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Abstract—This paper presents the derivation of the Epipolar
Consistency Conditions (ECC) between two X-ray images from
the Beer-Lambert law of X-ray attenuation and the Epipolar
Geometry of two pinhole cameras, using Grangeat’s theorem.
We motivate the use of oriented projective geometry to express
redundant line integrals in projection images and define a
consistency metric, which can be used, for instance, to estimate
patient motion directly from a set of X-ray images. We describe
in detail the mathematical tools to implement an algorithm to
compute the Epipolar Consistency metric and investigate its
properties with detailed random studies on both artificial and
real FD-CT data. A set of 6 reference projections of the CT
scan of a fish were used to evaluate accuracy and precision
of compensating for random disturbances of the ground truth
projection matrix using an optimization of the consistency metric.
In addition, we use three X-ray images of a pumpkin to prove
applicability to real data. We conclude, that the metric might have
potential in applications related to the estimation of projection
geometry. By expression of redundancy between two arbitrary
projection views, we in fact support any device or acquisition
trajectory which uses a cone-beam geometry. We discuss certain
geometric situations, where the ECC provide the ability to correct
3D motion, without the need for 3D reconstruction.

I. INTRODUCTION

The pinhole camera model applies to the geometry of
visible-light cameras for photography and X-ray source and
detector alike, albeit the imaging process itself is very dif-
ferent. The analogy opens up a field of established methods
in Computer Vision which are ready for application to trans-
mission imaging problems [1], [2]. For example, the term
epipolar geometry describes the intrinsic geometry between
two pinhole cameras. In Computer Vision, it is used, most
notably, to estimate the distance of objects to the observer via
stereo disparity. While it is in general impossible to estimate
the depth of objects from two X-ray images [3], [4], [5], the
theoretical model of physics and geometry of transmission
imaging still impose certain constraints on X-ray images. This
paper illustrates the epipolar geometry of X-ray images and
makes the connection to Grangeat’s theorem [6], establishing
constraints on the information along corresponding epipolar
lines. This redundant information can be expressed as consis-
tency conditions within pairs of X-ray images, for instance,
from a flat-detector computed tomography (FD-CT) acquisi-
tion. The three most important sources of errors in FD-CT are
noise in X-ray acquisitions, inaccuracies and inconsistencies
of the geometry due to motion and over-simplified physical
models, for example, ignoring scattered radiation. Our goal
is to recover some of the degraded geometric information
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by optimizing for data consistency. Both epipolar geometry
and Grangeat’s theorem have previously been used for this
purpose [7], [3], but their connection has only recently been
established [8]. In contrast to Wein et al. [3] or Kyriakou et
al. [9], the use of Epipolar Consistency Conditions (ECC)
[8], [10], [7] does not require intermediate reconstruction
and uses a relatively simple and fast metric on pairs of 2D
projections. In this paper, we present the derivation of the ECC
exploiting synergies in notation of projective geometry and
tomographic reconstruction. In Section II, we review oriented
projective geometry and epipolar geometry and introduce the
notation used throughout the paper. In Section III, we apply the
notation of projective geometry to transmission imaging and
derive the equation for a 1D-family of consistency conditions
between any two X-ray images of the same object. Further
in Section IV, we turn to the geometric consistency between
X-ray images, as suggested by Debbeler et al. [7] and extend
the algorthm by Aichert et al. [8] for the computation of an
Epipolar Consistency metric. We conclude in Section VI with
an investigation of the properties and geometry of the Epipolar
Consistency Metric with respect to observable directions of
motion, the parameters of the algorithm, as well as the effect
of resolution, noise and using real input images.

II. METHODOLOGY

A. Oriented Lines in Projective Two- and Three-space

1) Oriented Projective Space: Projective geometry is a
powerful tool for computational geometry, as it simplifies
mathematical statements compared to their “Euclidian” nota-
tion. It generalizes over many special cases, notably the inter-
section of parallel lines and planes. Plücker embeddings allow
us to define general join and meet operations, i.e. connecting
and intersecting flat objects such as points, lines and planes,
simply in determinants of their homogeneous coordinates [11].
The use of homogeneous coordinates in projective spaces with
the equivalence classes of scalar multiples is well-established
in Computer Vision. A major drawback of “classical” pro-
jective geometry is that it is not orientable. In this paper,
however, it will be advantageous to use the framework of
oriented projective geometry [12]. In its representation as
homogeneous coordinates, only positive scalar multiples of
homogeneous coordinates are equivalent. We summarize our
notation in Table I. We define oriented projective n-space over
the field R as an embedding in n + 1-space not containing
the zero-vector 0 modulo positive scalars Pn+ = Rn+1\{0}

