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Abstract—Generating 3-D reconstructions of cardiac vascu-
lature from angiographic C-arm CT (rotational angiography)
data is a challenging problem. Currently, many approaches
depend on a reconstruction from ECG-gated projection data
either as a reference for further processing or as the final result.
Due to imperfect gating, e.g. caused by irregular heart movement,
residual motion corrupts these reconstructions.

We present an algorithm to compensate for this residual mo-
tion. The approach is based on a deformable 2-D–2-D registration
between the acquired projection data and a forward projection
of the initial ECG-gated reconstruction. It does not depend on
an explicit segmentation of vasculature or markers, and works
without user interaction. The estimated 2-D deformation field is
compensated for in the backprojection step of a subsequent re-
construction. The algorithm is evaluated on two clinical datasets,
showing a clear decrease in artefact level and better visibility of
structure in the compensated reconstructions.

I. INTRODUCTION

A. Purpose of this Work

Three-dimensional information during cardiac interventions
can provide improved guidance and easier assessment for
complex interventional procedures [1], [2]. Ideally, this 3-D
imaging should be performed in the interventional suite using
C-arm CT, avoiding the need to move the patient to a CT
scanner or perform a prior diagnostic CT scan. Additionally,
up-to-date information of the current state would be available.
Currently, this approach is limited by the temporal resolution
of available C-arm systems. Due to the long acquisition time
of several seconds, heart motion corrupts a straightforward 3-
D reconstruction. This results in motion blur, streak artefacts
and reduced sharpness and visibility of structure.

Commonly, an ECG signal is recorded during the acquis-
ition. This allows to retrospectively gate the available X-ray
projection data so that only images from a specific heart phase
contribute to the 3-D reconstruction [3]. However, ECG data
does not necessarily correspond to the exact motion state of
the heart [3]. A wider gating window is desirable to get a
high signal-to-noise ratio and little undersampling artefacts,
but then the residual motion in the gated projection data needs
to be compensated for.

B. State of the Art

In the literature, several approaches have been proposed to
account for residual motion due to non-ideal ECG-gating. A
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Figure 1: Illustration of the proposed algorithm.

full 3-D estimation is a strongly ill-posed problem with high
computational demands. However, due to the ECG-gating, the
residual motion inside one window can be assumed to be
reasonably small and an approximate 2-D motion estimation
in projection space might be sufficient. This is demonstrated
both by previous work [4]–[6] and the results shown below.

A model-based learning approach was recently proposed,
that registers a previously learnt motion model to the actual
data [5]. Here, an extensive training phase is needed before-
hand, and the application to patients with very irregular heart
motion is difficult. A projection-based motion compensation
was proposed in [6]. It requires a segmentation of vasculature
centrelines in the acquired projection data, which is difficult
[7].

C. Outline

In this paper, a method for compensation of residual motion
in ECG-gated data is presented. Our method estimates residual
motion by deformable 2-D–2-D registration in projection
space without requiring complex image pre-processing steps.

In the next section, our algorithm and the experimental setup
is discussed in detail. In Section III, the results are presented
and both a qualitative and quantitative evaluation is performed.

II. MATERIALS AND METHODS

In the following, the individual steps of the algorithm as
shown in Figure 1 are discussed in detail. First, an initial ECG-
gated reconstruction is performed. A thresholding operation
removes non-vascular tissue. Then, a forward projection (FwP)
is generated. The original projections are pre-processed by
automatic top-hat filtering and thresholding. The FwP is then
registered to the pre-processed original projection data using



a deformable 2-D–2-D registration algorithm. The resulting 2-
D motion field is compensated for during the backprojection
step of a subsequent ECG-gated reconstruction. The procedure
may be repeated for additional refinement. In Section II-H, the
experimental setup used for the evaluation is presented.

