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Abstract
Purpose In diagnostic tomographic imaging, patient setup
and scanner initialization is a manual, tedious procedure in
clinical practice. A fully-automatic detection of the patient’s
position, orientation, posture and pose on the patient table
holds great potential for optimizing this part of the imaging
workflow. We propose a markerless framework that is capa-
ble of extracting this information within seconds from either
range imaging (RI) or pressure imaging (PI) data.
Methods The proposed method is composed of three stages:
First, the position and orientation of the reclined patient are
determined. Second, the patient’s posture is classified. Third,
based on the estimated orientation and posture, an approxi-
mate body pose is recovered by fitting an articulated model
to the observed RI/PI data. Being a key issue for clinical
application, our approach does not require an initialization
pose.
Results In a case study on real data from 16 subjects, the
performance of the proposed system was evaluated quanti-
tatively with a 3-D time-of-flight RI camera and a pressure
sensing mattress (PI). The patient orientation was success-
fully determined for all subjects, independent of the modal-
ity. At the posture recognition stage, our method achieved
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mean classification rates of 79.4 % for RI and 95.5 % for PI
data, respectively. Concerning the approximate body pose
estimation, anatomical body landmarks were localized with
an accuracy of ±5.84 cm (RI) and ±5.53 cm (PI).
Conclusions The results indicate that an estimation of the
patient’s position, orientation, posture and pose using RI and
PI sensors, respectively, is feasible, and beneficial for opti-
mizing the workflow in diagnostic tomographic imaging.
Both modalities achieved comparable pose estimation results
using different models that account for modality-specific
characteristics. PI outperforms RI in discriminating between
prone and supine postures due to the distinctive pressure dis-
tribution of the human body.

Keywords Range imaging · Pressure imaging ·
Diagnostic tomographic imaging · Posture classification ·
Pose estimation

Introduction

In the past decade, much progress has been made in improv-
ing and automating the image acquisition process in com-
puted tomography (CT) and magnetic resonance imaging
(MRI). However, the permanent increase in complexity of
medical imaging technologies is accompanied by a rise in
costs for the device itself, its maintenance, and the staff
needed for patient setup and image acquisition. In this
regard, the automation and optimization of examination
workflows holds great potential to compensate for the grow-
ing expenses. In diagnostic tomographic imaging, patient
setup and scanner initialization including patient position-
ing, table adjustments, and the input of patient-specific
examination parameters into the scanner software are still
done manually. The automation of these steps would reduce
both the examination time and the workload for highly
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trained technical and radiological staff. As an example, the
pre-imaging protocol for routine MRI examinations usually
comprises the following steps. First, the patient orientation
(head first, feet first) and posture (left, right, prone, supine)
have to be specified along with additional biometric infor-
mation such as body height and weight. Among others, this
information is required to ensure patient safety and the cor-
rect labeling of the images to be acquired. These data are
then entered by hand into the patient registration dialog of the
scanner software. Second, the radiologist manually defines
the center of the region of interest on the patient’s body, typ-
ically using a laser crosshair mounted at the front panel of
the scanner.

In this paper, we propose a markerless system that super-
sedes a good portion of the manual input of patient data that
are required by the scanner software. Furthermore, it can be
used to automatically localize a given examination site and
set the appropriate region of interest. As a consequence, the
tedious procedure of patient setup and scanner initialization
may be reduced to a single mouse click, specifying the exam-
ination type and site.

This requires a fully automatic analysis of the patient’s ori-
entation and posture that can then be transferred seamlessly
to the patient registration dialog of the scanner. In addition,
in order to supersede the use of laser crosshairs for setting the
examination site and region of interest, our method estimates
the approximate body pose of the patient, yielding the coarse
position of anatomical landmarks.

For the purpose of estimating the body pose of a reclined
patient lying on the scanner table, we propose a model-based
optimization framework that is generic in the sense that it can
process data from two sensor modalities of fundamentally
different nature using virtually the same algorithmic base.
In an experimental study on real data from 16 subjects, we
investigated the fitness of range imaging (RI) and pressure
imaging (PI) devices for the automation of patient setup and
scanner initialization. In particular, we compared the perfor-
mance of a 3-D time-of-flight (ToF) range imaging camera
to a pressure sensing mattress.

Among others, using a PI device is motivated by the fact
that it can handle cases of loose clothing and visual occlusion
of the patient (e.g., being covered by a blanket) that might
impair recognition performance when using optical sensors.