R+ .
The Euclidian point (u, v)> is usually represented as the
homogeneous vector (u, v, w)> with w = 1. We introduce the
equality relation a ∼= b ⇐⇒ ∃λ > 0 ∈ R+ : λa − b = 0
and find that ∀λ > 0 : x ∼= λx. In the case of oriented
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projective space, we obtain (positive) points with w > 0 and
their “orientation-reversing” equivalents, negative points with
w = −1. Those negative points allow us, for example, to
determine if an oriented line pierces an oriented plane from
the “back” or from the “front”. Oriented projective two-space
always contains infinite points x ∼= (u, v, 0)>, which can be
interpreted as directions.

2) The Depth of Points and the Orientation of a Camera:
Albeit less common, oriented projective geometry has been
applied to Computer Vision problems, especially Oriented
Epipolar Geometry [13]. Orientation is important for a pinhole
camera because only points “in front of the camera” (i.e. on
one side of the principal plane) are visible. We describe the
geometry of an X-ray source and detector using an oriented
pinhole camera model, defined by a single projection matrix

P ∼=

 P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

 = (M|p4) ∈ R3×4 (1)

with the sub-matrix M ∈ R3×3 and a column vector p4. The
projection matrix P maps a world point between source and
detector in oriented projective three-space X ∈ P3+ to an
image point on the detector in the oriented projective plane
x ∼= (u, v, 1)> ∼= PX ∈ P2+. The direction of the principal
ray is m3 ∼= (P31, P32, P33)

> the first three elements of the
last row of P. Further, we denote the location of the X-ray
source as the non-negative point C ∼= ker(P) ∈ P3+, where
ker(·) denotes the kernel (null-space) of the matrix. Let X =
T · (X,Y, Z, 1)> denote a finite world point in a right-handed
coordinate frame and x = PX = w · (u, v, 1)> be its finite
image in pixels, then

depth(X; P) =
sign(det(M)) · w

T‖m3‖
(2)

is the depth of X w.r.t the pinhole camera P. Depth
is the signed distance to the principal plane p3 ∼=
(P31, P32, P33, P34)

> , which is parallel to the image plane
and passes through the source position C (compare Figure 1,
right). For a thorough discussion of pinhole cameras in pro-
jective space see Hartley and Zisserman [1]. Negative depth
is associated with points behind the camera. We can see that
Equation 2 depends on the sign of the determinant of M,
as well as on the sign of the homogeneous coordinates of the
world and image points.

3) Oriented Pinhole Camera: In this paper, we define
an oriented pinhole camera, which maps positive points in
oriented projective three-space T > 0 to positive points in
the oriented projective plane w > 0 in front of the camera,
thus depth(X; P ) > 0 . Since we are explicitly dealing with
angles and lengths, our scene is naturally Euclidian and the
plane at infinity is fixed. In addition, we restrict ourselves
to right-handed coordinate systems, and choose our image
coordinate axes accordingly. Since the norm ‖m3‖ is always
positive, we may henceforth consider only pinhole cameras
with det(M) > 0. Note that positive world points in front of
the camera are mapped to positive image points. Additionally,
negative points in three-space behind the camera will be
mapped to positive points in the image. This gives us a

Figure 1. Left: A straight line l ∈ P2+ as the set of solutions to the equation
(u, v, 1) · l = 0. In this configuration: t > 0. Right: The geometry of an
oriented pinhole camera with ‖m3‖ = 1 and det(M) > 1 (blue box). Note
that the coordinate systems are arbitrary, so long as they are right handed and
the image plane faces the source.

natural extension to the concepts in [1] to oriented projective
space, where negative points are order-reversing. For details
on projective two- and three-space refer to [14], [11], [12].
We refer to tuples (Pi, Ii), of projection matrices Pi and
projection images Ii : R2 → R with intensity of finite pixels
x (with a slight abuse of notation) Ii(x) = Ii(u, v) as the
i-th view. For convenience, the lower index denotes the view
number, for example, xi ∼= PiX is a point in projective two-
space on image Ii. W.l.o.g., we will use the indices 0 and 1
for any two different views.

