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Abstract—In computed tomography (CT), dense objects such
as bone, metal implants, and contrast medium, induce cupping
and streaking artifacts. To reduce those artifacts, various ap-
proaches have a common strategy, which is segmenting datasets
into different materials and correcting them separately according
to their own physical characteristics. However, in most cases, the
severe artifacts hinder the primary segmentation which results
in low efficiency of artifact reduction approaches. When taking
noise under consideration, the accuracy of segmentation gets even
worse. In this work, we applied an edge preserving step based
on bilateral filtering between reconstruction and segmentation.
A traditional bilateral filter performs noise reduction, and a
bilateral edge detector exploits the structural edge information.
By incorporating the edge information with noise reduced recon-
struction images, a more sophisticated segmentation approach
is proposed. Quantitative evaluations of noise reduction and
segmentation performance are carried out using simulated and
real CT datasets. The results show that our approach can reduce
streak artifacts at a primary level, which significantly improves
segmentation.

Index Terms—Computed Tomography, Beam Hardening Cor-
rection, Image Segmentation, Noise Reduction

I. INTRODUCTION

In CT, the projection images acquired at the detector
and consequently, the reconstructed volumes contain quantum
noise. The strength of noise varies among different measure-
ments, which leads to inhomogeneous noise in the recon-
structed slices. The problem is getting worse when X-rays
passing through the scanned objects are attenuated differently
due to discrepancies in material type and size, especially in
regions containing dense materials like bone, contrast agents,
surgical clips, and metal implants. Moreover, the nonlinear
attenuation characteristics of polychromatic X-rays causing
beam hardening artifacts, together with metal artifacts, result
in dark bands or streaks across the images, hiding anatomical
structures and pathology, hindering visualization and reducing
diagnostic confidence.

To reduce artifacts which are caused by dense objects, vari-
ous approaches have a common strategy, which is segmenting
datasets into different materials and correcting them indi-
vidually according to their own physical characteristics [1]-
[8]. However, due to dense objects inducing severe cupping
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Fig. 1: Flowchart

and streaking artifacts, a more accurate primary segmentation
becomes a major challenge, and influences the convergence
speed of correction approaches.

In [9], we have proposed an iterative multi-material beam
hardening correction scheme. However, when taking noise into
consideration, the performance of segmentation is affected
significantly. In this paper, we apply an edge preserving
step for CT images consisting of dense objects based on
bilateral filtering. Its function is not only noise reduction,
but also aiding to exploit the structural edge information at
the segmentation step in order to achieve a more accurate
preliminary segmentation and thus a more efficient artifact
reduction afterwards. The algorithm is evaluated using sim-
ulation data and real measured CT data. It is shown that our
approach can reduce streak artifacts caused by dense objects
and also significantly improve the segmentation results from
the original reconstructed volumes.

II. METHODS

Segmentation is always hindered due to image noise and
artifacts such as streaks. Therefore, the non-linear edge pre-
serving bilateral filter which can reduce noise and return
structural edge information is considered for our case. A brief
flowchart is illustrated in Fig. 1.

A. Bilateral Filtering

Bilateral filtering embodies the idea of a combination of do-
main and range filtering [10]. From [11], the authors conclude
that the bilateral filter in image space has a significant noise
reduction while edges are well preserved.



Denote r as spatial location on the reconstruction grid, the
3D filtered volume f(r) is calculated as follows:
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where n(x) is the sum of all weights and used for normaliza-

tion:
n(x) = c(r,r')s(f(r), £(r')).
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The function c(r,r’) is the domain filter which takes the
geometric distance of the actual voxel r and the neighboring

voxel r’ into account:
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The function s(f(r), f(r’)) is the range filter, which is the

edge-preserving component that compares the gray value of

the center pixel to the spatial neighborhood and computes the

corresponding weight coefficients depending on the factor os.
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B. Edge Detector

Common edge detection methods like Prewitt, Soble, Lapla-
cian operators, etc. are normally discontinuous or over-
detected. When reconstructed images contain dense objects
and suffer from streak artifacts, the performance of those
operators are affected. We designed a bilateral edge detector,
which applies an inverted range filter on Sobel domain kernel,
resulting in the detected edges being emphasized. Hence
dissimilar regions in the image are easier to distinguish. The
modified range filter can be written as
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Constant a is used to avoid zeros, and the value can just be
slightly larger than 1.