Related work

A markerless system that is capable of detecting the patient’s
position, orientation, posture and pose in a fully automatic
manner is of great value for the optimization of workflows
and the improvement of patient safety in various clinical con-
texts, for example, in diagnostic and interventional imag-
ing, radiation therapy, computer-assisted treatment, and sleep

monitoring. As the topic of this paper is the automation of
patient setup and scanner initialization in diagnostic tomo-
graphic imaging, we will focus our discussion of related work
on this subfield.

The use of a low-resolution MR prescan in order to detect
the patient’s position and orientation was proposed by Keil
et al. [1] for automatic optimization of the specific absorp-
tion rate. Here, a move-during-scan protocol was employed
to acquire low-resolution MR data during the initial move-
ment of the patient table into the scanner. Wachinger et
al. [2] recently improved the original approach [1] by
replacing principal component analysis-based dimensional-
ity reduction with a manifold learning technique.

Fenchel et al. [3] employed MR localizer data acquired
during continuous movement of the patient table for auto-
matic MR examination planning. In particular, the authors
proposed a method for fast and automatic labeling of ana-
tomical structures and body landmarks using a statisti-
cal atlas. However, today’s clinical workflow still requires
patient-specific information such as the posture to be specified
before the prescan.

Furthermore, we also address the automation of the MR
prescan itself, and the workflow of radiographic tomographic
imaging (e.g., CT), where a whole-body prescan is unfeasible
with respect to the additional radiation dose.

Optical or range imaging sensors are a common choice
for human pose estimation. In the past decade, a variety of
approaches have been proposed for recovering human pose
from visual observations, for a comprehensive survey see
Moeslund et al. [4] and Poppe [5]. However, the corpus of
related work is focused on situations where the subject stands
upright.

Markerless solutions for clinical and biomechanical appli-
cations are addressed only rarely [6,7]. Here, in contrast to
accurate marker-based approaches, no interaction with the
patient is required. This is particularly important, since the
placement of markers would impose an additional task in
the workflow.

Articulated pose estimation on 3-D surface data from low-
cost RI sensors has recently gained more interest [8–11].
A fundamental drawback of many model-based approaches
is the necessity of a specific body pose for model initiali-
zation [9–11] which is usually an unacceptable interaction
for clinical scenarios. Recently, a ToF-based system that
coarsely detects anatomical regions with an ordinary golden
ratio division was proposed by Schaller et al. [12]. However,
the heuristic algorithm cannot cope with the variety of articu-
lated real-world patient poses. In terms of accuracy, existing
ToF-based pose estimation systems have reported errors of
1–9 cm [11] and 2–6 cm [8], respectively, for the upper body
pose of a subject standing upright and facing the camera.

In the field of pressure imaging, Seo et al. [13] proposed
to use an array of pressure sensors to classify the posture of
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Fig. 1 Flowchart of the proposed framework, from left to right. The orientation, posture, and body pose of the patient are extracted in a consecutive
manner. Note that this pipeline can be applied to both RI and PI data

a human reclining on a bed. Without specifying the dimen-
sion of the evaluation data set, the authors state an accuracy
of 93.6 % for classification with a radial basis function neu-
ral network. Harada et al. [14] used a PI-based approach for
posture and pose classification based on template matching
with a training database that was established by estimating
the pressure distribution of a synthetic human body model.

Later, the authors also proposed a motion tracking system
with a pressure imaging device [15]. However, a manual pose
initialization is required with these approaches.

Materials and methods

We propose a markerless framework that is capable of classi-
fying the orientation and posture of a patient. Furthermore, it
delivers an estimate of the articulated body pose. The system
is generic in the sense that it can be fed with sensor data from
both range and pressure imaging modalities. Our framework
consists of three top-down algorithmic stages, see Fig. 1. In
the first stage, the patient’s orientation is detected using a
heuristic scheme. Subsequently, in the second stage, we per-
form a k-nearest neighbor (k-NN) classification for determi-
nation of the patient posture. Third and based on the detected
orientation and posture, the approximate patient pose is esti-
mated by iteratively fitting an articulated body model to the
observed RI and PI data, respectively. Note that each stage
benefits from prior knowledge of the previous stage. Unlike
many optical systems for human–computer interaction, our
approach does not require the subject to adapt an initializa-
tion pose.