4) 2D Line Representation: We can represent a line l =
(l0, l1, l2)> ∈ P2+ in oriented projective two-space for the
Euclidian set of solutions to an equation{

(u, v)> ∈ R2 : l0u+ l1v + l2 = 0
}
⊂ R2. (3)

The Radon transform on the other hand, is usually
parametrized by angle and distance to the origin. The angle α
is easitly obtained from the direction of the normal (l0, l1)>,
while t = −l2√

l20+l21
is the signed distance to the origin. Note

that multiplications by scalars λ < 0 flip the sign of t and the
angle by π. Although the lines l and − l contain the same
set of points, we would like to differentiate between them,
because we need to resolve the ambiguity in orientation α,
which is ultimately the reason why we decided to use oriented
projective geometry.

l ∼=
(l0, l1, l2)>√

l20 + l21
=

 −sin(α)
cos(α)
−t

 = line(α, t) (4)

where α is the angle between the x-axis and the line and t is
the signed distance to the origin (compare Figure 1).

5) Meet of Two 2D Lines: The point of intersection a =
meet(l,m) ∈ P2+ contained in both lines l, m, ∈ P2+ fulfills
a>l = 0 and a>m = 0 i.e. the vector representation of a is
orthogonal to those of l and m. An orthogonal vector in R3 is
readily computed as the cross product, which can be written
as a multiplication with an anti-symmetric matrix

a ∼= meet(l,m) = l×m = [l]×m (5)

where [.]× is an operator which assembles an anti-symmetric
matrix out of a three-vector
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[l]× ∼=

 0 −l2 l1
l2 0 −l0
−l1 l0 0

 . (6)

6) Join of Two 2D Points: Suppose b ∈ P2+ is another
point on l, then a>l = 0 and b>l = 0. It follows, that the
join operation for connecting two points by a line is also a
cross product

l = join(a,b) = a× b = [a]×b (7)

and further, it holds that

[l]× ∼= ba> − ab> and [a]× ∼= ml> − lm>. (8)

We say that join and meet operations are dual to each other.
While the cross-product is defined only for 3-vectors, the join
and meet operations can be extended to arbitrary dimensions
using similar concepts.

7) Join of Two 3D Points as an Anti-Symmetric Matrix:
In this paper, we extend the operator [·]× to 4× 4 matrices to
represent the line through two points in P3+ as follows

[L]× ∼= BA> −AB> =


0 −L01 −L02 −L03

L01 0 −L12 −L13

L02 L12 0 −L23

L03 L13 L23 0


(9)

where L is a six-vector, as defined in the next paragraph and
only in this subsection A, B ∈ P3+ denote two 3D points.

8) 3D Line Representation: Plücker Coordinates: In Equa-
tion 9, the matrix [L]× is defined by six values of the vector
L, called the Plücker coordinates of the line.

join(A, B) = L ∼=


L01

L02

L03

L12

L13

L23

 =


A0B1 −A1B0

A0B2 −A2B0

A0B3 −A3B0

A1B2 −A2B1

A1B3 −A3B1

A2B3 −A3B2

 (10)

Note that Plücker coordinates have only four degrees of
freedom, because they are up to scale and there exists
an identity going back to the Grassmann-Plücker relations
L01L23 − L02L13 + L03L12 = 0, which Plücker-Coordinates
fulfill [14].

9) Meet of a 3D Line and a Plane: Then we get the point
of intersection by multiplication X = [L]×E, where E is the
plane in Hessian Normal Form, up to positive scale (analogous
to 2D lines from Section II-A4). It is easy to show that

[L]×E ∼= AB>E−BA>E = Aα+ Bβ (11)

is on the line because it is a linear combination of A and B.
Additionally, it is a property of anti-symmetric matrices that
∀E ∈ R4 : E>[L]×E = 0, so X is also contained in the plane
E and must in fact be the point of intersection.

