Mean-shift Clustering for Interactive Multispectral Image Analysis

Johannes Jordan, Elli Angelopoulou johannes.jordan@cs.fau.de Pattern Recognition Lab, University of Erlangen-Nuremberg, Germany

Motivation

Use-case Scenario:

- Interactive hyperspectral image analysis
- On-demand (fast!) global segmentation/labeling

Contributions:

- mean-shift [1] on the spectral gradient [2],
- adapted superpixel segmentation method [3],
- two variants of superpixel-based mean shift

(a) Original image in sRGB

(c) SG-FAMS segmentation

(b) FAMS segmentation

(d) PSPMS segmentation

Figure 1: 31-band *fake and real food* image and segmentation results. We propose SG-FAMS and PSPMS.

Mean Shift

Fast Adaptive Mean Shift (FAMS) by Georgescu et al. [1]

- adaptive bandwidth selection for each data point
- *mean shift step:* starting from each query point kernel-based hill-climbing to next density mode
- identification and merging of common modes

Adaptation to hyperspectral data: SG-FAMS

- FAMS operates in L1, geometry effects dominant
- Solution: *Spectral Gradient* feature space [2], separates material from reflectance content

Superpixels

Algorithm by Felzenszwalb and Huttenlocher [3]

- time complexity of **O**(**N log N**), **N**: #pixels
- 4-connected graph, each pixel is a node
- edge weights based on pixel similarity
- graph is partitioned by iteratively merging nodes
- parameter *c*: merge criterion \rightarrow avg. superpixel size

Adaptation to hyperspectral data:

- spectral similarity measures for edge weights
- Spectral Angle (SA) between spectral vectors **x**, **y**:

$$\mathsf{SA}(\mathbf{x}, \mathbf{y}) = \mathsf{cos^{-1}}\left(\frac{\langle \mathbf{X}, \mathbf{y} \rangle}{\|\mathbf{X}\|_2 \cdot \|\mathbf{y}\|_2}\right)$$

• Spectral Information Divergence (SID):

$$\mathsf{ID}(\mathbf{x}, \mathbf{y}) = \sum_{l=1}^{N} \mathsf{p}_{l}^{(\mathbf{x})} \log \frac{\mathsf{p}_{l}^{(\mathbf{x})}}{\mathsf{p}_{l}^{(\mathbf{y})}} + \sum_{l=1}^{N} \mathsf{p}_{l}^{(\mathbf{y})} \log \frac{\mathsf{p}_{l}^{(\mathbf{y})}}{\mathsf{p}_{l}^{(\mathbf{x})}},$$

with $\mathbf{p}_{1 \le l \le N}^{(\mathbf{X})} = \frac{\mathbf{x}_l}{\sum_{k=1}^N \mathbf{x}_k}$, *N* number of bands.

• Problem: highly non-uniform distribution of **SID** Solution: histogram equalization with 10 000 bins

Combinations

PSPMS: original feature space, query per superpixel

- sacrifice spatial detail for execution speed
- hill-climbing starts from each superpixel centroid
- adaptive bandwidth selection still $O(N^2)$

FSPMS: superpixel centroids form feature space

- bandwidth selection on superpixels with custom rule for k-NN: $\mathbf{k} = \mathbf{p} \cdot \sqrt{N_F}$ (here: $N_F = N_S$: #superpixels)
- bandwidths weighted by resp. superpixel size
- complexity reduced to $O(N \log N + N_s^2)$

(a) Original image data

(b) Superpixel centroids

Figure 3: Spectral gradient distributions of 31-band superballs image and algorithmic results visualized with Gerbil parallel coordinates plot.

- superpixels for PSPMS, FSPMS with c = 0.05, c = 0.25• mean shift parameters fixed

Experimental Results:

- enough detail, no adverse oversegmentation • only objects of same material share a segment • number of segments stable across images, methods
- PSPMS results similar to SG-FAMS, good speedup • FSPMS emphasizes differently, **vast** speedup

(a) true-color display

(b) hand-labeled objects

(c) PSPMS on (e), 116.4 s

(f) horizontal edge weights (g) SG-FAMS, **744.9 s** (h) PSPMS on (j), 82.4 s (d) FSPMS on (j), 5.7 s (j) coarse superpixels Figure 2: 31-band feathers image with corresponding histogram-equalized SID edge weights, superpixel segmentations, and mean shift segmentation results compared to hand-labeled objects. Running times are denoted next to algorithm names.

Benchmark

- **Dataset:** CAVE Multispectral Image Database [5] • Objects of different materials in a lab setting • 512×512 pixels, 400 nm - 700 nm in **31 bands**
- **Setup:** algorithms SG-FAMS, PSPMS, FSPMS

Algo. SG-FAM PSPMS

FSPMS

Table 1: Algorithmic performance on 13 test images from CAVE
 database. Running times measured on Intel Core i7-2600 CPU.

Source-code available: http://www.gerbilvis.org/

References

FRIEDRICH-ALEXANDER-UNIVERSITÄT **ERLANGEN-NÜRNBERG**

(d) FSPMS on (e), 9.1 s

(e) fine superpixels

10				Seconds	
45		22.3 \pm	7.4	629.3 \pm	262
0.25 2349 ±	230	$35.0 \pm$	17.3	79.6 \pm	32.8
0.05 16706 ± 2	1178	33.0 \pm	15.2	113.2 \pm	39.9
0.25 2349 ±	230	$23.7~\pm$	8.2	5.9 \pm	1.1
0.05 16706 ± 1	1178	$27.5~\pm$	6.8	$9.0 \pm$	1.5

Conclusions

We introduce a family of fast unsupervised clustering algorithms for hyperspectral image data.

• mean shift on spectral gradient (SG-FAMS) • hyperspectral adaptation of superpixels • superpixel mean shift in two variants (PSPMS, FSPMS) • speedup of over 100 times in our benchmark

[1] B. GEORGESCU, I. SHIMSHONI, AND P. MEER, "Mean shift based clustering in high dimensions: A texture classification example," in ICCV, pp. 456-463, 2003. [2] E. ANGELOPOULOU, S. W. LEE, AND R. BAJCSY, "Spectral gradient: a material descriptor invariant to geometry and incident illumination," in ICCV, vol. 2, pp. 861-867, 1999. [3] P. F. FELZENSZWALB AND D. P. HUTTENLOCHER, "Efficient graph-based image segmentation," *IJCV*, vol. 59, no. 2, pp. 167-181, 2004.

[4] S.A. ROBILA, A. GERSHMAN, "Spectral matching accuracy in processing hyperspectral data," Int. Symp. on Signals, Circuits and Systems, vol. 1, pp. 163-166, IEEE, 2005. [5] F. YASUMA, T. MITSUNAGA, D. ISO, S. K. NAYAR. Generalized Assorted Pixel Camera: Post-Capture Control of Resolution, Dynamic Range and Spectrum. *TIP*, vol. 99, 2010.