Sensor modalities

Time-of-flight range imaging measures 3-D surface infor-
mation with a single sensor based on the phase shift between
an actively emitted and its reflected optical signal [16]. The
device is compact, easy to integrate and delivers metric infor-
mation in real-time (25 Hz). The precision in z-direction is
in the scale of 5 mm (1 standard deviation) for an operating
distance of 1 m. Let us represent the measurement data of
the sensor with a resolution of w × h pixels by a point cloud

D ∈ R
w×h×3,

D =
⎡
⎢⎣

d1,1 . . . d1,h
...

. . .
...

dw,1 . . . dw,h

⎤
⎥⎦ , (1)

where di, j denotes the measured 3-D point (dx , dy, dz)
T at

the sensor element (i, j). The depth component dz denotes
the orthogonal distance between sensor and object. Subtract-
ing the depth component of the measured data D from a
previously acquired background model B = {bi, j } yields
ID ∈ R

w×h , representing the 2-D height profile of the patient
above the table plane:

ID(i, j) = bz(i, j) − dz(i, j) (2)

Exemplary RI height maps from the data set used for evalu-
ation are depicted in Fig. 4a.

Pressure sensing mattresses consist of an array of flexible
pressure sensors embedded into a thin mattress. At each sen-
sor node at coordinates (i, j), the applied force IF(i, j) is
measured in metric units, examples are shown in Fig. 4b. To
date, PI devices are commonly used for visualization and
qualitative analysis of surface pressure distributions only.
However, they also offer great potential to the computer
vision and pattern recognition community, as they allow to
capture information about the pressure exerted on the sensor
surface in real time. Even though off-the-shelf products as
the one used in our experiments (“Experiments and results”
section) are not compatible with MR scanners, the required
components to build suitable sensor systems are available.

Orientation detection

In order to determine the orientation of the patient (head first,
feet first), we apply a heuristic scheme that analyzes the dis-
tribution of the RI and PI data, respectively. In particular, the
algorithm evaluates the 1-D profiles of the patient’s height
and weight along the two orthogonal directions of the patient
table. Here, we exploit the fact that the RI profiles along the
body axes typically exhibit a high concentration of volume
in the torso region, while PI profiles feature spots of high
pressure about the shoulders and hips. Based on these indi-
cators for localizing the position of the torso region relative
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Fig. 2 Detection of the patient orientation (head first, feet first) on PI
data. The weight distributions along the principal axes are shown as a
function on top and on the right of the pressure image. The torso region
(labeled in blue) is detected using dynamic thresholds (εx , εy)

Fig. 3 a Frontal view of the articulated 3-D body model and joint
angles δ used for RI-based pose estimation. For application on PI data,
this model is enhanced using additional geometry according to Table 1.
b Conventional depth sampling based on z-buffer. c Our modified sam-
pling scheme, accounting for self-occlusions that can occur due to the
restriction of the 3-D body model to planar joint angles

to the patient body and position on the table, the orienta-
tion of the patient can be deduced using dynamic thresholds
(εx , εy) that are determined in relation to the individual depth
and weight distribution statistics of the patient, respectively,
see Fig. 2.

Posture classification

A robust classification of the patient’s posture on the
examination table is of two-fold importance. First, it is a man-
datory input during patient registration. Second, it is an essen-
tial prior information for initialization of the body model for
pose estimation, see “Model-based pose estimation” section.
In our framework, we distinguish between the four basic
postures (prone, supine, left, right) with a k-nearest neighbor
classification. In particular, the data (ID, IF) is normalized
by aligning its center of mass to coincide with the origin. The
normalized data then directly serves as a feature vector that
is classified using the L2 norm as distance metric. A mea-
surement is assigned the posture class of the k most similar
training instances.

Table 1 List of anatomic regions where additional weights were used
for augmenting the pressure model in order to obtain a realistic pressure
distribution, for the four postures

Supine Prone Left Right

Head Head Head Head

Elbows Upper arms Upper arm (l) Upper arm (r)

Shoulders Shoulders Upper leg (l) Upper leg (r)

Lower back Lower back Calf (l) Calf (r)

Calves Knees Foot (l) Foot (r)

Heels Feet

Model-based pose estimation

Based on the known orientation and posture, our framework
recovers the approximate body pose by fitting an articulated
model to the observed data. Here, a 3-D kinematic model of
the human body, composed of elliptic cylinders (see Fig. 3a),
is used to generate synthetic depth maps and pressure distri-
butions to match the RI or PI sensor measurements, respec-
tively. In the PI case, the model geometry resembles the true
shape of the body parts. Accounting for the characteristics
in PI data, the pressure model is augmented with additional
geometry of heuristically determined dimensions to simu-
late a realistic pressure distribution on the patient table, see
Table 1 for details.