Figure 2. The fundamental matrix F encodes the relative geometry between
two X-ray images for different source and detector positions. It maps an image
point x0 (bright red) from one detector (gray, right) to a line l1 = Fx0 (left
diagonal, blue) on the other detector (left, gray). Suppose x0 is the image of
a particular feature in 3D space X (dark red) of unknown depth (for example,
the tip of a bone or a metal implant etc.), then the corresponding point x1 =
P1X which shows the same feature on the other detector is located on that
line. In fact, the line is the backprojection ray Rx0 (dashed, orange) seen
from the other source position C1. The baseline B (solid blue, horizontal)
defines a plane through X, which contains both l1 and its corresponding line
l0. There is a pencil of such planes, each defining a pair of epipolar lines, for
example any of the bright, gray-ish lines, which all intersect in the epipoles
e1 and e0 respectively.

10) Join of a 3D Line and a 3D Point: Contra-variant
Plücker Coordinates: Without further detail on duality in
projective three-space, we can express the dual representation
of L with [L̃]×[L]× = 0 as an anti-symmetric matrix with

L̃ = (L23, −L13, L12, L03, −L02, L01)> (12)

The plane which contains both the line L and the point X
is then E ∼= [L̃]×X [15]. In other words, it represents the
pencil of planes around the line L. We call [L̃]× contra-variant,
because it is a representation of a line as the intersection of
two planes, and it therefore transforms as such [14].

B. The Fundamental Matrix for Oriented Pinhole Cameras

Epipolar Geometry describes the relationship between two
pinhole cameras P0 and P1. It is well-known, that it can be
fully described by a single 3 × 3 matrix F, which maps any
point x0 on one detector to a line l1 on the other detector,
compare Figure 2. We present a brief derivation, which takes
our special definition of oriented pinhole cameras into account.
The projection matrix P0 maps a positive world point in front
of the camera from oriented projective three-space X ∈ P3+ to
a positive image point on the detector in the oriented projective
plane x ∼= (u, v, 1)> ∼= PX ∈ P2+. Suppose that the same
world point is seen by two cameras as x0

∼= P0X and x1
∼=

P1X. The intensity of a pixel x0 on the detector goes back
to a ray Rx0

∼= join
(
P+

0 x0, C0

)
, called the backprojection

of x0, where ·+ denotes the pseudo inverse. The epipolar line
l1 is the backprojection ray projected to the other detector. A
line is defined by two distinct points that lie on it. Since every
such ray passes through the positive source position C0, we
know that e1

∼= P1C0 is one point on that line. We call this
point epipole and it is positive if and only if C0 is in front of
P1. We verify that the point X ∼= P+

0 x0 is some 3D point,
which also has to be on the backprojection ray, because its
image is exactly x0

∼= P0P
+
0 x0. From our definition of the

pinhole camera model, it follows directly that a positive X is
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in front of the camera if and only if x0 is positive. In any case,
Rx0 consistently points towards the detector. For a discussion
of orientation and epipoles not limited to the oriented pinhole
camera used in this paper see the paper by Chum et al. [16].

We have just found two oriented points on the backpro-
jection ray, namely C0 and P+

0 x0. We call the join of their
projections the oriented epipolar line

l1 ∼= P1C0 ×P1P
+
0 x0 =

(
[P1C0]× ·P1P

+
0

)
x0 (13)

for the fundamental matrix for the projections (P0,P1)

F1
0
∼= [P1C0]×P1P

+
0 (14)

Likewise, the corresponding epipolar line is

l0 ∼=
(
[P0C1]×P0P

+
1

)
x1 (15)

An oriented epipolar plane E is readily computed via the
backprojection of the corresponding epipolar lines l0 or l1
respectively as

E ∼= P>0 l0
∼= P>1 l1 (16)

⇐⇒ ∀X ∈ P3+ : P>0 [P0C1]×P0X ∼= P>1 [P1C0]×P1X
(17)

Using the epipolar plane for any world point X, we can
express the relationship between the epipoles

P>0 [P0C1]×P0
∼= P>1 [P1C0]×P1

P+>
1 P>0 [P0C1]×P0P

+
1
∼= [P1C0]×

Substitution yields

F1
0
∼= [P1C0]×P1P

+
0

∼= P+>
1 P>0 [P0C1]×P0P

+
1 P1P

+
0

∼= P+>
1 P>0 [P0C1]× = −F0>

1

(18)

As a result and in accordance to Laveau et al. [13], we see
that the oriented fundamental matrix for the cameras (P0,P1)
is the negative transpose of the fundamental matrix for the
cameras (P1,P0) .

