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Abstract—Tissue perfusion measurement using C-arm angiog-
raphy systems capable of CT-like imaging (flat detector CT
(FD-CT)) is a novel technique with high potential benefit for
catheter-guided treatment of stroke in the interventional suite.
New high speed protocols (HSP) with increased C-arm rotation
speed enable fast acquisitions of FD-CT volumes and allow for
sampling the contrast flow with improved temporal resolution.
However, the peak contrast attenuation values of brain tissue
typically lie in a range of 5–30 HU. Thus perfusion imaging is very
sensitive to noise. Recently we introduced the FDK-JBF denoising
technique based on Feldkamp (FDK) reconstruction followed by
denoising in volume space using joint bilateral filtering (JBF). In
the evaluation FDK-JBF achieved comparable results to algebraic
techniques, but is computationally less costly. Yet the angular
sampling of the projection data in the HSP is coarse, which leads
to streak artifacts in the reconstructed volumes. Mask volumes
are subtracted from the contrast agent enhanced (bolus) volumes
and the streak artifacts are subtracted out if the patient does
not move during the acquisition. However, in case of motion
the streak artifacts will not be identical in the mask and bolus
volumes. We show that these streaks can lead to severe artifacts
in the perfusion maps and describe a novel technique for streak
removal (SR), which is based on streak detection by using time-
contrast curve analysis. We evaluated the FDK-SR-JBF algorithm
in a phantom and a patient study and show that noise and streaks
can be reduced within a short computation time.

Index Terms—Perfusion imaging, noise reduction, Flat detector
CT, stroke treatment

I. INTRODUCTION

Perfusion CT (CTP) is an important imaging modality for
diagnosis of ischemic stroke. Time attenuation curves (TACs)
in tissue and vessels are extracted from a time series of
brain volumes acquired after a contrast bolus injection. Per-
fusion parameter maps calculated from TACs which represent
quantities such as cerebral blood flow (CBF), cerebral blood
volume (CBV), mean transit time (MTT), and time-to-peak
(TTP) provide information about the extent of the affected
tissue. They can be used to identify potentially salvageable
ischemic tissue that may be re-perfused by stroke therapy
procedures, e.g. catheter-guided intra-arterial thrombolysis [1].
For this purpose the patient is transported to an interventional
suite equipped with a C-arm angiography system. If perfusion
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imaging were available on interventional C-arm systems it
would save the time of moving the patient from a CT scanner
room and allow intraoperative imaging to determine treatment
success and endpoint. Additionally, flat detector CT perfusion
(FD-CTP) can – in contrast to CTP – acquire 3D perfusion
maps in high resolution in z (axial) direction with full brain
coverage.

However, FD-CTP is challenging: common C-arm systems
typically need 5 s to acquire one volume, which limits the
temporal resolution of the reconstructed TACs. Furthermore
perfusion imaging is highly sensitive to noise since the peaks
of the TACs inside the brain tissue typically lie in a range
of 5–30 HU. Recently, novel techniques to overcome these
challenges were proposed [2]. For instance, Wagner et al. [3]
presented an algebraic algorithm modeling TACs as gamma-
variate functions. We used a dynamic algebraic reconstruction
technique [4] to reconstruct TACs with increased temporal
resolution from the acquired X-ray projections and apply
regularization based on joint bilateral filtering (JBF) [5] to
increase the contrast-to-noise ratio (CNR) of the brain tissue
TACs. However, the algebraic approaches have a much higher
computational effort than Feldkamp (FDK) [6] reconstruction.
A further possibility to improve the temporal sampling of the
TACs is a high speed protocol with increased rotation speed of
up to 100°/s using novel robotic C-arm systems (Artis zeego,
Siemens AG, Germany). To deal with the low contrast signal
in the brain tissue, we recently proposed a reconstruction
scheme (FDK-JBF) based on FDK reconstruction followed by
iterative denoising in volume space using JBF [7]. In a digital
brain phantom study simulating the high speed protocol, the
FDK-JBF technique produced brain perfusion maps with good
correlation to ground truth maps and comparable quality
as computationally more expensive algebraic reconstruction
techniques. However, due to limitations in the detector read
out rate, the angular sampling of the projection data in high
speed scanning is coarse. This leads to streak artifacts in the
reconstructed volumes. Since mask volumes are subtracted
from the bolus volumes to compute the pure contrast agent en-
hancement, the streak artifacts are subtracted out. In practical
applications the patient might move during the acquisition. The
motion can be compensated by rigid registration, but the streak
artifacts will not be identical in the mask and bolus volumes
anymore and visible in the pure contrast volumes. In this work,
we show that these streaks can lead to severe artifacts in the
perfusion maps and describe a novel technique for FD-CTP
streak removal (SR), which is based streak detection using
time curve analysis.



