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Abstract: High speed Optical Coherence Tomography (OCT) has made it 
possible to rapidly capture densely sampled 3D volume data. One key 
application is the acquisition of high quality in vivo volumetric data sets of 
the human retina. Since the volume is acquired in a few seconds, eye 
movement during the scan process leads to distortion, which limits the 
accuracy of quantitative measurements using 3D OCT data. In this paper, 
we present a novel software based method to correct motion artifacts in 
OCT raster scans. Motion compensation is performed retrospectively using 
image registration algorithms on the OCT data sets themselves. Multiple, 
successively acquired volume scans with orthogonal fast scan directions are 
registered retrospectively in order to estimate and correct eye motion. 
Registration is performed by optimizing a large scale numerical problem as 
given by a global objective function using one dense displacement field for 
each input volume and special regularization based on the time structure of 
the acquisition process. After optimization, each volume is undistorted and a 
single merged volume is constructed that has superior signal quality 
compared to the input volumes. Experiments were performed using 3D 
OCT data from the macula and optic nerve head acquired with a high-speed 
ultra-high resolution 850 nm spectral OCT as well as wide field data 
acquired with a 1050 nm swept source OCT instrument. Evaluation of 
registration performance and result stability as well as visual inspection 
shows that the algorithm can correct for motion in all three dimensions and 
on a per A-scan basis. Corrected volumes do not show visible motion 
artifacts. In addition, merging multiple motion corrected and registered 
volumes leads to improved signal quality. These results demonstrate that 
motion correction and merging improves image quality and should also 
improve morphometric measurement accuracy from volumetric OCT data. 
© 2012 Optical Society of America 
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1. Introduction 

Optical Coherence Tomography (OCT) [1] has become an increasingly important tool for 
medical imaging and biomedical research, enabling visualization of the internal structure and 
morphology of tissue in vivo with micron scale resolution. OCT enables structural and 
quantitative imaging of the retina and other tissues to diagnose disease and guide therapy [2]. 
As an example, glaucoma, a leading cause of blindness, is associated with retinal nerve fiber 
atrophy. OCT can quantitatively measure changes in the retinal nerve fiber layer thickness, 
enabling diagnosis of glaucoma as well as assessment of progression and response to therapy. 

Spectral and swept source/Fourier domain OCT [3–7] have enabled significant 
improvements in imaging speeds, such that densely sampled of 3D volumes can be acquired 
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in a few seconds [8]. In Fourier domain detection, the interference signal between 
backscattered light from the tissue and a reference path is Fourier transformed to construct 
axial depth profiles or axial scans of backscattered intensity. A volume is usually generated as 
a two dimensional grid of axial scans. The OCT beam is scanned over a region of interest on 
the tissue while sequentially acquiring axial scans. A typical scan pattern acquires the two 
dimensional grid as a collection of linear one dimensional scan lines, or B-Scans 
corresponding to 2D cross-sectional images using a raster scan pattern. Figure 1 illustrates 
OCT scanning. Using Fourier domain detection, scan rates ranging from ~25,000 to ~300,000 
axial scans per second can be achieved with a trade-off between speed and sensitivity [8]. For 
example, using a 100 kHz axial scan rate a 400 x 400 raster of axial scans can be acquired in 
~1.9 seconds, including scanner flyback time. Recently, OCT acquisition speeds of up to 1.37 
million axial scans per second have been demonstrated for retinal imaging [9]. Three-
dimensional data sets acquired at these fast speeds still show residual motion artifacts, 
suggesting that increasing OCT speeds alone is not sufficient to overcome head and eye 
motion induced distortions in densely scanned 3D data sets. This is because one generally 
wants to use increases in speed to sample more densely and/or to sample a larger area. Motion 
artifacts can be reduced only when increases in speed are used to decrease total acquisition 
time rather than increase the size of the data set. 

1D: A-Scan 2D: B-Scan 3D: Volumetric

Backscatter Intensity

Axial D
irection (D

epth)
No scanning with 

Fourier Domain OCT Transverse (X) Scanning
Transverse 

(X and Y) Scanning  
Fig. 1. OCT Scanning and scanner coordinate system schematic. Left: 1D acquisition (A-scan). 
A single depth profile is acquired which measures backscattered intensity vs. axial dimension 
(depth). Middle: 2D imaging (B-scan). The OCT beam is scanned in a transverse direction 
while A-scans (red arrows) are acquired. Right: 3D acquisition. Multiple B-Scans are acquired 
such that A-scans are sampled on a 2D grid in the transverse plane. 

Because the axial scans comprising three-dimensional volumes are acquired over time, 
any movement between the OCT device and tissue results in motion artifacts. The main 
sources of motion are from heartbeat and respiration, which primarily manifest as motion in 
the axial direction. There is also motion in the transverse directions consisting of relatively 
slow drift and fast, large scale movements from fixation changes called saccades [10]. These 
movements lead to a distortion of the volume data compared with the case where there is no 
movement during acquisition. This differs from geometric distortion which is caused by optics 
of the instrument and eye. In motion distorted data, some areas of tissue might be sampled 
multiple times, while others might not be sampled at all, generating gaps in the data. Also, the 
general structure and topography of the tissue in the acquired volume might not accurately 
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correspond to the real tissue. Motion artifacts are a significant problem for ophthalmic OCT 
imaging and limit the reproducibility of quantitative measurements [11]. 