C. Plücker Coordinates of the Epipolar Line Bundle

The orientation of epipolar lines determines the orientation
of the epipolar plane [16]. Via the fundamental matrix we get
for l0 and l1 consistently

E ∼= P>1 l1
∼= P>1 F

1
0x0
∼= P>1 F

1
0P0X

∼= P>0 l0
∼= −P>0 F1>

0 x1
∼= −P>0 F1>

0 P1X

∼= [B̃]×X

(19)

where the anti-symmetric 4 × 4 matrix [B̃]× maps points in
P3 to planes in P3. It is a Plücker representation of a contra-
variant line through the camera centers, also called the baseline
in Stereo Vision. It can be represented as a 6-vector of Plücker
coordinates B with [B̃]× ∼= P>1 F

1
0P0

∼= −P>0 F1>
0 P1 which

is the dual to [B]× ∼= C1C
>
0 −C0C1

>, compare Equation 9.

Table I
LIST OF IMPORTANT SYMBOLS CONCERNING PROJECTIVE GEOMETRY.

Symbol Interpretation

∼= Equality up to positive scale.

X ∈ P3+ World point in oriented projective three-space.

X = T · (X,Y, Z, 1)> Coordinates of a finite world point (T 6= 0).

P ∼= (M|p4) ∈ R3×4 Projection matrix.

xi
∼= PiXi ∈ P2+ The image of X in the oriented projective

plane of the i-th projection image Ii.

xi = w · (u, v, 1)>. Coordinates of a finite image point (w 6= 0).

M ∈ R3×3 Left 3× 3 sub-matrix of P. det(M) > 0 .

m3 ∈ R3 The last row of M points in direction of the
principal ray.

p3 = (m3, P34) ∈ P3+ The last row of projection matrix P encodes
the principal plane, which is parallel to image
plane and contains center of projection C.

C ∼= ker(P) ∈ P3+ Center of projection (“source position”).
Null-space of P and per definition a positive
or infinite world point.

P+ ∈ R4×3 Pseudo-inverse of P (for back-projection).

B = join(C0,C1) ∈ R6 Plücker coordinates of the baseline i.e. the
line through the source positions C0 and C1.

[B]×, [B̃]× ∈ R4×4 Anti-symmetric matrices representing the join
and meet operations with the baseline B.
It holds [B]×[B̃]+× = 0.

E ∼= [B̃]×X ∈ P3+ An epipolar plane containing the baseline B
and some world point X.

l1 = P+>
1 E ∈ P2+ An epipolar line in the oriented projective

plane of the projection image I1.

l0 = P+>
0 P>1 l1 The corresponding epipolar line to l1.

We have not been able to find this derivation in literature. It
gives us directly the relationship between the two epipolar line
bundles in the images and the pencil of planes in three-space.
We will exploit this in section IV-A. Due to the number of
variables, we decided to summarize our notation in Table I.

III. DERIVATION OF EPIPOLAR CONSISTENCY
CONDITIONS

A. Intuition

In the following, we will show that there is a relationship
between the sum of intensities along each two epipolar lines in
X-ray images. In fact, for parallel projections of small objects,
the integral over the projection image along each of these
lines would be exactly the integral over the epipolar plane E
through the object. First, we will express the integral over a
line in the projection image and a plane through the object and
second, we will show that they are related through Grangeat’s
theorem [6]. Since any epipolar plane corresponds to a pair of
epipolar lines l0 and l1, this gives us two redundant ways of
computing the same integral through the object, one for each
line. The result of this section is, that there exists a 1D family
of ECC between any two projection images, because there is
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Figure 3. Coordinate system for a specific epipolar plane.

a pencil of such epipolar planes around the line joining the
source positions, namely the baseline (compare Figure 2).

B. The Radon Transform of Epipolar Lines and Planes

1) 3D Radon Transform on Epipolar Planes: We will now
establish the relationship between the observed intensities
along pairs of epipolar lines and the corresponding plane
integral of the object f : R3 → R, (x, y, z)> 7→ f(x, y, z).
We denote the backprojection ray Rx0

= join(P+
0 x0, C0)

which is contained in an epipolar plane E ∼= P>1 l1
∼= P>0 l0

∼=
(n>,−n)> ∈ P3 with normal n and signed distance from the
origin n.