The high speed protocol consists of twelve alternating C-
arm rotations: the first two rotations acquire mask volumes
with static anatomical structures in forward and backward
C-arm rotation before bolus injection. The following ten
consecutive rotations after bolus injection acquire a time series
of bolus volumes in alternating forward and backward C-arm
rotation. Each rotation acquires 133 projections over a 200°
angular range and requires Tr = 2.8 s for data acquisition with
a pause of Tw = 1.2 s between any two successive rotations.
Thus, TACs can be acquired with a temporal sampling of
Ts = Tr + Tw = 4 s.

II. ALGORITHM

This work presents an extension to the FDK-JBF algorithm
[7]. The novel FDK-SR-JBF algorithm as shown in Figure
1 constitutes a standard FDK reconstruction (Steps 1–3), the
JBF denoising (Steps 4–7 and 13–16) and additionally the
proposed streak artifact detection and removal (Steps 8–12).
The parameters for the algorithms used in this work are shown
in Table I. The single steps and the algorithm parameters are
discussed in detail in this section.

In Step 1 all mask and bolus acquisitions are reconstructed
using the FDK algorithm. A non-smoothing Shepp-Logan filter
kernel [8] is used to preserve the edges around the high
contrast vessels. To compensate for head motion during the
acquisition, all reconstructed volumes are registered to the for-
ward mask volume in step 2 using 3D-3D rigid registration [9].
In Step 3 the reconstructed mask volumes are subtracted from
the bolus volumes to obtain the contrast volumes describing
the pure contrast agent enhancement over time.

In Steps 4 the guidance volume M is computed by finding
the peak contrast attenuation over all contrast volumes for each
voxel. The guidance image M is denoised by bilateral filtering
[10], [11] with range variance σ2

R0 and domain variance σ2
D in

Step 5. An example for M is shown in Figure 3a. In Step 6
the contrast volumes are denoised by joint bilateral filtering
of each volume with range variance σ2

R and domain variance
σ2

D. The JBF corresponds to bilateral filtering, where the range
similarity is computed using the guidance volume M. In Step
7 M is updated by recomputing the peaks from the filtered
contrast enhanced volumes. This first JBF before the streak
removal is required to generate data with sufficient contrast-
to-noise ration (CNR) for the TAC analysis in Step 9.

In addition to high contrast vessels, M can contain edges due
to streak artifacts (Figure 3a). If we do not detect and remove
these false edges, they will be translated to the filtered contrast
volumes. We suggest to identify voxels that are affected by
streaks based on their intensity and TACs. Therefore, we
identify the brain tissue in Step 8 by segmenting the forward
mask volume in to air, bone and tissue by thresholding. Voxels
with a radiodensity below τAir are classified as air, voxels
with a radiodensity above τBone are classified as bone and the
remaining voxels are classified as brain tissue. In Step 9 streaks
and vessels are identified by thresholding M followed by time
curve analysis. If a tissue voxel in M is below τM_min ≤ 0,
it is classified as streak. No negative radiodensity values are
expected in the contrast attenuation peaks, except slightly

negative values due to noise or registration errors. If the a
tissue voxel in M has a large intensity above τM_max > 0, it
can be either a vessel or a streak. To differentiate between
vessels and streaks, the TACs are analyzed. Vessels have
typical TACs with monotonic increase up to a clear contrast
peak and possibly a second smaller peak due to second pass,
while streaks tend to produce irregular TACs. Figure 2 shows
a typical arterial TAC compared to a TAC observed at a streak.
We denote the difference of the peak value to the value from
which the monotonic increase to the peak starts as the uptake
µ. Figure 2 shows the uptake of the dominant peak of an
arterial TAC. To differentiate streaks and vessels, a voxel is
identified as vessel if its corresponding TAC has:

1) a single global peak with an uptake µglobal of at least
νglobal = 70% of the peak value itself,

2) no further peak with an uptake µlocal of more than
νlocal = 30% of the global peak uptake µglobal.