Previous methods to solve the motion artifact problem can be characterized based on the 
data they operate on, whether they require additional hardware and what types of motion they 
can compensate. Swanson et al. [12] used cross-correlation of successive axial scans in time 
domain OCT to measure axial eye motion and register axial scans. This method only 
compensated for axial motion but did not require additional hardware. Zawadzki et al. [13] 
and Potsaid et al. [8] used orthogonal B-Scans scans to register the axial dimension of raster 
scanned 3D-OCT data. This method registers axial position, but does not correct for 
transverse motion. Potsaid et al. also measured eye motion and showed that transverse eye 
motion had a rapid +/− 20 µm component from ocular tremor and axial motion had a +/− 50 
µm component associated with heartbeat. Jørgensen et al. [14] used a regularized dynamic 
programming approach to register multiple OCT volumes with each other in order to improve 
the signal to noise ratio. The technique can correct for axial motion as well as for small 
motion in the traverse direction. Ricco et al. [9] used an SLO reference image that is captured 
immediately after OCT acquisition and demonstrated an elastic image registration method to 
reduce vessel discontinuities which result from motion during an OCT scan. Additionally, 
dynamic time warping was employed to align both data sets. This method can correct motion 
in the transverse directions only and uses additional image information from a different 
modality. This requires more hardware compared with a normal OCT system. Tolliver et al. 
[15] used OCT raster scans with orthogonal fast scan directions. First, shift invariant 1D Haar 
features from each individual axial scan were generated. Then a classifier was trained to find 
possible matches between axial scans. Using Bayes-Filtering, a smooth path through the 
image was found from the match probabilities that also permitted discontinuities from 
saccades. Finally, eye tracking hardware can be used to directly measure and correct for eye 
movement [16,17]. However, eye tracking adds complexity and cost to an OCT system, and 
commercial systems which use SLO images for tracking, cannot track motion at the same 
speed that axial scans are acquired. 

In this paper, we present a method to estimate and correct relative motion between the 
instrument and scanned tissue in all three dimensions on a per A-scan basis. The approach 
only requires OCT raster scanned 3D data without the need for additional tracking hardware 
or images from different modalities. Two or more sequentially acquired raster scanned OCT 
volumes are used as input data. At least two of these volumes should be scanned using raster 
scans with orthogonal fast scan axes, so that motion effects on the data volumes are 
uncorrelated. After motion estimation and correction using image registration techniques, the 
set of corrected volumes are combined to obtain a single volume with improved signal quality. 

2. Methods 

2.1. Scan process modeling 

A model of the scan process is used to formulate and treat the problem of motion artifacts in 
OCT volumes. An A-scan can be modeled as a function of space and time: 

 3AScan( , ) : dt × →p    ,  (1) 

where ( , , )Tx y z=p (p is a column vector, T denotes transpose) describes the position of the 
OCT beam in a device-centric scan coordinate system and t is the time when the axial scan 
was acquired. The above A-scan function returns a d -dimensional vector of intensities 
spaced in the axial direction, where d  is the number of pixels of an A-Scan. The intensities 
depend on the scattering properties of the tissue. This model assumes that each A-scan is 
acquired nearly instantaneously, consistent with Fourier domain detection. The model also 
assumes that for a certain transverse position on the retina, the OCT beam will traverse the 
retina coming from the same perspective and does not have a large change in tilt through the 
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retina produced by motion. This is equivalent to assuming that motion does not cause a 
significant change in the scan pivot position of the beam. 

The acquisition process for 3D OCT volumes can be described by the sequence of A-scan 
functions at specific positions ip  and corresponding times it  where 1... ASCANSi N=  
where ASCANSN  is the total number of A-scans in the volume. This sequence of positions and 
associated times determines the acquisition scan pattern of a volume. Although the motion 
correction methods can work with many types of scan patterns, for simplicity, this work uses 
raster scan type 3D volumes with isotropic sampling in both transverse directions, as shown in 
Fig. 2. This scan pattern can be described using a transverse fast direction vector fastd  
corresponding to the direction of the B-scans and an orthogonal slow direction vector slowd . 
The volume is acquired by linearly scanning the OCT beam along the fast direction fastd  
while acquiring A-scans to generate 2D cross-sectional scans or B-scans. After each B-scan, 
the scanner quickly moves back (flyback) to its starting position along fastd  while also 
moving one raster step along the slow scan direction slowd . This process is repeated several 
times until the entire scan area has been scanned and the 3D volume data acquired. 

y

x

y

x

XFAST YFAST

fastd

fastd
slowd

slowd

1p

1p

 
Fig. 2. Schematic of XFAST/YFAST raster scan. Solid arrows indicate B-scan acqusitions, 
dotted arrows indicate flyback. Left: An XFAST scan consists of B-scans parallel to the x-axis 
in the OCT scanner coordinate system. An YFAST scan (right) consists of B-scans parallel to 
the y-axis. 

fast
d  and 

slow
d  are interchanged between the two scan types. In both cases, the A-

scan sampling locations form a 2D grid in the transverse plane of the scanner coordinate 
system. The transverse position of the first A-scan 

1
p is shown for each pattern. 