By application of the edge detector on filtered image f (r),
the edge image fedge(r) is obtained. Given an optimal thresh-
old T', the function classifies the pixels into two classes: edge
pixels and non-edge pixels:

1, if fedge(r) > T, edge pixel

E(z,y) = o .
0, if feqge(r) < T,non-edge pixel

(6)

Connected edge pixels are merged together and labeled with
the same symbol.

C. Segmentation

Previously, we have proposed a histogram based k-means
clustering initialization method for segmentation [12]. We use
the obtained centroids from this method as seeds 51, .Sa, ..., S,
and the seeded region growing (SRG) technique is applied.
The regions are grown from seed points to adjacent neighbor-
hood pixels. For each step, one additional pixel is incorporated
into one of the seed sets. The 8-connected neighborhood is
used for pixels’ adjacent relationship. If the neighborhood

pixel is in the same cluster with the seeds, and is not an edge
point, it will be labeled the same as the seed point. These initial
seeds are further replaced by the centroids of the generated
regions Ry, IRy, ..., R4 by incorporating the additional pixels
step by step.

The results of edge detection are integrated to provide
more accurate region boundaries. The boundary pixels of
each homogeneous region from K-means clustering are first
extracted by determining the first and last pixels for each
row and column for the same region. These first and last
pixels form a boundary for the corresponding region. There
are different situations for decision making:

e The boundary pixels, which are detected as both the
region boundaries and the structural edges, are classified
as the pixels on the final region boundary.

o The region pixels, which are not detected as either region
boundaries or edges, should be the pixels inside a region.

o The uncertain pixels which are detected as region bound-
aries but not as edges, may be the discontinuous points
and should be refined on the basis of their neighbors.

o The uncertain pixels which are detected as edges but not
as region boundaries, may be the over-detected edge pix-
els and should be refined on the basis of their neighbors.

As a result, region boundaries are eliminated or modified on
the basis of these local edges.

III. EXPERIMENTS AND RESULTS

Parameter Jaw Phantom |Hip Prosthesis Phantom| Multi-cylinders
Tube Voltage 120kVp 120k Vp 150kVp
SOD 750mm 750mm 1200mm
SDD 800mm 1200mm 1400mm
No. of Projections 600 450 1000
Detector Grid 512x512 512x512 1024 x 1024
Pixel Size 0.5mm 0.7mm 0.4mm
Volume Grid 512x512x512 512x512x512 400x400x 600
Voxel Size 1.0mm 0.3mm 0.5mm
Materials Soft Tissue, Bone| Soft Tissue, Bone, Ti |Plastic, Al, Fe, Cu

TABLE I: Experimental parameters

In order to quantitatively evaluate the performance on noise
reduction and segmentation, polychromatic cone beam CT
simulations were carried out using the FORBILD jaw phantom
and the hip prosthesis phantom [13]. The projection data
was obtained by using the CT simulation software DRASIM
(Siemens AG, Forcheim, Germany). Circular 3D raw data was
reconstructed using a standard FDK reconstruction algorithm
[14]. Furthermore, a real X-ray projected dataset containing
four cylinders of different materials was evaluated. The ex-
periments’ parameters are listed in Table I.

A. Noise Reduction

Fig. 2 illustrates the reconstruction results of the jaw
phantom. In comparison with a monochromatic reconstruction
(Fig. 2a), the dense objects (bone) causing streak artifacts
have significant influence on the reconstruction from poly-
chromatic projections with Poisson noise added (Fig. 2b).



(a) Reconstruction from monochromatic pro- (b) Reconstruction from polychromatic pro-
jection with noise added

jection

(c) Reconstruction after bilateral filtering

Fig. 2: Reconstruction results from simulated Forbild jaw phantom. Bilateral filtering: op = 1mm, 5x5 neighborhood.

L: 0.2; W: 0.2.