Otherwise, this voxel is classified as streak. Step 10 classifies
tissue voxels of all other intensities as streaks if they have
a total variation (TV) above τTV. Figure 3c shows the TV
image of M. The final brain segmentation is generated in
Step 11 by combining the detected streaks and vessels. First a
dilation operation on segmented vessels using a 2D rectangular
element of size 2 × 2 voxels is applied. The dilation of the
vessels ensures that the vessel edges are preserved in the streak
removal step. Then an erosion (1 × 2 element) followed by
dilation (2 × 2 element) operation is applied to the streak
mask to remove single outliers and close gaps in the detected
streak areas. Finally the brain segmentation is created by
combining the vessel and streak masks with the initial brain
tissue segmentation. If after dilation one voxel is identified
as streak and vessel, it is classified as vessel. An example
segmentation result is shown in Figure 3d. In Step 12, the
identified streaks are removed by smoothing with a truncated
Gaussian kernel averaging over spatial close tissue voxels
which are not classified as vessels. Figure 3b shows M after the
streak reduction was applied. Finally, Nit = 3 JBF denoising
iterations are applied on the original reconstructed data in
Steps 13–16 using the streak reduced MIP M as guidance
image for noise reduction and streak removal in the perfusion
data.

After reconstruction TACs sampled in 1 s intervals are gen-
erated from the reconstructed volumes by linear interpolation
and an appropriate arterial input function (AIF) is selected
manually. In case of pure FDK reconstruction the data is
denoised after AIF selection by filtering spatially using a 2D
Gaussian kernel with domain variance σ2

G. Then CBF and CBV
maps are computed using a deconvolution-based approach
[12].

III. MATERIALS & METHODS

A. Brain Phantom Simulation Study

To evaluate the streak reduction technique in a simulation
study we use a digital brain perfusion phantom [13], [4]. The
digital brain phantom is based on MR data and does not have
the sparse structures of classical CT phantoms, which favor
algorithms applying typical non-linear filters. Furthermore, we



(a) Guidance volume M. (b) Guidance volume M after
streak removal.

(c) Total variation of M. (d) Segmentation of M.

Figure 3: Slice from guidance volume M before and after streak removal, total variation and segmentation slice from original
guidance image. Segmentation legend: orange: streaks, light green: vessels, dark green: tissue, black: bone, blue: air.

1) FDK reconstruction of mask & bolus acquisitions
2) Motion compensation by rigid 3D-3D registration
3) Compute pure contrast volumes by mask subtraction
4) Compute temporal maximum intensity projection M
5) Bilateral filtering of M
6) Joint bilateral filtering of pure contrast volumes
7) Recompute M from filtered volumes
8) Segment brain tissue by thresholding mask volume
9) Identify vessels and streaks by thresholding M and time

curve analysis
10) Identify streaks by thresholding of TV (M)
11) Create final brain segmentation
12) Remove streaks in M by smoothing
13) For k = 1 . . . Nit
14) Joint bilateral filtering of pure contrast volumes
15) Recompute M from filtered volumes
16) End For

Figure 1: FDK-SR-JBF algorithm.

Parameter Value Parameter Value
JBF kernel size 7 × 7 × 7 voxel τM_min -5 ∆HU

σD 1.5 voxel τM_max 150 ∆HU
σR 10 HU (simulations) τTV 20 ∆HU

20 HU (clinical data)
σR0 120 HU νglobal 70 %
τAir - 800 HU νlocal 30 %
τBone 350 σG 2 voxel
Nit 3

Table I: FDK-SR-JBF algorithm parameters.

incorporate the cortical bone structures of a human skull for a
realistic simulation of streak artifacts. The skull was generated
from a dedicated MR scan sequence of a human brain using
the MR skull segmentation algorithm by Navalpakkam et al.
[14]. Patient motion was simulated by rotation of the bolus
volumes by 2° relative to the mask volume around the z
axis before generating the projection data. Ellipsoid ROIs
simulating tissue with reduced and severely reduced perfusion
were annotated in the brain phantom. We created dynamic
C-arm projection data by forward projection the 4D brain
phantom according to the high speed protocol. Afterward
Poisson distributed noise was added to the projection data

Figure 2: Time-contrast attenuation curves in an artery and in
streak-affected brain tissue.

simulating an emitted X-ray density of 6 · 105 photons per
mm2 at the detector and a monochromatic photon energy of
60 keV. The combination of the complex brain structure, the
high contrast skull and the patient movement simulation allows
a realistic numerical evaluation of the denoising and streak
removal algorithms.

For quantitative evaluation of the reconstructed perfusion
maps we calculated the Pearson correlation (PC) between
the reconstructed and the ground truth maps by applying an
automated ROI analysis. The slices of the perfusion maps
with stroke annotation were partitioned into quadratic areas
of 4 × 4 pixels. The average perfusion values of the ROIs
were calculated and used as measurement variables for the
PC computation. ROIs containing vascular structures, bone,
or air were ignored.