The scan patterns are chosen such that the set of sampled positions ip in the scanner 
coordinate system are the same. However, the order in which these points are sampled should 
be different. For optimal performance, at least two of the input volumes should have scan 
patterns where the fast and slow directions are orthogonal to each other. This implies that the 
fast direction in one scan pattern is the slow in the other and vice versa. The respective fast 
scan direction contains less motion artifacts than the slow direction. In orthogonal volumes, 
each of the two principal transverse directions coincides with the fast direction in one of the 
scan patterns. Therefore, each orthogonal volume provides a relatively accurate depiction of 
the object structure along one direction. In this paper orthogonal volumes are used to construct 
a volume that is considered more accurate and less affected by motion artifacts in all three 
spatial directions. A raster scan pattern where the x direction is scanned fast is called a 
XFAST type volume. When the y direction is scanned fast, the scan pattern is called YFAST. 
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2.2. Modeling motion 

x

y

x

y
Scanner Coordinates Object Coordinates

 
Fig. 3. Schematic showing relation between object and scanner coordinate system when 
affected by motion in the transverse plane. Left: En face view in the scanner coordinate system. 
Dotted arrows indicate B-scans, dots indicate individual A-scans. The background shows an en 
face fundus projection as it would be acquired given motion. The two red arrows indicate 
discontinuities from motion. Right: En face view in the object coordinate system. Arrows 
colored with the same color as left indicate where B-scans from the scanner coordinate system 
are located in the object coordinate system. The background shows an en face view of the 
object in the object coordinate system. Individual black dots on each B-Scan indicate 
corresponding A-Scans in the two coordinate systems. For corresponding A-scans, the position 
difference in the object and scanner coordinate system is Disp(t) at the corresponding time. 

Acquiring all the A-Scans that make up an OCT volume may require a few seconds, 
depending on scan speed and the number of A-Scans in the sampling grid. Acquisition time is 
limited by eye motion, blinking and tear film stability [18]. Motion artifacts occur because 
motion causes the sampling position of an A-scan in the device centric scanning coordinate 
system to be inconsistently oriented with respect to the object coordinate system. We define 
the object coordinate system to be the scanner coordinate system without the effects of 
motion. This is not to be confused with the physical coordinate system of the object. If there is 
no motion during OCT acquisition, the object and the scanner coordinate systems are in 
alignment. Motion can cause some areas of the object to be sampled multiple times during 
acquisition, while other areas may be unsampled as shown in Fig. 3. In the model the result of 
relative motion between the instrument and object tissue can be expressed as a function of 
time, which produces a 3D vector describing the relative position between scanner and object 
coordinate systems, i.e., 

 3Disp( ) : .t →    (2) 
Using this position offset or displacement, the A-scan function at a certain time t can be 

referenced to a fixed point in time 0 0t = , where there is no relative motion, because motion 
requires time to pass: 

 0 0AScan( , ) AScan( Disp( ) Disp( ), ).t t t t= − +p p   (3) 

Without loss of generality, it can be assumed that 0Disp( )t = 0


, i.e., the coordinate systems 
of scanner and object are aligned at 0t . In this case, the expression reduces to 

 AScan( , ) AScan( Disp( ),0).t t= −p p   (4) 
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The displacement field function models relative motion between the scanner and object. 
For example, if there was no relative motion during the acquisition of a single volume, the 
displacement would be a constant vector during the time corresponding to the respective 
volume acquisition. A change in Disp( )t corresponds to a change in relative position between 
object and scanner coordinate system and therefore models the motion. 

2.3. Resampling 

To construct motion corrected object space volumes it is necessary to calculate AScan( ,0)ip  
for a set of positions ip that constitute a 2-D grid in the object space. Define a function 

3Interp( ) : d→p   which interpolates an input volume such that 

 Interp( ) AScan( , ) AScan( Disp( ),0).i i i i it t= = −p p p   (5) 

The function interpolates the corresponding input volume at the original scanner space 
sample locations. Between sample grid positions, the function smoothly interpolates the input 
volume to produce intermediate virtual A-Scans. Disp(t) can be moved to the left side of the 
equation: 
 Interp( Disp( )) AScan( ,0) ,i i i interpt+ = +p p e   (6) 

where d
interp ∈e   is an error vector resulting from interpolation between the grid points of the 

input volume. Since A-Scan grid samples the tissue area densely, in this paper we assume that 
the magnitude of interpe  is similar to other noise sources in the OCT system and choose not to 
model its effects. This is a simplification, as severe motion or lack of overlap between the 
volumes that are to be registered can lead to high interpolation errors. However, the merging 
process that we propose later is designed to alleviate such effects. Given Disp( )it  for all grid 
points, an approximation of the volume data in the object coordinate system can be 
constructed by resampling the input volume data. 

2.4. Objective function 

Two or more OCT volumes of an object are sequentially acquired where at least one volume 
has a scan pattern with a fast direction orthogonal to the other volumes. The goal for relative 
motion correction is then based on estimating the unknown motion as modeled by Disp(t). In 
order to estimate Disp(t), a global objective function based approach that consists of two 
objectives is used. First, after motion correcting each input volume using suitable 
displacement values, the resulting volumes should be similar to each other. Second, a certain 
smoothness of Disp(t) over short time frames is required. These two, possibly conflicting 
objectives are weighted against each other and combined into an objective function. 

The first objective is formulated as minimizing the sum of the squared L2 norm on the 
pair-wise residuals 1, 2v vR  between the input volumes with index v1 and v2, over a number of 
volume pairings. A residual volume is generated by resampling the two volumes according to 
the current estimates of Disp( )t (see Eq. (6)) and then calculating the difference between 
them. For re-sampling of the original volumes, cubic Hermite spline interpolation [19] is 
employed. 