A. Initial Reconstruction

An initial ECG-gated reconstruction is performed by in-
serting a weighting function λ into a standard FDK-type
algorithm [8], [9]. Let hr ∈ [0, 1] be the heart phase at
which reconstruction shall be carried out. The ECG-gated FDK
reconstruction fhr : R3 7→ R at a voxel x ∈ R3 is given by

fhr
(x) =

N∑
i=1

λ (i, hr) · w (i,x) · pF (i,A(i,x)) , (1)

where N is the number of projection images, w : N×R3 7→ R
is the FDK distance weight and pF (i,u) : N×R2 7→ R is the
filtered and redundancy-weighted projection data of the i-th
image at pixel position u. The pixel position is determined
by the perspective projection of voxel x, A : N × R3 7→
R2, (i,x) 7→ A(i,x) = u. The weighting function λ is a
cosine-window defined by

λ (i, hr) =

{
cosa

(
d(h(i),hr)

ω π
)

if d (h (i) , hr) ≤ ω
2

0 otherwise
, (2)

where h (i) is the heart phase of the i-th projection image
according to the ECG, ω ∈ [0, 1] controls the width and a ≥ 0
controls the shape of the gating window. The distance measure
d is defined as d (h1, h2) = minj∈{0,1,−1} |h1 − h2 + j|.

Additionally, a streak reduction [9] is performed to reduce
undersampling artefacts.

B. Thresholding and Forward Projection

Since the contrasted cardiac vasculature presents a high-
contrast object, a simple thresholding operation can be used
to remove background structure. It retains only the tr ∈ [0, 1]
percentile of the largest voxel values. Then, maximum intens-
ity forward projections pfwp are generated from the thresholded
initial reconstruction using the original acquisition geometry.

C. Pre-Processing of Original Projections

A background reduction is performed on the original projec-
tion data. First, a morphological top-hat filtering using a kernel
of radius r as in [10], then a thresholding that retains only the
tp ∈ [0, 1] percentile of the largest pixel values is done. This
removes most of the non-vascular background while safely
retaining vascular structure. The processed projection images
are denoted pbgr in the following.

D. Registration Method

Registration establishes a mapping between the space of
the pre-processed projection data pbgr and the FwP pfwp so
that pbgr (i,u) is similar to pfwp (i,M(i,u)), where M : N ×
R2 7→ R2 is the motion vector field for the i-th image. We
chose a uniform cubic B-spline as a deformable motion model

[11]. The mapping is parametrised by the number of B-spline
control points c in each dimension. This model is very flexible,
while containing an implicit smoothness constraint that avoids
large local deformations for small values of c.

Mutual information [12] was used as a (multi-modality)
similarity metric for the registration process. Mono-modal
metrics like sum of squared differences cannot be used, since
the grey values of pbgr and pfwp differ due to the maximum
intensity FwP and data truncation. A gradient descent method
was used to drive the registration process.

E. Motion Compensated Reconstruction

Using the motion vector field M, the estimated motion can
be compensated for in the reconstruction step

fhr,M (x) =

N∑
i=1

λ (i, hr)·w (i,x)·pF (i,M(i,A(i,x))) . (3)

Motion compensation applies a 2-D deformation after the
perspective projection instead of a 3-D deformation before the
projection [8].

F. Further Iterations

The process can be repeated for an additional refinement of
the motion compensation by using the output from Step II-E
as input in Step II-B.

G. Considerations on Implementation

The main contribution to processing time is by the registra-
tion process. Since registration is performed on a per-image
basis, the projection stack can be processed in parallel. In
addition, only those images need to be considered that have
a gating weight λ > 0. Using graphics hardware is work in
process. An optimal parameter set for the mutual information
calculation can be found using the methods presented in
[13]. Backprojection can be implemented very efficiently on
graphics hardware [14], as can be B-spline evaluation [15].
Therefore, the motion compensated backprojection can be
carried out completely parallelised on the graphics card.