Let the origin of our coordinate system be the (finite) X-ray
source C0 with the z-axis pointing in orthogonal direction to
an epipolar plane E and let the y-axis point in direction of
the shortest distance to the image plane. Further, let the u-
axis of the detector coordinate system coincide with the plane
E and finally, let the x-axis be parallel to the detector. Both
world and image coordinates are measured in the same unit.
All of this can be achieved by a single rigid transformation
of the world and image coordinates and is therefore without
loss of generality. In this coordinate system, the plane equation
becomes E ∼= (0, 0, 1, 0)>, hence we need only consider X
and Y coordinates in the following, compare Figure 3. We
define the 3D Radon transform of the object at a plane E as
the integral

ρf (E) =
˝

f(x, y, z)δ ((x, y, z, 1) ·E) dxdydz
=
˜
f(x, y, 0)dxdy

(20)

using homogeneous coordinates and the Dirac impulse δ.
2) 2D Radon Transform ρI0 along Epipolar Lines: Let o

denote the closest point of l0 ∼= P+>
0 E ∼= join (e0, x0) to

C0 and d its distance to the origin. We then have a right
angle between l0 and Ro = join(P+

0 o, C0) . For the points
x0 = (u, v, 1)> on the epipolar line we can thus write

Fv(u, r) := f

(
r · (u, d)> ·

√
u2 + v2

−1
)
, (21)

where r is the distance of x0 to C0
∼= (0, 0, 0, 1)> and the

angle ϕ = atan
(
ud−1

)
is the ray direction with respect to the

closest point o, hence u = r · sin(ϕ) and d = r · cos(ϕ). This
fact is visualized in Figure 3. For points on l0, the function´
Fv(u, r) dr is essentially the X-ray transform and samples

f along the ray Rx0
. It follows, that for the X-ray intensity

detected in x0
∼= (u, v, 1)> attenuated by an object f along

the ray Rx0 reads

I0(u, v) = Itube · exp
(
−
ˆ
Fv(u, r) dr

)
(22)

with initial intensity Itube. The X-ray intensity at a single
detector pixel is

− ln
(
I0(u, v)

Itube

)
=

ˆ ∞
0

Fv(u, r) dr =

ˆ ∞
0

f

 r · cos(ϕ)
r · sin(ϕ)

0

 dr

(23)
The distance r to the X-ray source defines a specific point on
Rx0

. Finally, assuming that the object f is fully visible on
the detector (i.e. zero everywhere else or no truncation ), the
integral over an epipolar line in the polar coordinates of E is

ρI0(l0) =

¨
−ln

(
I0(u, v)

Itube

)
· δ ((u, v, 1) · l0) dudv

=

ˆ +∞

−∞

ˆ ∞
0

Fv(u, r) drdu

=

ˆ π
2

−π2

ˆ ∞
0

1

cos(ϕ)
f

 r · cos(ϕ)
r · sin(ϕ)

0

 drdϕ

≈
ˆ π

2

−π2

ˆ ∞
0

f

 r · cos(ϕ)
r · sin(ϕ)

0

 drdϕ

(24)

This is only an approximation, because the infinitesimal
element is regular in u, which thus puts higher weights 1

cos(ϕ)
on rays the farther away they are from o (compare Figure 3).
Because ϕ is bounded by half fan angle, this factor is in
practice almost constant and close to one.

C. Cone-beam Geometry

1) Radial Weights and the 3D Radon Transform ρf : If we
write the same plane integral in terms of the polar coordinates,
we get the relationship with the integral over the epipolar
line l0. The Jacobian determinant of the cartesian-to-polar
transformation of the x-y-plane is exactly

JΦ = r · cos(ϕ)2 + r · sin(ϕ)2 = r (25)

which yields

ρf (E) =

¨
f(x, y, 0)dxdy

=

ˆ π
2

−π2

ˆ +∞

0

f(Φ(ϕ, r))JΦdrdϕ

≈
ˆ π

2

−π2

ˆ +∞

0

f

 r · cos(ϕ)
r · sin(ϕ)

0

 r drdϕ 6= ρI0(l0)