For the case of two input volumes, only one residual is needed. In the case that more than 
two input volumes are acquired, only a subset of all possible pairings between input volumes 
is used to generate the residuals. Rather than having 2

vN  order pairings for vN  input 
volumes, only logv vN N  order pairings are used, resulting in significant computational 
savings. For this subset, pairings between volumes with orthogonal fast scan axes are 
preferred. The pairings should be chosen in such a way that the undirected graph formed by 
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the volumes (nodes) and pairings (edges) is connected. If the volumes are not connected 
through the objective function, they will not be registered to a common space. 

The second objective is motivated as follows. Assuming that the effect of relative motion 
is predominantly a translation of the A-Scans within the object space (i.e. the retina) and that 
there is no significant rotation between the object and the scanner around the optical axis 
during acquisition, Disp(t) must possess a certain degree of smoothness in time because it 
describes the relative position between scanner and object. The time derivative of Disp(t) 
corresponds to the relative velocity. Since the dynamics are physically constrained, the 
relative acceleration should have an upper bound. In addition, knowledge about the nature of 
the motion that occurs also places an upper bound on the relative velocity. For example, 
motion from respiration is assumed to be smooth, periodic and low velocity, on a millisecond 
time scale. This leads to the concept of enforcing a certain smoothness of the displacement 
function with respect to time as the second objective. The objective is expressed by 
minimizing a finite difference approximation of the integral of the squared magnitude of the 
derivative of Disp(t) with respect to time, integrated over time. This term penalizes high 
displacement differences within one time step disproportionally and therefore will tend to 
favor the modeling of smooth motion. This term, which enforces a certain smoothness of the 
solution, is called the regularizer. 

Combining both goals into a single objective function yields 

 2 2
1, 2

1 1 2 1 1

1 0 0
Disp( )F(Disp( )) ( 1, 2) || || || 0 1 0 ||

0 0

v v
TN N

v v
v v v t

z

tt v v t
t

δθ α δ
δ

α
= = +

 
  = +   

    
 

∑ ∑ ∫R  (7) 

where v1 and v2 are volume indices ranging from 1 to the number of input volumes vN . The 
first term on the right of the equations acts as the volume similarity goal consisting of the 
residuals 1, 2v vR , while the second term acts as a regularizer that controls the smoothness of 
the displacement field with respect to time. ( 1, 2)v vθ  is either 0 or 1, depending on whether a 
certain pairing of input volumes contributes to the objective function. α acts as a weighting 
factor between the two goals. To further control the registration process, an additional 
parameter zα  is introduced which provides a relative scaling of the axial component of the 
regularization term. This enables transverse motion to be treated differently than axial motion 
and is helpful because OCT retinal images are often scaled differently in the axial and 
transverse directions and axial and transverse motion have different characteristics. 

2.5. Optimization and multi-resolution technique 

In order to estimate the unknown motion, the objective function should be minimized 
according to a finite parameter set given by the values of Disp( )t  at all A-scan time points. 
This optimization problem is nonlinear and large scale. For example, registering two 
sequentially acquired volumes consisting of 400 by 400 A-scans each requires an objective 
function with 2 3 400 400 960,000⋅ ⋅ ⋅ =  unknown variables. For this reason and because an 
iterative numerical optimizer will in general only reach a local minimum of this non-convex 
objective function, a technique such as multi-resolution optimization is required [20,21]. 

A so called “resolution pyramid” is generated by recursively down-sampling the input 
volumes by a factor of 2 in each direction using Gaussian reduction [22]. Lower resolution 
representations of the problem parameterization are generated corresponding to the lower 
resolution pyramid levels. This involves treating the time information, which exists on the A-
scan grid, as a 2D image and successively down sampling it using Gaussian reduction. 
Starting from the lowest resolution approximation, each resolution level is optimized and the 
resulting parameter set converted to an initialization for the next level, which possesses higher 
resolution. The conversion is performed by again treating the displacement field as a 2D 
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image in the A-scan grid and resampling it to the higher resolution A-scan grid of the next 
resolution level using bilinear interpolation. This process is repeated until the original problem 
complexity has been optimized. Figure 4 illustrates the concept of multi-resolution 
optimization. 

XFAST YFAST

Volume
down-sampling

Registration

Result 
mapping

 
Fig. 4. Schematic showing multi-resolution optimization for two orthogonal volumes 
represented by their en face fundus projections. First, each volume is successively down-
sampled to create a multi-resolution image pyramid (orange arrows). Then, starting with the 
lowest resolution volumes, corresponding volumes are registered (blue arrows). The 
registration result is then mapped to the next higher resolution pyramid level (green arrows). 
This is repeated until the original resolution levels are registered. 

At each multi-resolution level, numerical optimization is performed until convergence is 
reached or until a certain iteration number budget is reached. A gradient based, quasi Newton 
optimizer, the limited memory Broyden–Fletcher–Goldfarb–Shanno or L-BFGS is used [23]. 

2.6. Pre-processing 

Before beginning multi-resolution optimization, multiple pre-processing steps are performed 
on the input volumes to increase execution speed and improve results. First, speckle noise is 
reduced by 1D median filtering each A-scan. Then, the A-scans can optionally be down-
sampled in axial direction by a factor of 2. Also, intensity is normalized, such that the mean 
intensity of each volume is 0 and the variance is 1. This alleviates potential global brightness 
differences and causes the volume similarity contribution in the objective function to be in a 
defined range. These pre-processed volumes are used to construct the volume pyramids and 
are ultimately resampled within the objective function to compute the volume residuals. 