H. Experimental Setup

For evaluation, two clinical datasets were used, where a
left (LCA) or a right (RCA) coronary artery was contrasted
respectively. Patient heart rates were 103±7.0 bpm (LCA)
and 68±1.5 bpm (RCA). All datasets were acquired using
a five second rotational angiography with selective contrast
agent administration (1-2 ml/s). Source-isocentre-distance was
~80 cm and source-detector-distance ~120 cm. The acquired
133 projection images per dataset had a size of 1240x960
pixels with a pixel size of 0.308 mm. The size of the 3-D
volumes after reconstruction was 256x256 voxels with 224
(LCA) and 186 (RCA) slices and an isotropic voxel size of
0.48 (LCA) and 0.60 (RCA) mm.

The gating parameters were selected as ω = 0.4 and a = 4,
with hr = 0.47 (LCA) and hr = 0.75 (RCA). Therefore,
52 projection images were used for reconstruction of each
dataset after gating. Thresholding was performed at tr = 0.005



Table I: Estimated noise in HU around coronary tree.

Name Initial One Iter. Two Iter.
LCA 12.02 11.71 10.65
RCA 25.55 21.97 21.80

and tp = 0.2. The size of the morphological kernel was r =
3.4mm. The number of B-spline control points was set to
c = 5 in each dimension. Two iterations of the algorithm
were performed.

I. Evaluation

Qualitative evaluation was carried out visually. For a quant-
itative evaluation, image noise in the region of the reconstruc-
ted vessels was estimated [16] (on a sub-volume of 653 cm3

(LCA) and 387 cm3 (RCA) respectively). Additionally, vessel
sharpness [17] was calculated for five different segments (cf.
Figures 3a, 3d) along the coronary tree. To this end, one
continuous branch of each tree was selected and 40 regularly
spaced measurement sites were placed along each branch. At
every site, 10 cross-sectional profiles equally distributed over
180° in the plane perpendicular to the vessel were used for
the sharpness estimation. The values presented in Figures 3c
and 3f are the average values of all sharpness measurements
in the respective segments.

III. RESULTS AND DISCUSSION

Figure 2 shows an original and a pre-processed projection,
and a chequerboard overlay of a pre-processed projection with
a FwP before and after registration for dataset LCA. The
displacement of vessel sections in the FwP compared to the
original projection is significantly reduced by the registration
step. In Figure 3, the resulting reconstructions both before and
after two iterations of the proposed algorithm are shown. It can
be seen that the artefact level is strongly decreased, while the
visibility and sharpness of structure is increased when using
our proposed algorithm. This observation is confirmed both
by a decrease of image noise (cf. Table I) and an increase
in vessel sharpness (cf. Figure 3c and 3f) after registration.
The second iteration step increases image quality and vessel
sharpness for most segments.

IV. CONCLUSION AND OUTLOOK

Due to non-ideal gating, residual motion corrupts ECG-
gated cardiac reconstructions. We presented an algorithm
that compensates residual motion. Motion is estimated by a
deformable 2-D–2-D registration method. No explicit segment-
ation is needed for registration. Motion is directly compensated
for in the backprojection step of image reconstruction. The
method can be repeated in an iterative loop.

We showed that artefact level is greatly decreased, while
sharpness and detail of structure is increased.
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(a) Original Projection (b) Pre-processed Projection (c) Unregistered FwP (d) Registered FwP

Figure 2: Results of the registration algorithm for dataset LCA.
In Figures 2c and 2d, the pre-processed projection and the FwP are shown combined in a chequerboard pattern to visualise
the registration result.
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Figure 3: Reconstruction results without and after two iterations of the proposed algorithm.
Top row: LCA, bottom row: RCA. Left column: initial reconstruction (and segments for vessel sharpness measurements),
middle column: compensated reconstruction, right column: vessel sharpness.
All volume renderings show a left sagittal view. The grey scale window was 1000. In the right column, the average vessel
sharpness and standard deviation of the initial reconstruction (�), after one iteration (�) and after two iterations (�) are shown
for each segment.