B. Clinical Patient Data

Real clinical patient data acquired with the high speed
scanning protocol during an interventional stroke treatment
was used for evaluation. Since the patient moved slightly
between mask and contrast acquisitions, severe streak artifacts
arise in the perfusion maps created with the original FDK-
JBF algorithm. We also reconstructed the data with a total
variation based algebraic reconstruction approach with ordered
subsets (OS-TV). The OS-TV uses the algebraic reconstruction



framework from [7] and TV regularization with automatic
adaption of the TV gradient step size as proposed in the iTV
algorithm [15]. The algebraic OS-TV reconstruction technique
helped to remove the streaks without blurring the edges at the
high contrasted vessels for the price of a higher computational
complexity. We also applied the FDK-SR-JBF for denoising
and streak removal and compare the reconstructed CBF maps
qualitatively to the OS-TV, FDK-JBF, and FDK results.

IV. RESULTS

Figure 4 shows the resulting CBF maps reconstructed from
the brain phantom projection data with different approaches
compared to the reference. The quantitative results of the
brain perfusion study are shown in Table II. Figure 5 shows
CBF maps from a clinical patient study comparing FDK-
JBF, FDK-SR-JBF, and OS-TV reconstruction results and the
corresponding computation time. The volumes had a size of
256×256×180 voxels and were reconstructed on a workstation
with 8 Intel(R) Xeon(R) W3565 CPUs with 3.20 GHz, 12 GB
RAM, and an NVIDIA(R) Quadro FX 5800 display adapter.

V. DISCUSSION

The perfusion maps in the upper row of Figure 4 show
that the CBF maps created by using FDK-JBF and FDK-SR-
JBF approaches are less noisy and the stroke affected areas
are much better separated from the healthy tissue than in the
FDK approach. However, the FDK-JBF map in the lower row
of Figure 4 shows how the non-linear denoising also preserves
or even enhances streaks. Using the FDK-SR-JBF approach,
these streaks can be successfully removed. The CBF maps
created from the real clinical patient data shown in Figure
5 confirm the results of the simulation study: the FDK-JBF
provides less noisy results than the FDK method, but shows
severe streak artifacts in the lower part of the brain. The FDK-
SR-JBF and OS-TV methods allow edge preserving denoising
in combination with streak removal. The FDK-SR-JBF method
produces very similar CBF maps as the OS-TV algorithm.
However, the computation time of OS-TV was with ∼ 25min
by a factor of more than ∼ 25 higher than the computation
time of FDK-SR-JBF with ∼ 1min.

VI. CONCLUSIONS

In this work we presented a novel method for computational
fast noise reduction and streak removal in flat detector CT per-
fusion data acquired with a high speed scanning protocol. We
expose that our previously published FDK-JBF [4] denoising
technique can produce perfusion maps heavily corrupted by
streak artifacts in case of coarse angular projection sampling
and patient motion. Hence we extend the FDK-JBF technique
by including a streak removal (SR) method to the FDK-
SR-JBF algorithm. Therefore the brain is segmented into
tissue, vessels and streaks using information from temporal
maximum intensity projection, the contrast-time attenuation
curves and total variation calculation. Subsequently the streaks
are removed by smoothing the identified areas in the JBF
guidance image. Our evaluation using digital brain perfusion
phantom and real clinical patient data shows the potential of

the FDK-SR-JBF approach for robust denoising and streak
removal in flat detector CT perfusion.

Disclaimer: The concepts and information presented in
this paper are based on research and are not commercially
available. The patient study has been approved by the ethics
commission of the Medical Faculty at Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany, Ethik-No. 4535 on
Dec 14th 2011.
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Reference FDK-SR-JBF FDK-JBF FDK

Slice 152

Slice 101

Figure 4: Two slices of brain phantom CBF maps reconstructed with different approaches.

FDK FDK-JBF FDK-SR-JBF
Pearson Correlation CBF 0.76 0.80 0.83
Pearson Correlation CBV 0.63 0.68 0.73

Table II: Quantitative results of brain phantom study. Pearson correlation of CBF and CBV perfusion maps reconstructed with
different approaches to the ground truth maps.

OS-TV FDK-SR-JBF FDK-JBF FDK

XY

XZ
Computation ∼ 25min ∼ 1min ∼ 1min ∼ 0.5minTime

Figure 5: Patient CBF maps in XY and XZ viewing direction reconstructed with different algorithms.