2.7. Volume merging 

After optimization of the original objective function is finished, the final values of the 
displacement field function are used to synthesize registered volumes. Generating the 
registered volumes involves resampling the original input volume data in an analogous 
manner to the resampling performed when computing residuals in the objective function. 
Since the volumes now exist in the same motion corrected space, the voxel values can be 
combined in order to improve signal quality. Because of motion, some areas of an object may 
not have been sampled in one or more of the input volumes. Therefore, instead of simple 
averaging, the volumes are combined using a weighted sum, calculating the weights on a per 
voxel basis. During optimization, missing data is interpolated using values from neighboring 
A-scans. In this case, these neighboring A-scans are used multiple times, once at the real 
position of the A-scan in object space, and one or more times to interpolate unsampled areas. 

This method is used to create the weights for combining the registered volumes. The 
number of times each voxel in the input volumes was used during generation of the registered 
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volumes is calculated. Looking at corresponding voxels in the registered volumes that are to 
be combined, the weights are generated using this “sampling density”. The higher this value 
relative to values from the other voxels, the lower the weight assigned to it. If the sampling 
densities for corresponding locations are equal, then the weighting scheme will result in 
normal averaging. In a second step, weights that are significantly lower than equal share are 
set to zero. Afterwards, the weights are renormalized so that the sum for each set of 
corresponding voxels is 1. Finally, the registered volumes are combined using a voxel-wise 
weighted sum according to the determined weights. 

3. Evaluation and discussion 

3.1. Data sets used/testing protocol 

The study protocol was approved by the Committee on Use of Humans as Experimental 
Subjects (COUHES) at MIT and informed consent was obtained prior to enrollment. In order 
to develop the registration and motion correction, healthy subjects were imaged in multiple 
sessions using two different OCT devices. System A is a 850 nm spectral OCT prototype with 
3 um axial resolution operating at 70 kHz A-scan rate [8]. System B is a 1050 nm swept 
source OCT prototype with 7 um axial resolution operating at 200 kHz A-scan rate [24]. The 
high speed of this system enables acquisition of densely sampled, wide field 12 by 12 mm 
volumes that contain both the optic nerve head and macula. Table 1 summarizes the 
characteristics of each system. For evaluation purposes, each subject was sequentially imaged 
multiple times within a short time interval using raster scan patterns with alternating 
XFAST/YFAST pattern types. After each volume acquisition, the subject could blink, 
however the instrument alignment was unchanged. This provides multiple orthogonal OCT 
volumes of essentially the same physical volume. 

Table 1. Characteristics of Imaging Devices 

 OCT instrument 
A (UHR 850 nm spectral) B (1050 nm swept source) 

Axial scan rate 70,000 Hz 200,000 Hz 
Sensitivity 97 dB 95 dB 
Axial resolution in air 3 um 7.1 um 
Central wavelength 825 nm 1050 nm 
Wavelength range 750 nm – 900 nm 990 nm – 1090 nm 
Incident power to eye 750 uW 1.9 mW 

Table 2 summarizes the data that was acquired in the three different imaging sessions and 
used to evaluate the registration algorithm. The OCT instruments were aligned to maximize 
signal levels and avoid pupil vignetting. In addition, the beam was aligned with the pupil so 
that the input volumes had minimal tilting due to perspective changes. Registration was 
performed on a 64-bit PC with Core i7 2600K CPU, 16 GB RAM and a NVIDIA GeForce 
580 GTX GPU. Parts of the calculations such as volume interpolation and residual 
computation were performed on the GPU. Table 2 also lists the typical time to register and 
merge two volumes for each imaging session. The execution time scales primarily with the 
total number of voxels in the input volumes. Although the algorithm already makes use of 
multi-threading and GPU acceleration, the execution time should be reduced further to allow 
seamless integration into a typical ophthalmology clinical workflow. 

For preprocessing, a one-dimensional median filter in axial direction of five pixels was 
used. All data was also preprocessed by down-sampling by factor of two in axial direction. 
Multi-resolution optimization was performed using five resolution levels. To constrain the 
execution time of the algorithm, the maximum number of objective function evaluations was 
set to 120, 600, 3,000 15,000 and 75,000 for the different resolution levels, from original to 
lower resolution. The different data sets were fully automatically processed using the same 
settings. 
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Table 2. Imaging Session Description 

 Imaging Session 
IS1 IS2 IS3 

OCT instrument A (UHR 850 nm spectral) A (UHR 850 nm spectral) B (1050 nm swept source) 
Eye region Optic Nerve Head Macula Central retina 
Scan area 6 mm x 6 mm 6 mm x 6 mm 12 mm x 12 mm 
A-scan sampling 400 x 400 400 x 400 1100 x 1100 
Axial pixels after cropping 1000 800 460 
Acquisition time/volume 2.5 seconds 2.5 seconds 6.4 seconds 
Time to register volume pair 3 minutes 2:30 minutes 15 minutes 

3.2 Registration performance 

One basic requirement for algorithm performance is that features in the motion corrected 
volumes, such as blood vessels and layer boundaries should be well registered with each 
other. To automatically and quantitatively evaluate this goal, mutual information (MI) [25] 
was used to measure similarity. A comparison of this MI measure before and after 
registration, i.e. an increase in MI, is used to assess increase of similarity between the 
registered volumes. However, a high similarity alone does not guarantee a good registration 
result. It is also important that the registration preserves, or in the case of motion, recovers the 
actual structure of the tissue. 

