Supervised Multispectral Image Segmentation with Power Watersheds

Johannes Jordan, Elli Angelopoulou johannes.jordan@cs.fau.de Pattern Recognition Lab, University of Erlangen-Nuremberg, Germany

Motivation

Use-case Scenario:

- Interactive multispectral image analysis
- User provides input on segmentation goal
- Avoidance of tedious manual labeling

Contributions:

- Introduce supervised segmentation to multispectral, hyperspectral imagery,
- adapt a graph-based state-of-the-art segmentation method (Power Watersheds [1]),
- design a benchmark and report first results.

(a) Original image in sRGB

(c) User-provided seed map

(b) Mean-shift segmentation

(d) Graph-cut segmentation

Figure 1: Unsupervised clustering and seed-based segmentation results on an example multispectral image [5].

Algorithm

Power Watersheds by Couprie et al., 2009. [1]

- Image representation as a graph with a vertex v_i for each pixel *i*,
- locally 4-connected or 8-connected nodes,
- edge weights w_{ii} based on image gradient ∇I ,

Edge weights

- Intensity images: $\nabla I \cong$ normalized gradient
- $\nabla I \cong$ distance in L_2 or L_{∞} RGB images:
- Multispectral images: $\nabla I \cong ?$

Observation: the *L*_p-norm is not well-suited.

We propose:

- Similarity measures from Spectral Mapping
- A novel data-driven measure

Similarity measures

Spectral Angle (SA) between spectral vectors **x**, **y**:

$$SA(\mathbf{x}, \mathbf{y}) = \cos^{-1} \left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|_2 \cdot \|\mathbf{y}\|_2} \right) .$$

Spectral Information Divergence (SID):

$$\operatorname{SID}(\mathbf{x}, \mathbf{y}) = \sum_{l=1}^{N} \mathbf{p}_{l}^{(\mathbf{x})} \log \frac{\mathbf{p}_{l}^{(\mathbf{x})}}{\mathbf{p}_{l}^{(\mathbf{y})}} + \sum_{l=1}^{N} \mathbf{p}_{l}^{(\mathbf{y})} \log \frac{\mathbf{p}_{l}^{(\mathbf{y})}}{\mathbf{p}_{l}^{(\mathbf{x})}},$$

with
$$\mathbf{p}_{1 \le l \le N}^{(\mathbf{x})} = \frac{x_l}{\sum_{k=1}^N x_k}$$
, *N* number of bands.

SIDSAM: [3]

$$SIDSAM_1(\mathbf{x}, \mathbf{y}) = SID(\mathbf{x}, \mathbf{y}) \cdot \sin(SA(\mathbf{x}, \mathbf{y})) ,$$

$$SIDSAM_2(\mathbf{x}, \mathbf{y}) = SID(\mathbf{x}, \mathbf{y}) \cdot \tan(SA(\mathbf{x}, \mathbf{y})) .$$

Normalized Euclidean Distance (NED): [2]

 $NED(\mathbf{x}, \mathbf{y}) =$

$$\left[\sum_{l=1}^{N} \left(\frac{x_l}{\overline{x}} - \frac{y_l}{\overline{y}}\right)^2\right].$$

Data-driven measure

Self-organizing map (SOM)

- 1D array or 2D grid of model vectors (neurons), mapping: spectral vector $\mathbf{x} \rightarrow$ model vector \mathbf{m}_{i} .
- The SOM is trained with random image pixels.
- We obtain a topological representation of the original spectral distribution.

Similarity calculation: [4]

 $SOM(\mathbf{x}, \mathbf{y}) = \left\| L(\operatorname{argmin}_{i} \|\mathbf{x}, \mathbf{m}_{i}\|_{2}) - L(\operatorname{argmin}_{i} \|\mathbf{y}, \mathbf{m}_{j}\|_{2}) \right\|_{2}.$

Dataset: CAVE Multispectral Image Database [5] • Objects of different materials in a lab setting • 512×512 pixels, 400 nm - 700 nm in **31 bands** Hand-labeling of **32 objects** in 9 suitable images Seed inputs mimic typical usage scenario

Setup: 4 algorithms, 7 edge weight configurations

We introduce supervised segmentation to multispectral images for interactive analysis.