The 15 degrees of freedom of the model configuration
are expressed by a vector θ = (t, φ, s, δ) ∈ R

15, includ-
ing a global translation t ∈ R

2, a global rotation angle φ,
a scale factor s accounting for the individual body propor-
tions, and a vector of Euler angles δ ∈ R

11, representing
the joint angles in the plane parallel to the patient table, see
Fig. 3a. For an automatic localization of the treatment site and
region of interest, the 2-D patient pose and articulation with
respect to the table plane holds sufficient information. Hence,
we restrict the articulation of our 3-D model to the planar
domain. As a side-effect, this reduces the dimensionality of
the pose search space. The effect of perspective foreshorten-
ing of extremities is negligible, since the non-planar angular
component is usually not relevant to the use-cases consid-
ered here. Furthermore, the angles are limited to ranges that
are likely to be encountered in the clinical context.

Model sampling In order to project the model configura-
tion into the observation space, a depth map of the 3-D model
representation is computed using OpenGL rendering. From a
given model configuration, either type of sensor data can be
emulated simply by using the corresponding model geom-
etry. The model parameterization itself and the sampling
scheme are identical for both RI- and PI-based pose esti-
mation. With a conventional orthographic projection model
(Fig. 3b), the z-buffer holds a map of the orthogonal dis-
tance to the surface of the closest limb. However, for a 3-D
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model that is restricted to planar articulation, this sampling
scheme would not account for cases where different parts of
our cylindrical model intersect or coincide.

Hence, we use a modified sampling scheme that resolves
self-occlusions into a realistic model surface, regardless of
the restriction to planar joint angles, see Fig. 3c. For this
purpose, individual body parts are rendered separately in a
subsequent manner. Interpreting their z-buffer representation
yields a thickness information t (l)θ (i, j) for each body part l
and position (i, j) with respect to the model configuration θ .
Note that the thickness information corresponds to the path
length through the body part model at the given location. In
order to obtain the complete model sampling Mθ ∈ R

w×h ,
the thickness information of the set of body parts is accumu-
lated for each pixel position:

Mθ (i, j) =
∑

l

t (l)θ (i, j), (3)

where the index θ denotes the body model configuration.
The goal now is to find the model configuration θ̂ that

minimizes the difference FI (θ) between the generated model
data Mθ and the actually observed data I of the correspond-
ing sensor modality:

θ̂ = argθ min FI (θ) = argθ min
∑
i, j

(
Mθ (i, j) − I(i, j)

)2
,

(4)

where I may be either the applied force IF with PI data or
depth information ID with RI data.

Pose optimization Our pose optimization routine is based
on a genetic algorithm [17] that holds of a pool of genotypes
and repeatedly applies two stages: selection and recombina-
tion (or reproduction). In the selection stage, a fitness func-
tion determines which of the individuals in the pool are kept
for the next iteration. Genetic recombination is performed by
generating a set of offsprings from the current pool of geno-
types. Let us note that genetic algorithms do not require an
analytic derivative of the objective function for minimization.

In our case, a genotype corresponds to a model configu-
ration vector θ , as outlined in Algorithm 1. Only the fittest
single individual θ̂ is selected for reproduction. The fitness of
an individual θ is inversely proportional to the correspond-
ing objective function value FI (θ). θ̂ is initialized with a
default pose, depending on the posture estimate. As stated
before, each individual degree of freedom j of the model is
restricted to values within a reasonable range [rmin

j , rmax
j ].

They are initialized at the maximal possible range for each
degree of freedom, see Algorithm 1. During the optimization
process, these search ranges will be narrowed increasingly.

The subroutine genOffsprings(θ̂, j, rmin
j , rmax

j , K )

generates a fixed number of K instances of model config-
urations {θk, k = 1, . . . , K } to be considered for evaluation.