Automated evaluation of this goal is difficult because the algorithm works without a 
ground truth, a motion free reference volume. Therefore, we employ an evaluation strategy 
consisting of two parts. First, the increase of similarity through registration is evaluated. 
Second, using 3D-3D quasi-rigid registrations of multiple disjoint volumes from the same 
object, the stability of the results and their dependence on algorithm parameters is evaluated. 
To assess stability, two merged volumes that were generated by motion correcting and 
merging an XFAST/YFAST pair are registered in 3D. The merged volumes do not share the 
same input volumes, i.e. there are disjoint sets of input volumes. The corresponding two 
XFAST input volumes are motion corrected in a basic way in the axial direction by 
correlating neighboring B-Scans within the volume and also quasi-rigidly registered in 3D. 
The difference in mutual information after registration of the merged volumes to the mutual 
information of the XFAST input volumes is computed. The mean of this measure over 
multiple disjoint volume pairs of an object is called stability index. It indicates how well 
motion correction results from disjoint sets agree on the 3D shape of the volume for given 
motion correction algorithm parameters. 

The 3D-3D quasi-rigid registration is performed by fixing one volume and transforming 
the other in 3D in order to minimize the sum of squared difference of image intensity using 
multi-resolution optimization. The transform is parameterized by translation in all 3 
directions, rotation around z and tilts in x and y. The tilt parameters model a linear shift in 
axial position as a function of x and y, respectively. This is used to model a tilt in the volumes 
that appears when the beam passes through a different position on the pupil plane. Since OCT 
images are typically displayed with a stretched aspect ratio in the axial or z direction in order 
to visualize retinal features, tilt effects are enhanced in the images. Because of these tilt 
parameters, the registration is strictly speaking not rigid, but affine. In the scenario of OCT 
imaging of the retina we deem this transform to be able to model the non-motion induced 
changes (global translation, tilt, rotation around the optical axis) between two volumes in a 
reasonably correct way and therefore this is called quasi-rigid registration. 

The two key registration parameters are the general regularization strength α, which is 
varied from 0.0001 to 10.0 in six steps and the relative axial regularization strength zα , for 
which three settings of 0.1, 1.0 and 10.0 are heuristically evaluated. All combinations of these 
two parameters were evaluated for all consecutively acquired pairs of volumes from all 
imaging sessions using a single healthy subject with 3 pairs of volumes from imaging sessions 
IS1 and IS2 and 5 pairs of volumes from imaging session IS3, corresponding to 6*3*11 = 198 
registrations of volume pairs. The two graphs in Fig. 5 depict the mean similarity and stability 
measures over all data sets for multiple values of the aforementioned key algorithm 
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parameters. In Fig. 5(A), a plateau of the similarity increase is observed for 0.1zα =  and 
1.0zα = , up to 0.1α = , after which the gain in similarity drops. A value of 10zα =  is 

inferior to the other two settings. In Fig. 5(B), stability is highest at 0.1α =  and deteriorates 
for smaller and larger values. A value of 10zα =  is also inferior to 0.1zα =  and 1.0zα = . 

These results show that 0.1α =  and 0.1zα =  or 1.0 both provide good registration results 
based on a similarity measure and also produce the most stable registration results when  
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Fig. 5. Graphs showing dependence of registration performance on key algorithm parameters. 
A: Mean mutual information increase through registration over all registered data sets for 
different α and for three different axial regularizer strengths αz. B: Mean stability index over all 
data sets for different alpha and αz. 

A B C

D E

 
Fig. 6. Visual depiction of registration performance in relation to alpha parameter. A: En face 
fundus projection of XFast input volume. B: En face fundus projection of YFast input volume. 
C: Checkerboard image between the en face fundus projections of the volumes from A and B 
registered with 0.0001α = . D: Checkerboard image with the same inputs as C registered 
with 0.1α = . E: Checkerboard image with the same inputs as C and D registered with 

10α = . Lower right: Zoomed views on areas indicated with rectangles in B to E. 
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evaluating disjoint registrations of data from the same object. Because of space limitations the 
graphs showing similarity increase and stability for the individual imaging sessions are 
omitted. This data shows the same trend as the combined graphs and has similar optimal 
parameter settings. Figure 6 relates the graphs from Fig. 5 to the en face OCT fundus images 
for the different parameter settings. Figures 6(A) and 6(B) show OCT fundus images from the 
two input volumes used for this comparison. Figure 6(C) shows a checkerboard image of the 
two registered volumes using the volumes from Figs. 6(A) and 6(B) as input and also very 
low regularization strength of 0.0001α = . A checkerboard image is constructed from two 
images, in this case the images from Figs. 6(A) and 6(B), where one image or the other is 
shown according to the block structure of a checkerboard. This display is a useful tool to 
assess the similarity of two images. The checkerboard shows almost no discontinuities, but the 
structure of the optic nerve head is severely distorted. In the graphs from Fig. 5, this 
corresponds to high similarity and low stability index for this setting. Figure 6(D) shows a 
checkerboard image, similar to C but with more adequate regularization strength of 0.1α = . 
Here, the structure remains undistorted and similarity is also high as the checkerboard image 
does not show discontinuities. Finally, Fig. 6(E) shows a checkerboard image with 10α = .  
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Fig. 7. Structural variations before and after motion correction. Left column: Two original X-
FAST input volumes quasi-rigidly registered. Middle column: Two disjoint volume pairs with 
the same X-FAST input volumes as used in the left column motion corrected and merged with 

0.0001α =  and 0.1zα = . The two merged volumes were then quasi rigidly registered and 
are shown. Right column: Same as middle column with α = 0.1. Top Row: Checkerboard 
fundus views of different quasi-rigidly registered volumes. Middle Row: Red-green composite 
images of the central slices in y direction. Bottom Row: Red-green composite images of the 
central slices in x direction. Both the original volumes and the volumes that were processed 
with a too low alpha show considerable variability in structure. In contrast, the volumes that 
were corrected with the optimal settings (right) show a very high degree of agreement. 
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The discontinuities that are visible in the vessel pattern indicate that the similarity after 
registration is low. 