Benchmark dataset and source-code available:

http://www5.cs.fau.de/research/data/msseg

FRIEDRICH-ALEXANDER-UNIVERSITÄT **ERLANGEN-NÜRNBERG**

Figure 2: Gradients according to different similarity measures in x-direction (top) and their segmentation results (bottom) on statue image [5].

Benchmark

Conclusions

• Power watersheds perform well, but not L_{m} . • Good performance is obtained by similarity measures from spectral matching.

• Data-driven similarity is leading in some cases.

Measure	Algo.	Precision	Recall	F ₁ -score	Time (s)
NED	pwg	0.908	0.971	$\textbf{0.929} \pm 0.073$	6.0
SA	pw	0.896	0.978	$\textbf{0.928} \pm 0.067$	6.8
SA	msf	0.892	0.978	$\textbf{0.926} \pm 0.065$	0.7
SA	pwg	0.891	0.979	$\textbf{0.923} \pm 0.071$	6.8
NED	pw	0.911	0.962	$\textbf{0.919} \pm 0.089$	1.0
NED	msf	0.907	0.962	$\textbf{0.917} \pm 0.091$	1.0
SOM	pwg	0.897	0.925	$\textbf{0.898} \pm 0.074$	18.6
SOM	pw	0.897	0.925	$\textbf{0.898} \pm 0.074$	18.6
SOM	msf	0.894	0.903	$\textbf{0.886} \pm 0.057$	9.6
SID	msf	0.846	0.973	$\textbf{0.867} \pm 0.249$	2.8
SIDSAM	msf	0.819	0.972	$\textbf{0.849} \pm 0.245$	3.4
SID	pwg	0.888	0.872	$\textbf{0.837} \pm 0.210$	8.5
SID	pw	0.889	0.872	$\textbf{0.837} \pm 0.210$	8.6
SIDSAM	pw	0.944	0.764	$\textbf{0.793} \pm 0.259$	10.9
SIDSAM	pwg	0.947	0.763	$\textbf{0.791} \pm 0.266$	10.7
L_{∞}	pw	0.937	0.588	$\textbf{0.659} \pm 0.214$	8.9
L_{∞}	pwg	0.923	0.587	$\textbf{0.655} \pm 0.217$	8.9
L_{∞}	msf	0.927	0.538	$\textbf{0.598} \pm 0.291$	0.9
		<u>,</u>		<i>,</i> , , , ,	

References

Table 1: Average performance of measure/algorithm combinations.

[1] C. COUPRIE, L. GRADY, L. NAJMAN, H. TALBOT. Power watershed: A unifying graph-based optimization framework. *TPAMI*, vol. 33, no. 7, pp. 1384–1399, 2011. [2] S.A. ROBILA, A. GERSHMAN. Spectral matching accuracy in processing hyperspectral

data. Int. Symp. on Signals, Circuits and Systems. IEEE, 2005, vol. 1, pp. 163–166. [3] Y. DU, C.I. CHANG, H. REN, C.C. CHANG, J.O. JENSEN, F.M. D'AMICO. New hyperspectral discrimination measure for spectral characterization. *Optical Engineering*, vol. 43, no. 8, pp. 1777–1786, Aug. 2004.

[4] J. JORDAN AND E. ANGELOPOULOU. Edge detection in multispectral images using the ndimensional self-organizing map. *ICIP*, 2011, pp. 3181–3184.

[5] F. YASUMA, T. MITSUNAGA, D. ISO, S. K. NAYAR. Generalized Assorted Pixel Camera: Post-Capture Control of Resolution, Dynamic Range and Spectrum. *IEEE Transactions on* Image Processing, vol. 99, Mar. 2010.