Note that these offsprings differ only in the values of the
j-th degree of freedom. In each of the Ndofs inner iterations,
a different single degree of freedom is manipulated. The evo-
lutionary process is repeated Niter times over all degrees of
freedom. In general, the degrees of freedom correspond to
the degrees of freedom in θ . However, it proved to be more
efficient to change two components at a time for the lat-
eral postures, where the angles of hip and knees are adjusted
simultaneously rather than individually.

Algorithm 1 Genetic Algorithm for pose estimation

Input: Initial pose θ̂

Input: Maximal ranges [rmin
j , rmax

j ] ∀ j = 1, . . . , Ndofs
for i = 1, . . . , Niter do

for j = 1, . . . , Ndofs do{
θk} ⇐ genOffsprings(θ̂ , j, rmin

j , rmax
j , K )

for k = 1, . . . , K do
if FI (θ

k) < FI (θ̂) then
θ̂ ⇐ θk

end if
end for
rmin

j ⇐ θ̂ j − 0.7 · (θ̂ j − rmin
j )

rmax
j ⇐ θ̂ j + 0.7 · (rmax

j − θ̂ j )

end for
end for
Output: Estimated pose θ̂

The optimization of configuration vector components is
controlled by incorporating prior knowledge on the hierar-
chy of human kinematics: First, the global translation and
rotation are optimized. Then, proceeding to the extremities,
the position and orientation of the upper arms and legs, the
head, the lower arms, and eventually the lower legs are esti-
mated. An adaptive annealing sampling scheme in the param-
eter domain enforces convergence of the optimization: In
the first iteration, the individuals are generated by uniformly
sampling the maximum parameter range [rmin

j , rmax
j ]. In the

subsequent iterations, the evaluation is restricted to a dense
sampling of 70 % of the local range around the last estimate
for this parameter, θ̂ j , as the optimal value is expected to be
close to the previous guess. No explicit collision detection
or avoidance is required to penalize model configurations
where body parts intersect, owing to our dedicated sampling
scheme described in Eq. 3.

Experiments and results

RI/PI evaluation data set

The proposed method is evaluated on real data covering full
body poses from 16 reclined subjects. For the experiments on
RI data, a PMD S3 ToF sensor (PMD Technologies GmbH,
Germany) with a resolution of 64 × 48 pixels was mounted
on a linear motion slide and moved over the patient paral-
lel to the examination table. The depth images were stitched
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Table 2 Top: cumulative confusion matrix of k-NN posture classifi-
cation for experiments on RI data, from four-fold inverse cross-valida-
tion (using data from four volunteers as training set and testing on data
from the twelve remaining subjects), and bottom: cumulative confusion
matrix for experiments on PI data

Supine Prone Left Right

RI classification

Supine 44 13 0 0

Prone 19 32 0 0

Left 2 3 42 1

Right 2 2 0 44

PI classification

Supine 52 0 2 0

Prone 2 48 0 1

Left 3 0 44 1

Right 0 0 0 48

In this table, rows denote the ground truth label and columns the
respective classification result. Boldface values indicate fields where the
classification matched the true label, i.e. these are numbers of correct
classifications

with a cross-correlation scheme delivering images of about
64 × 190 pixels. Thus, the effective resolution lies in the
range of state-of-the-art ToF sensors that feature a resolu-
tion of up to 200 × 200 pixels. At a distance of 2.5 m
above the patient table, the spatial resolution is 1.1 cm in
x- and y-direction. For evaluation of PI data, an XSensor X3
PX100:26.64.01 pressure sensing mattress (XSensor Tech-
nology Corporation, Canada) was placed between table and
subject. Its array of 26 × 64 capacitive sensors provides a
spatial resolution of 3.175 cm. Using the RI and PI sensor
simultaneously, we have acquired a comprehensive database
of 68 poses from 16 healthy volunteers. At least one ToF
scan and a pressure measurement in each fundamental pos-
ture were acquired per subject. In one case, the PI data were
not usable due to sensor mis-calibration.

Experimental results

For both types of sensor data, our heuristic scheme detected
the correct orientation (head first, feet first) for all subjects.

For evaluation of the k-NN classification of the patient’s
posture, we performed a fourfold inverse cross-validation
[18]. Here, first, the data are partitioned into four folds. Sec-
ond, iterating over the folds, training is performed on one
fold and predicting on data of the remaining three. Applying
cross-validation in this inverse fashion accounts for the fact
that in practice the training set is significantly smaller than
the testing set.