Figure 7 gives an impression of how well disjoint original volumes and registration results 
from disjoint input volume pairs agree after quasi-rigid registration. The variability of 
unprocessed input volumes can be seen in the left column. The middle and right columns 
show the variability of between two disjoint volume pairs after motion correcting each pair 
and subsequently quasi-rigidly registering the merged results. While the middle column shows 
considerable variability, the agreement between the volumes that were corrected with suitable 
parameters 0.1α = and 0.1zα = is very good. These results are in agreement with the graphs 
from Fig. 5. When the value of α and/or zα is too low, the penalty on modeled motion is very 
low. Therefore, optimizing the objective function will primarily maximize similarity between 
the volumes with little regard for the time structure of the OCT scanning process. However, 
values that are too high will penalize deformation of the input volumes too much, so that the 
actual distortion that was caused by motion cannot be corrected, leading to low similarity after 
registration. With suitable α and zα however, both goals are reasonably balanced and high 
similarity as well as structural integrity can be achieved. For the following evaluation the 
parameters are set to the experimentally determined optimal values of 0.1α = and 0.1zα = . 

3.3 Signal improvement 

In addition to correcting artifacts caused by relative motion between the object and imaging 
device, the subsequent merging step of two or more registered volumes also improves signal-
to-noise ratio (SNR) and image quality. Speckle noise tends to be de-correlated between A-
scans from the same location in the multiple input volumes because of small variations in the 
position of microscopic structures imaged. In addition, movement of the subject can lead to an 
angle compounding effect, which will also de-correlate speckle. On a log scale, the speckle 
noise can be assumed to be zero mean additive noise [26]. If the registration is accurate, the 
true signal is correlated, while the noise components will tend average out by the merging 
process, which essentially calculates the mean of log intensity over corresponding voxels over 
all registered volumes. Merging multiple data sets is only possible when motion correction is 
excellent, because uncorrected motion would cause loss of image resolution. The high quality 
of the merged data is another indication of good algorithm performance. 

Figure 8 shows an example of image improvement obtained by merging. The three images 
show approximately the same retinal location at the fovea. The left image has the original 
signal level. By registering and merging two (middle) and six (right) volumes, signal level and 
image quality is improved. The background becomes more homogeneous and darker, while 
the retinal layers become easier to differentiate. Signal from the choroid is also 

increased.

A B C

 

Fig. 8. Cross sectional images from corresponding volumes showing signal and image quality 
improvement. A: Input cross sectional image along the fast direction of a volume from IS2. B: 
Corresponding image produced by registering and merging two volumes from IS2. C: 
Corresponding image from registering and merging six volumes from IS2. 

The signal to noise ratio (SNR) in these images is calculated using the formula 
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 2 2
1010 log (max( ) / )SNR A σ=   (8) 

where A is the image in linear amplitude scale and σ is the standard deviation in linear 
amplitude scale of a background region in the image [27]. The SNR for the original image in 
Fig. 8(A) is 49.5 dB, while in Fig. 8(B) where two volumes are merged the SNR increases to 
56.5 dB. For six volumes merged (Fig. 8(C)), SNR increases to 62.5 dB. Overall, these results 
are in agreement with previous results from standard OCT averaging of multiple B-Scans 
from the same location [28]. SNR increases more than would be predicted when assuming a 
standard model. The SNR increase might be explained by the additional spatial smoothing 
that is applied when interpolating volumes to generate registered volumes. 

3.4 Visual inspection 

Visual inspection of the volumes before and after registration and merging is also used to 
assess algorithm performance. Figures. 9 and 10 show how the optic nerve head data sets of 
IS1 and the macular region data sets of IS2 are improved by registration and merging. Motion 
artifacts in the input volumes, such as the saccade in the fundus projection (Fig. 9, top row, 
left column, green arrow) are corrected by registration and merging. Registration and merging 
improves the separation between background and retina, while the visibility of fine structures, 
such as the external limiting membrane (Fig. 10, white arrow) is improved. Registering and  
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Fig. 9. Comparison of Optic Nerve Head Volumes from IS1 before and after Registration and 
Merging. Top row: En face fundus projections. Second row: Single central slice in Y direction. 
(blue line in fundus) Third row: Single central slice in X direction. (red line in fundus) First 
column: XFAST input volume. Second column: Registered and merged result volume using as 
inputs the volumes of the first two columns. Third column: Registered and merged result 
volume using all six volumes from IS1 as input. Cross-sectional images are cropped axially. 
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Fig. 10. Comparison of Macular Region Volumes from IS2 before and after Registration and 
Merging. Top row: En face fundus projections. Second row: Single central slice in Y direction. 
(blue line in fundus) Third row: Single central slice in X direction. (red line in fundus) First 
column: XFAST input volume. Second column: Registered and merged result volume using as 
inputs the volumes of the first two columns. Third column: Registered and merged result 
volume using all six volumes from IS2 as input. Cross-sectional images are cropped axially. 

merging more than two volumes increases signal quality further, while retaining fine 
structural details. 

