm to21 lp/cm.
Figure (b) shows the four different contrast insets in a water phantom used for
edge MTF evaluation (c: -387 HU, w: 1655 HU). The noise standard deviation
is approx. 43 HU and the contrasts are 55 HU, 109 HU, 213 HU and 315 HU.

a decrease in sharpness is well visible compared to the SAS
result. In Fig. 11, more complex structures are contained and
the Bilateral filter fails to detect and preserve the most of
the structure and causes strong visible blurring. The noise
shaping characteristics are also very different: The cosine ker-
nel attenuates high frequency noise components very strongly
whereas low frequency noise passes the filter, consequentlythe
noise grains are rather big and smooth. The noise in the SAS
filter result (Fig. 10d) has a different frequency distribution
which resembles the original noise structure more closely.The
noise reduction is more homogeneous throughout the whole
frequency range. Regarding this property, the result of the
standard bilateral filter ranges in between Cosine-kernel and
SAS filter result.
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Fig. 8. Evaluation set-up C: The line in (a) marks the location on which the edge MTF evaluation was performed.
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Fig. 9. Relative contrast of a standard reconstruction between insets and
background for various line resolutions. Cos80 indicates acosine reconstruc-
tion kernel with a cut-off frequency at 80 % of the detector Nyquist frequency.

The noise shaping characteristics can be influenced by
altering the filter parameters. In general, the noise shaping
characteristics of SAS filtering are less intuitively linked to
the filter parameters than for standard reconstruction kernels.
However, a desired specific noise shaping characteristic can
be achieved by adapting the filter kernel of the final recon-
struction of the SAS filter result. For instance, a smoother
post-reconstruction kernel leads to stronger smoothing ofthe
SAS filter result. A smoother pre-reconstruction filter alsoin-
fluences the SAS filter. This property is visualized in Fig. 11d.
Here we investigate the influence of the pre-reconstruction
kernel. We used a Shepp-Logan kernel instead of a Ram-
Lak kernel for the pre-reconstruction. This leads to a visible
decrease in sharpness and noise, however the sharpness is still
better than for the standard bilateral filter result (Fig.11c). The
amount of noise reduction of approx.12% corresponds to

the noise amplitude of a standard FBP with a Cos525 kernel
(SNR increases from33.0 to 37.5). This indicates that the
pre-reconstruction kernel has a clearly visible influence on the
SAS filtering result and can be used to influence the filter
properties of the SAS filter.

C. MTF Comparison Between Bilateral and SAS Filter

This experiment provides a quantitative verification of the
findings from set-up B. Figure 8b shows the edge MTF
extracted from the 1000 realizations. The overall SNR in
homogeneous soft tissue part of the phantom was increased
almost equally for both filters from 47.8 to 98.9 (bilateral)
resp. 105.5 (SAS). The MTF evaluation shows that the stan-
dard bilateral filters fails to preserve the edge sharpness as
it cannot distinguish the structures in the projection data.
It basically degrades to a low-pass filter and reaches the
noise reconstruction goal by sacrificing image sharpness. This
results in blurring the edges of the structure and leads to a
reduction of the higher frequencies in the MTF curve. The
SAS filter mostly blocks smoothing across the the borders of
the structure’s trace in the sinogram space and consequently
its edge MTF has higher values throughout the whole mid
and high frequency range. It sacrifices much less sharpness to
reach the same noise reduction performance. The small peak
in the MTF of the bilateral filter at0.6mm−1 can most likely
be attributed to a very small reconstruction artifact which
appeared systematically in the bilateral filter results, however,
neither method caused a considerable increase in reconstruc-
tion artifacts compared to the standard reconstruction without
non-linear filtering. This corresponds to the visual impression
of the image sharpness in the patient images of set-up B. The
sharpness gain of the SAS method can be sacrificed for dose
reduction by choosing a softer reconstruction kernel as shown
in Fig. 11.

D. Noise Reduction and MTF for varying contrasts

This evaluation addresses the frequency transfer behavior
of the SAS filter. This is done by measuring the image MTF
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(a) Reconstructed slice. (b) Cos625 reconstruction.

(c) Standard bilateral filter reconstruction. (d) SAS result.

Fig. 10. Filter results for first patient dataset: (a) Ram-Lak reconstruction of the data-set used as input image for the SAS filter, (b) magnified excerpt
(Cos625 kernel), (c) result of the standard bilateral filterand (d) result of the SAS filter (9 × 9 RCM size,0.225 smoothing, structure preservation0.9,
homogeneity adaption on). The water scaling was omitted in these tests, so no intensity windows are given. Original images are a courtesy of Prof. Dr.
Andreas H. Mahnken, RWTH Aachen, Germany. The box in (a) marks the region where the excerpts shown in (b)-(d) were taken.
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(a) Cos575 reconstruction. (b) RCM result.

(c) Standard bilateral filter reconstruction. (d) RCM with Shepp-Logan pre-reconstruction.