After bilateral filtering (Fig. 2c), the streak artifacts have
been effectively suppressed. It has to be noticed that, in order
to retain the spatial resolution, we did not apply a strong
filter for smoothing. Because our main purpose on using
bilateral filtering is keeping edge structural information for
segmentation, and primary noise reduction. The reduction of
strong streaks caused by bones and metal implants are the
focus of artifact reduction.

Additive white Gaussian noise (AWGN) with different val-
ues of variance was used to simulate noisy images. Peak signal
to noise ratio (PSNR) between original images and filtered
images is used to measure the denoising performance of the
bilateral filter.
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B. Edge Detection and Segmentation

In order to show the segmentation improvement benefiting
from the edge-preserving filter, a hip prosthesis phantom
(Fig. 3) and a real CT scanned dataset (Fig. 4) consisting of
polyester, aluminum, steel and copper were evaluated.

Fig. 3 shows the segmentation and reconstruction results
with SmAs and 150mAs, respectively. It can be seen that, when
the dose of radiation is increased, the reconstruction suffers
less from noise. However, lower mAs levels are always desired
due to dose considerations. Increased noise in reconstruction
also affects segmentation. From the color-coded segmentation
results, the original segmentation suffers from artifacts and
noise. However, after applying the proposed method, the
segmentation by K-means clustering improved.

In Fig. 4, strong dark and bright streak artifacts can be
observed in the original reconstruction (Fig. 4a). Segmentation
faces a big challenge created by similar dense objects’ gray
values overlapping in histogram and by streak distortions.
Fig. 4c shows the color-coded segmentation result indicating
four materials. It can be seen that large amounts of streaks are
classified into materials, and the segmentation could not distin-
guish steel and copper because of their similar densities. This

poor initial segmentation will result in more computational
effort in later artifact reduction. However, after we applied the
material edge information (Fig. 4b) between reconstructions
with and without bilateral filtering, the segmentation shows
significant improvements (Fig. 4d). Table II lists the PNSR
value for the hip prosthesis and the jaw phantom with AWGN
applied in projection simulation with different values of vari-
ance. The Mean Square Error (MSE) is calculated to quantify

AWGN
PSNR 0102|0304 |05]061]07]08]09

Hip Phantom

38.69(37.18|36.04|35.39|34.56(32.50|30.34|29.32|28.37|27.52

Jaw Phantom

32.76|32.34|32.20|31.32|30.31(28.60|27.78|25.99|24.70|22.44

TABLE II: PSNR values of hip prosthesis phantom and jaw
phantom with different AWGN variance values applied.

the misclassified voxels in segmentation image ¢(z, y) and the
ground truth ¢(z,y):

MSE = legg[w(x,y) — @(z,y))* ®)

For the hip prosthesis phantom, the MSE value from original
segmentation (z,y) is 11.16, and with the proposed bilateral
filter applied @(z,y) is 3.45. For the jaw phantom, p(z,y)
and @(x,y) are 9.07 and 1.23, respectively.

IV. CONCLUSION

In this paper, we used a nonlinear edge preserving bilateral
filter as post-processing step for CT images containing dense
materials. By applying the traditional bilateral filter on the
original FDK reconstruction for noise reduction, and a modi-
fied bilateral edge detector for material structural information,
the segmentation was able to return more accurate results,
which significantly improved multi-material beam hardening
and metal artifacts reduction. Evaluation results on simulated
and real phantom data show noise reduction and significant
improvement of segmentation, which can provide much faster
convergence on later artifact reduction.



Recon. w/o Noise Recon. with Noise

SmAs

150mAs

Segm. from Original Recon = Segm. after Bilateral Filter

Fig. 3: Reconstruction and segmentation results of hip prosthesis phantom. SmAs and 150mAs radiation levels were used for
different noise levels. Original and segmentation with proposed method applied are displayed. L: 0.14; W: 0.22.

(a) Original reconstruction (b) Detected edge image using (c) Color-coded segmentation re- (d) Color-coded segmentation re-

proposed bilateral edge detector

sult using K-means clustering sult using K-means clustering

with edge information

Fig. 4: Real CT dataset containing four materials. Results show original reconstruction image, difference image between the
reconstruction with and without bilateral filtering applied, and segmentations with color-coded material identification. In ideal
case: white—copper; yellow—iron; red—aluminum; purple—polyester. L: 0.11; W: 0.3.
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