Table 2 shows the cumulative confusion matrix after the
four cross-validation runs, for a heuristically determined
value of k = 5. With a mean classification rate of 95.5 %, the

pressure sensing mattress outperformed the RI-based setup
(79.4 %). Concerning the inferior performance of RI data,
please note that several mismatches occurred between prone
and supine postures. In particular, for the classification of
prone and supine postures, we observed mean classification
rates of 95.2 % for PI and 70.0 % for RI data. This is due
to the fact that these postures exhibit a similar 3-D shape.
In contrast, the superior performance of PI data results from
the distinct pressure distributions in prone and supine posi-
tion.

Exemplary qualitative results of our body pose estima-
tion stage are shown in Fig. 4, on RI (a) and PI data (b),
demonstrating the robustness of the algorithm on real data.
After Niter = 5 optimization cycles of pose estimation
(approx. 600 objective function evaluations), reliable loca-
tions for the head and torso, as well as for the extremi-
ties in virtually all cases, are found. In each inner iteration
in Algorithm 1, a set of K = 8 offsprings was generated
and evaluated. The whole process takes less than 5 s for our
single-threaded implementation on a 2.26 GHz CPU system
with an ATI Radeon HD 3400 graphics card.

For quantitative analysis, the metric coordinates of the
estimated anatomical landmarks are compared to ground
truth data that were manually labeled in the measurements
by two observers following a predefined convention based
on the joint positions defined in the body model. To avoid
bias of the root mean square (RMS) error, large outliers
were not taken into account for the computation of the
average localization errors. In particular, landmark estima-
tions with a planar Euclidean distance exceeding 15 cm were
rejected as outliers. The remainder was considered as cor-
rectly detected. Table 3 shows the resulting localization errors
for clinically relevant landmarks. The average RMS errors
over all landmarks are 5.84 and 5.53 cm for RI and PI data,
respectively. The detection rates are listed in Table 4, with
mean rates of 96.6 % (RI) and 95.0 % (PI). The character-
istic outlines of head and shoulders in RI data result in
high detection rates. Similarly, high pressure is exerted on
the PI mattress by the head and shoulders in supine posi-
tion, and by the hips and knees in all postures, also leading
to almost perfect detection. In contrast, a lower accuracy
was observed for the crest, neck and shoulder landmarks
in prone and lateral posture in PI data. This is due to the
fact that some of the subjects rested their head on their
arms, leading to an ambiguous pressure distribution in these
regions.

Overall, our results indicate that an estimation of the
patient’s approximate body pose is feasible using RI and
PI sensors. The achieved accuracy of our method is in the
same order as previously reported results [8,13,11], see
“Related work” section, for both types of sensors. However,
our approach does not require an initialization pose, being a
key issue for clinical application.
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Fig. 4 Qualitative results of the body pose estimation stage.
Upper/lower row: results for RI/PI data, overlaid with the skeleton of
the estimated pose after five optimization cycles. From left to right:

prone, supine, left, right postures. Right extremities are colored in red,
left ones in yellow, head, shoulder, torso and hips in green. a RI-based
pose estimation results, b PI-based pose estimation results

Table 3 Quantitative results of our approximate pose estimation algo-
rithm

Crest Neck Shoulder Hip Knee

L R L R L R

RI

Supine 3.8 3.3 3.7 4.6 6.2 6.3 4.9 4.3

Prone 5.5 4.4 7.3 5.3 6.7 5.9 7.6 6.4

Left 6.0 5.0 5.8 5.9 7.7 6.9 − 7.0

Right 6.1 5.3 6.5 6.5 7.1 7.6 5.6 −
PI

Supine 3.2 4.5 5.1 5.2 4.0 3.9 4.2 4.4

Prone 8.6 6.7 6.6 7.0 6.4 6.7 2.2 2.4

Left 7.7 6.8 6.1 5.1 5.3 5.8 7.0 −
Right 6.2 6.6 4.7 4.6 6.7 5.6 − 6.5

Given is the RMS of the Euclidean distance [cm] (in the planar domain)
between the estimated and ground truth location of clinically rele-
vant body landmarks, left (L) and right (R), for the subset of cor-
rectly detected landmarks. Note that in lateral position, one knee is
usually severely occluded (RI) or hardly discriminable from the other
(PI), hence no results are given