(26)
We observe for cone-beam projections, that the integrals

over epipolar lines generally differ by a weighting with the
distance to the X-ray source. In the following, we will derive
a formulation of a derivative of the epipolar plane integral
which happens to cancel out that weighting factor.
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2) Grangeat’s Theorem: The relationship between line in-
tegrals on the projection image and plane integrals of the
object has been investigated in a different context by Grangeat
[6], [17]. For the moment, we restrict ourselves to a single
projection image. If we assume w.l.o.g. that the origin of the
u-v-plane is located in the principal point p. We can write
the epipolar line l ∼= (0, 1, −t)> in terms of a distance t
from principal point. As before, the point o is the orthogonal
projection of C to that line. The 2D Radon transform for l is

ρI(l) =

¨
I(u, v)δ((u, v, 1) · l) dudv =

ˆ
I(u, t) du (27)

Figure 4 (a) reveals the geometric relationships between the
2D Radon transform ρI(l) and the 3D Radon transform of
the object ρf (E). The 3D distance from C to the line l is
exactly the distance to the image plane within a projection
in direction of t. Its orthogonal projection must therefore be
again o. It follows that the lines join(p,o) and join(C,o) are
orthogonal to l. An arbitrary point x on l can be written in
terms of the angles κ (between E and the principal ray) and
ϕ (between o and x measured at C). The distance from C to
l is then cos(ϕ)r and the focal distance cos(κ)cos(ϕ) · r (via
triangle p,C,o).

Now, we apply Grangeat’s theorem and look at the deriva-
tive of ρ(E) with respect to the distance to the origin n.

d

dn
ρf (E) ≈ d

dn

ˆ π
2

−π2

ˆ +∞

0

Fv(u, r)r drdϕ

=

ˆ π
2

−π2

ˆ +∞

0

d

dn
Fv(u, r)r drdϕ

Observe in Figure 4 (b) that there is a relationship dn =
tan(dκ) · cos(ϕ)r. Because for small angles tan(dκ) = dκ it
holds

dκ

dn
=

1

cos(ϕ)r
(28)

and by chain rule we obtain

d

dn
Fx(r)r =

d

dκ

1

cos(ϕ)
Fv(u, r) (29)

Again, we ignore cos(ϕ) ≈ 1 in our computations, because ϕ
is bounded by half fan-angle. We also ignore that the plane
normal n is tilted slightly out of the detector plane, because
κ is small. We can compute the derivative w.r.t t instead of n.

d

dn
ρf (E)

dκ≈0

≈
ˆ π

2

−π2

ˆ +∞

0

d

dκ

1

cos(ϕ)
Fv(u, r) drdϕ

ϕ small

≈ d

dκ

ˆ π
2

−π2

ˆ +∞

0

Fv(u, r) drdϕ
κ small

≈ d

dt
ρI(l)

(30)
Equation 30 states, that the derivative of a line in t-direction,
where t is its distance to the origin, is approximately the same
as the derivative of the corresponding plane integral in plane
normal direction. If E ∼= P>1 l1

∼= P>0 l0 is an epipolar plane,
then the Epipolar Consistency Condition states

d

dt
ρI0(l0) ≈ d

dn
ρf (E) ≈ d

dt
ρI1(l1). (31)

Table II
LIST OF IMPORTANT SYMBOLS CONCERNING GRANGEAT’S THEOREM.

Symbol Interpretation

δ(·) Dirac impulse.

−ln
(

I(u,v)
Itube

)
=´

Fv(u, r) dr

X-ray transform in the coordinates of an
X-ray fan contained in an epipolar plane, its
u-axis lies at the intersection of the detector
and the epipolar plane, and r is the distance
to the source position.

E ∼= (n>, n)> ∈ P3+ A plane not at infinity is defined by unit-
length normal n and distance to the origin n.

ρf (E) = ρf (n, n) 3D Radon transform of the object f
is the integral over the plane E.

l = line(α, t) ∈ P2+ A line not at infinity is defined by angle α
and signed distance to the origin t.

ρI(l) = ρI(α, t), 2D Radon transform of the image I
is the line integral over l on the detector.

κ Angle between principal ray and plane E

o Orthogonal projection from principal point p
to line l.

d
dn
ρf Derivative of the 3D Radon transform of an

object f in n-direction i.e. plane distance to
world origin

d
dt
ρI Derivative of the 2D Radon transform of the

image I in t-direction i.e. line distance to
image origin

d
dt
ρI0 (l0) ≈ d

dt
ρI1 (l1) Epipolar Consistency Condition for two

corresponding epipolar lines l0 and l1.
For epipolar plane E see Table I.

