# Hyperspectral Image Visualization with a 3-D SOM

Johannes Jordan, Elli Angelopoulou johannes.jordan@cs.fau.de Pattern Recognition Lab, University of Erlangen-Nuremberg

FRIEDRICH-ALEXANDER-UNIVERSITÄT **ERLANGEN-NÜRNBERG** 

# Motivation

### **Use-case Scenario:**

- Interactive multispectral image analysis
- False-color visualization in short time
- Non-linear methods typically too slow

## **Contributions:**

• Revisit false-coloring based on the Self-organizing Map (SOM) [1]

## New Method

## **Provide higher quality output:**

- Use larger SOM size: 10<sup>3</sup> neurons (previous work: 64 to 256 neurons)
- Train with 100,000 samples
- Change false-color generation: several BMUs instead of single BMU

#### **BMU lookup and combination:**

## Evaluation

#### Dataset:

- CAVE Multispectral Image Database [3] 512×512 pixels, 31 bands
- AVIRIS Indian Pines, 145<sup>2</sup> pixels, 220 bands
- HYDICE D.C. Mall, 1280×307 pixels, 191 bands

### **Experimental setup:**

- SOM settings:  $n = 10^3$ , 100 000 iterations, C = 5



- Design a novel SOM for higher output quality
- Benchmark new method against PCA on diverse images

Source code is available at:

http://gerbil.sf.net/

# Algorithm

## Self-organizing map for false-coloring:

- 3D mesh of model vectors (neurons)
- Mapping: spectral vector  $\mathbf{v} \rightarrow$  model vector  $\mathbf{m}_i$
- Result after training: Topological representation of original spectral distribution
- SOM topology coordinates mapped to **R**, **G**, **B**



• We first obtain a vector of **C** BMU indices



• Then, for each pixel **v**, we calculate location **r**' as

$$\mathbf{r}' = \sum_j^{\mathcal{C}} \mathbf{w}_j \cdot \mathbf{r}^{(\mathbf{c}_j^{(\mathbf{v})})}$$

given 
$$\forall w_j, j < C: w_j = 2w_{j+1}$$
  
 $\sum_{j=1}^{C} w_j = 1$   
 $\forall m_{c_j}, j < C: d(v, m_{c_j}) < d(v, m_{c_{j+1}}).$ 

• We finally obtain

$$r_{X,Y} = \frac{r'_1}{n'}, \quad g_{X,Y} = \frac{r'_2}{n'}, \quad b_{X,Y} = \frac{r'_3}{n'}$$

## Novel rank-based weighting scheme:



• Per-channel entropy:  $H = -\sum_{i=0}^{255} p_i \ln p_i$ , where  $p_i$  is the probability of observing intensity *i*.

# **Algorithmic Results**

Washington D.C. Mall: 400 nm - 2475 nm



(a) PCA false-color visualization,  $H_R = 0.54$ ,  $H_G = 0.75$ ,  $H_B = 0.76$ 



(b) SOM false-color visualization,  $H_R = 0.96$ ,  $H_G = 0.92$ ,  $H_B = 0.93$ 

**Indian Pines:** 400 nm - 2500 nm







## SOM training phase:

- For *d* bands, we have *n* model vectors  $\mathbf{m}_i \in \mathbb{R}^d$ , and a side length  $n' = \sqrt[3]{n}$ .
- The **best matching unit (BMU) m**<sub>c</sub> has the index:  $c^{(\mathbf{v})} = \operatorname{argmin} L_2(\mathbf{v}, \mathbf{m}_i), \ (\mathbf{v}: \text{ input vector})$
- The *location* of  $\mathbf{m}_i$  is  $\mathbf{r}^{(i)} \in \mathbb{Z}^3$  ,  $r_i^{(i)} \in [\mathbf{1}, n']$ .
- At iteration *t*, the neighborhood function

 $h_{c,i}(t) = \alpha(t) \cdot \exp\left(-\frac{\left\|\mathbf{r}^{(c)} - \mathbf{r}^{(i)}\right\|^2}{2\sigma^2(t)}\right)$ 

defines the influence of  $\mathbf{v}(\mathbf{t})$  on each  $\mathbf{m}_{i}$ .

#### False-color generation:

|         | • • •   |
|---------|---------|
| 2 RMIIc | ~ RMIIc |
| Z DIMUS |         |
|         |         |

- always high influence of primary BMU
- exponential decay of rank weights
- example comparison with C = 10 against  $w_i = \frac{1}{C}, \forall j$ :



(a) Color matching functions

(b) single BMU



(c) averaged BMUs

(d) proposed method

**8**<sup>3</sup>

**10**<sup>3</sup>

(a) False-color visualizations: band composite, PCA, SOM



(b) average color assigned to ground-truth pixels of each class

### Fake and Real Peppers: 400 nm - 700 nm





(a) PCA false-color visualization, (b) SOM false-color visualization,  $H_R = 0.80, H_G = 0.77, H_B = 0.79$   $H_R = 0.94, H_G = 0.94, H_B = 0.91$ 

• The false-color values of a pixel **v** are obtained as

 $r_{\mathbf{v}} = \frac{r_{1}^{(\mathbf{c}^{(\mathbf{v})})}}{n'}, \quad g_{\mathbf{v}} = \frac{r_{2}^{(\mathbf{c}^{(\mathbf{v})})}}{n'}, \quad b_{\mathbf{v}} = \frac{r_{3}^{(\mathbf{c}^{(\mathbf{v})})}}{n'}.$ 

• **Problem:** Quantization effects, low quality output • Examples with n' = 4 (as suggested in [2]):



## References

[1] Т. Кономем, Self-organizing maps, vol. 30 of Springer series in information sciences, Springer, 3rd edition, 2001.

[2] J. GORRICHA AND V. LOBO, Improvements on the visualization of clusters in georeferenced data using self-organizing maps, Computers & Geosciences, vol. 43, pp. 177 – 186, 2012

remote sensing images 4.8 s 10.1 s 17.8 s

**6**<sup>3</sup>

CAVE images 2.9 s 6.0 s 10.1 s

**Timing Results** 

• computational complexity independent of

• measured on Intel Core i7-2600 CPU

#neurons **n** 

• training takes almost all time

image size, parameter C

## Conclusions

We employ the 3D SOM to generate false-color images. Our custom BMU lookup results in:

• a high quality image, • with more detailed information,

• at negligible increase in calculation.

#### **Our method provides:**

#### • a high-quality, non-linear mapping under tight time constraints.

[3] F. YASUMA, T. MITSUNAGA, D. ISO, S. K. NAYAR. Generalized Assorted Pixel Camera: Post-Capture Control of Resolution, Dynamic Range and Spectrum. *IEEE* Transactions on Image Processing, vol. 99, Mar. 2010.