Table 4 Body landmark detection rates in %

Crest Neck Shoulder Hip Knee

L R L R L R

RI

Supine 1.00 1.00 1.00 1.00 0.97 0.95 1.00 1.00

Prone 1.00 1.00 0.94 0.91 0.97 1.00 0.97 0.97

Left 1.00 1.00 0.97 1.00 0.97 0.91 − 0.91

Right 0.84 0.97 1.00 0.97 0.91 0.88 0.97 −
PI

Supine 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Prone 0.47 0.85 0.91 0.79 1.00 1.00 1.00 1.00

Left 0.88 0.94 1.00 0.97 1.00 1.00 0.94 −
Right 0.88 0.91 1.00 1.00 1.00 1.00 − 0.94

Landmarks for which the estimation error exceeded 15 cm were consid-
ered as outliers and excluded from the pose estimation accuracies given
in Table 3
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Furthermore, in contrast to methods focusing on dynamic
motion tracking of the upper body [8,11], our methods
aim at whole-body pose estimation from a single-shot
measurement.

Discussion and conclusions

We have presented a novel markerless solution for the detec-
tion of a reclined patient’s orientation, posture and pose on
the patient table. Extracting this information in a fully auto-
matic manner may supersede a good portion of the con-
ventional manual input for patient registration in diagnostic
tomographic imaging. Furthermore, it may be used to auto-
matically localize a given examination site. In a case study
on real data from 16 subjects, the performance of the pro-
posed system was evaluated quantitatively for a 3-D time-
of-flight RI camera and a pressure sensing mattress (PI). For
both modalities, the proposed heuristic scheme successfully
detected the patient orientation for all subjects. Using
k-NN posture classification, PI outperformed RI with a mean
classification rate of 95.5 % (RI: 79.4 %). Here, our experi-
ments have shown that the distinctive pressure distribution of
the human body is better suited for discriminating between
supine and prone postures.

Concerning the proposed approximate body pose esti-
mation, both modalities achieved comparable results. Ana-
tomical body landmarks were localized with an accuracy of
±5.84 cm for RI and ±5.53 cm for PI data, respectively.

In clinical practice, the acceptable tolerance margins for
orientation detection, posture classification and landmark
localization depend on the type of examination and cannot
be quantified in a generic manner. The impact on specific
workflows and the requirements to gain clinical acceptance
have to be validated in dedicated clinical studies. In general,
note that the proposed system intends to improve the clinical
workflow by supporting staff during patient setup and scan-
ner initialization. It suggests appropriate settings based on
the proposed framework, but the final decision and respon-
sibility remains with the human operator.

In this discussion, as a concrete example, let us consider
the case of MRI prescan positioning. Here, in order to gain
clinical acceptance, we expect the following demands to be
met. We consider a reliable orientation detection as manda-
tory and expect that the posture must be classified correctly
in at least 90 % of the cases. Both requirements are met by
the PI sensor. Posture classification based on RI does not
fulfill the demands. Regarding the requirements in terms of
localization accuracy, it should be noted that MR localiz-
ers usually cover the maximal field of view in the scanner
bore (40–50 cm in all dimensions) and are centered around
the target region of interest. Hence, deviations in the scale of
2–8 cm are acceptable for routine prescans. Lateral deviations

are negligible as the prescan typically covers the full width
of the patient table.

Regarding practical limitations of the proposed approach,
we remark that optical sensors are sensitive with respect
to visual occlusion. This limitation was not considered in
our study. The use of cushions, blankets, loose clothing, and
the presence of medical staff and equipment may therefore
impose a risk for mis-detection and misclassification, espe-
cially for RI sensors. In contrast, we expect the PI-based setup
to provide reliable results in these cases. Another important
aspect beyond the scope of this work is the fact that in case
additional contextual information is available, the search
space for both posture and pose estimation can be highly
reduced. For instance, prior knowledge about a head coil
being plugged into an MR scanner is a reliable indicator for
supine posture and head-first orientation. Also, the potential
locations of crest and neck are severely restricted.

Let us conclude that the proposed framework is not
restricted to application in diagnostic tomographic imag-
ing but also holds potential for interventional applications,
motion analysis, and sleep monitoring [7].

Even though we expect that a combination of both modal-
ities could further improve robustness and accuracy of our
method, the fusion of RI and PI sensors is debatable with
respect to the growing total system cost. Further investiga-
tions concerning the optimal level of detail in the body model
geometry, different clinical scenarios and pose tracking over
the course of examination will be subject to future research.
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