Figure 11 shows an example of the results of applying the algorithm to wide field OCT 
data from the IS3 imaging session using system B. The en face fundus projection of the 
XFAST input shows discontinuities caused by saccadic motion in the center of the volume 
(green arrows). In addition, the cross-sectional slices along the respective slow directions of 
the volumes show distortion in axial direction consistent with heartbeat and/or respiration. In 
the input volumes, motion distorts the retinal structure visible in both the en face and cross-
sectional images. The results from processing two and ten volumes correct visible motion 
artifacts. Volume merging improves image quality and signal strength with respect to the 
background. This enhancement of SNR is already present in the two-volume case and 
increases when the number of volumes is increased. No visible loss of resolution occurs. For 
the ten volume case, the underlying optimization problem has over 36 million variables. 

Together, these results show the algorithm corrects motion artifacts and improves signal 
quality in data sets which span multiple scales, independently of the object being imaged. 

4. Summary and conclusion 

This manuscript presents a software based OCT motion correction algorithm which can 
correct motion in three dimensions and on a per A-scan basis and enables merging motion 
corrected volume data to enhance the OCT signal quality without requiring a motion free 
reference image or additional hardware on the OCT instrument. 

The algorithm estimates motion by iteratively optimizing a global objective function 
which captures two goals. First, after correction using an accurate motion estimate, the 
volumes should be similar to each other. Second, modeled motion within a short time scale is  
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Fig. 11. Comparison between 12 mm x 12 mm Data Sets from IS3 before and after registration 
and merging. Top row: En face fundus projections. Second row: Single central slice in Y 
direction. (blue line in fundus) Third row: Single central slice in X direction. (red line in 
fundus) Last row: Single central en face slice. First column: XFAST input volume. Second 
column: Registered and merged result volume using as inputs the volumes of the first two 
columns. Third column: Registered and merged result volume using all ten volumes from IS3 
as input. Cross-sectional images are cropped axially to only show actual structure. 

penalized. After optimization, the motion estimates are used to construct registered and 
motion corrected volumes. These volumes are then combined to a single merged volume 
using an adaptive weighted sum. 

Experiments performed on OCT data from two different systems indicate that the 
algorithm can fully automatically perform motion correction in three dimensions on different 
scale data and independent of the subject imaged. Good registration results were obtained for 
different OCT systems and regions of the retina using a single set of algorithm parameter 
settings that was found using quantitative evaluation. Also, signal quality is enhanced through 
volume combination. In contrast to other motion correction approaches, no second imaging 
modality or additional hardware is required. Therefore, this method can be applied to a wide 
range of existing OCT systems without increasing cost and complexity. 

Since registered merged volumes do not show motion artifacts and have improved image 
quality, the reproducibility of quantitative measurements from OCT volumetric data is 
expected to improve. Measurements such as nerve fiber layer (NFL) thickness are important 
for the diagnosis of glaucoma and assessing progression. Measurement of features such as 
retinal pigment epithelium elevation, drusen number and volume, hard exudate number and 
volume as well as other pathologies may be surrogate markers of disease progression. 
Improved reproducibility for quantitative measurement can lead to clinical advances in 
detection and tracking of retinal pathology. However, the proposed algorithm has limitations. 
In order to enable clinical use, execution speed and the robustness with low SNR input 
volumes needs to be optimized further. One limitation of the objective function is that it does 
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not model different tilt or rotation of the head around the visual axis between the input 
volumes. Such effects will introduce artificial motion that has to be modeled in order to 
register the input volumes. This additional motion is penalized by regularization. In a worst-
case scenario, the penalty that is induced by these effects may prevent good registration. In 
practice, severe misalignment of the input volumes with respect to the pupil position and head 
rotation around the optical axis should therefore be avoided by consistent alignment by the 
operator when using the algorithm. 

The presence of floaters or severe and changing vignetting also violates the assumption of 
the algorithm that an A-scan that was acquired at a given position in tissue has only image 
information that depends on the tissue. Depending on the amount of these effects in the data 
volumes, registration algorithm performance may be impaired. In addition, the current 
algorithm requires isotropically sampled raster scan input volumes. Extending the algorithm 
to non-isotropically sampled orthogonal raster scans or non-raster scan patterns would also be 
important for some future applications. Finally, the current method operates on OCT intensity 
data. It is possible to extend the method to also register and merge functional OCT imaging 
data, such as Doppler and polarization sensitive OCT. 

It is also expected that the algorithm has limitations on the ability to correct motion 
artifacts depending on the overall signal to noise of the volume as well as the frequency and 
magnitude of motion artifacts. The data presented in this paper has relatively good input 
signal quality and moderate amounts of motion. Because evaluating algorithm performance 
requires acquiring and registering large numbers of data sets, the evaluation in this manuscript 
was limited to data from a single healthy subject, but with data acquired from multiple 
instruments and scan protocols. These examples are a proof of concept. Further investigations 
on the algorithm performance with low signal and high motion data sets from patients with 
retinal pathologies are necessary. 

In conclusion, we believe that registration can play an important role in improving clinical 
OCT data quality and measurement reproducibility. These advances will be particularly 
important for the assessment of diseases such as glaucoma, age related macular degeneration 
and diabetic retinopathy, which require precise and reproducible measurement to track disease 
progression. 
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