Fig. 11. Filter results for second patient dataset: (a) Magnified excerpt (Cos575 kernel), and (b) result of the RCM filter(9× 9 RCM size,0.5 smoothing,
structure preservation0.8, homogeneity adaption on), (c) bilateral filter result and (d) result with Shepp-Logan filtered pre-reconstruction. Original images are
a courtesy of Prof. Dr. Andreas H. Mahnken, RWTH Aachen, Germany.
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Contrast Std. dev. original Std. dev. filtered Noise Reduction

55 HU 27.7HU 3.87HU 86.0 %
109 HU 33.2HU 5.75HU 82.7 %
213 HU 33.2HU 6.40HU 80.7 %
315 HU 33.2HU 6.54HU 80.3 %

TABLE II
ESTIMATED NOISE REDUCTION FOR VARIOUS CONTRASTS.

of a standard Ram-Lak filtered FBP and an SAS filtered
reconstruction on an edge phantom. We chose250 to 1000
repetitions depending on the examined CNR level.

Figure 12 shows the resulting azimuthal edge MTFs for
four different contrasts. The noise standard deviations inthe
Ram-Lak filtered original and the processed versions are given
in Tab. II. For the 55 HU low contrast case we can observe a
slight reduction of the MTF in the mid-frequency range, in the
109 HU case, the MTFs are very similar between original and
filtered case. The two higher contrast cases show a slightly
edge enhancing property of the filter at higher frequencies
whereas low frequencies are attenuated slightly. This reveals
the frequency transmission behavior of the projection filter
when it is fully adapted to the edge shape in the sinogram. This
causes the edge to be visibly enhanced in the filtered sinogram.
The total noise reduction achieved for these examples is shown
in Tab. II. It shows the standard deviation of the noise for a
Ram-Lak reconstruction and the RCM filtered reconstruction.
In this simplified scenario a very strong noise reduction of
over80% can be achieved. More dominant structures slightly
reduce the total noise reduction. This can be seen in the
standard deviations of the109HU to 315HU cases. In the
55HU case, we used a cosine reconstruction kernel for the
pre-reconstruction, therefore the noise in the original images
is already slightly lower. However, the relative noise reduction
agrees with the other cases.

E. Complexity, Run-Time and Performance

All computations were carried out on a standard desktop
computer equipped with an Intel Core i7 860 CPU at 2.8 GHz
and 8 GB of DDR3 RAM. The filter computation consists of
three phases: The initialization of the forward projections, the
RCM computation and the filter generation and application.
All these steps depend on the desired filter size in projections
which was kept constant at 5 throughout all experiments.
The time for the pre-computation of the forward projections
depends on the number of detector channels, the ray sam-
pling distance and the complexity of the point-based forward
projector model. Unlike the following two phases it can be
pre-computed for a given geometry as it does not depend on
the imaged object. So the computation time of this phase does
not add to the filter time. Our reference implementation with
736 detector channels and at sample distance of exactly one
pixel width took about one minute for a∆rmax-value of 9.
The RCM computation depends on the number of channels,
projections, ray sampling distance and∆pmax. This phase
took our reference implementation between 20 seconds to 1
minute, whereas the filter generation and application phase

depends only on the number of channels and projections and
required about two to three seconds on average. This leads to
a filter times of approx. 1 minute per slice. Additionally the
pre-reconstruction and the reconstruction of the SAS result
have to be carried out. The computation time from sinogram
to reconstructed and filtered slice totals to about 2 minutesper
slice. The memory consumption is dominated by the size of
the pre-computed point-based projection table and the RCM
table. Not all tables have to reside in memory completely.
Since the sizes are usually not critical on current hardware,
we did no optimizations regarding this issue. It our set-up the
pre-computed table size is approx. 100 MB, the peak memory
consumption is about 4 to 8 GB for eight parallel threads.

V. CONCLUSIONS

The RCM-based SAS filter presented in this paper is a novel
approach to structure-preserving spatial filtering in projection
data. We showed that this approach can detect and preserve
structures in the projection domain while making use of the
good contrast in the reconstructed data. The filter properties
were assessed on measured and simulated phantom data as
well as measured patient data. The patient data tests showed
that image sharpness is superior to a standard FBP recon-
struction and a bilateral filter result with the same total noise.
The image MTF and high-frequency texture is well preserved
even for low contrasts. A test on a simulated complex phantom
showed that SAS is able to detect and preserve structures in
projection space that are blurred by a standard bilateral filter
with the same noise reduction potential. The noise reduction
in a simple edge phantom case exceeded 80 %, in scenarios
with complex structure, a noise reduction of approx. 15 % is
estimated for similarly sharp results. We also demonstrated
that the filter can deal with structures that are prone to cause
reconstruction artifacts. The modulation transfer behavior of
the filter was evaluated on simulated phantom data. The
filter MTF is contrast dependent. For small contrasts around
50 HU, a reduction of the mid-frequencies can be observed,
for higher contrasts it follows the original MTF closely and
tends to enhance higher frequencies and attenuate low- and
mid-frequencies in the reconstructed image.
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