Due to the number of variables, we decided to summarize
our notation in Table II.

IV. A METRIC FOR GEOMETRIC CONSISTENCY

A. Redundant Information in Two Views

The main result of this paper and the connection between
Equations 14 and 30 is, that for any two corresponding
epipolar lines l0 and l1 we find redundant information in two
X-ray projections of the same static object, which is fully
visible in both views (P0, I0) and (P1, I1)

d

dt
ρI0(l0)− d

dt
ρI1(l1) ≈ 0. (32)

We remind the reader that d
dtρI(l) = d

dtρI(line(α, t)), or with
a slight abuse of notation d

dtρI(α, t), denotes the derivative of
the 2D Radon transform of image I in the direction normal to
the lines (i.e. distance to the image origin). Equation 32 can
also be characterized in other geometrical entities. Let C =
ker(P) denote camera centers, let e0 = P0C1, e1 = P1C0

be the epipoles. Further let x0 = P0X on I0 be an image
of some world point X and let B = join(C1, C0) denote
the camera baseline, then we have multiple expressions of the
epipolar plane E and its intersections with the images:
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Figure 4. Grangeat’s theorem: relationship between angle κ and normal n.

0 ≈ d

dt
ρI0 (l0)− d

dt
ρI1 (l1)

=
d

dt
ρI0 (e0 × x0)− d

dt
ρI1
(
F1

0x0

)
=

d

dt
ρI0
(
−F1>

0 P1X
)
− d

dt
ρI1
(
F1

0P0X
)

=
d

dt
ρI0

(
P+>

0 [B̃]×X
)
− d

dt
ρI1

(
P+>

1 [B̃]×X
)

=
d

dt
ρI0
(
P+>

0 E
)
− d

dt
ρI1
(
P+>

1 E
)

=
d

dt
ρI0 (l0)− d

dt
ρI1
(
P+>

1 P>0 l0
)

(33)

Each formulation produces an algorithm for identifying ECCs.
Let κ be an angle around the baseline B, then a specific epipo-
lar plane Eκ out of the pencil of epipolar planes for two views
is identified. Note that we need the other source position C1

to define the baseline. We will discuss a complete algorithm
to determine Eκ in Section V. Meanwhile, we can define the
following convenient expression for all redundant information
found in one particular image I0, given its projection matrix
P0 with respect to the source position C1 of another view:

R0(P0,C1, κ) :=
d

dt
ρI0
(
P+>

0 Eκ
)

(34)

and R1 accordingly. From the second-to-last row of Equation
33 we have an expression for the 1D-family of all epipolar
redundancies

∀κ ∈
[
−π

2
,+

π

2

]
: R0(P0,C1, κ) ≈ R1(P1,C0, κ) (35)

B. Orientation and Sign

While Debbeler et al. and Maass et al. [7], [10] use a Euclid-
ian framework in world space for their computations, Aichert
et al. [8] has provided a formulation in projective space of the
projection images. In this paper, we have expressed the same
geometry taking orientation into account. From Section II-A4,
we immediately see that a projective formulation is up to sign
of the intercept and rotation by 180°. The problem with this
formulation is the following identity

d

dt
ρI (l) = − d

dt
ρI (−l) (36)

The difference of Radon derivatives of two epipolar lines
depends on their joint orientation. From Figure 4 we immedi-
ately see, that the normals of the epipolar lines have to point
towards the same half space with respect to the normal of
the epipolar plane. This is reflected in Equation 16, which
gives us two ways of describing the epipolar plane, one as the
backprojection of l0 and the other as the backprojection of l1.
We can define σ0

1 = sgn
(
l>0 P0P

>
1 l1
)
, which is the sign of the

cosine of the angle between the two planes. An un-oriented
formulation of Equation 32 becomes

d

dt
ρI0 (l0)− σ0

1

d

dt
ρI1 (l1) ≈ 0 (37)

An alternative is to define σ0
1 = sgn

(
l>0 x

′
0 · l>1 x′1

)
by a known

point correspondence 0 = x′0Fx
′>
1 not on the epipolar lines

l0 and l1. This is directly related to Chum et al. [16] as it
depends on the joint orientation of the epipoles. In experiments
we observed, that σ0

1 is in fact constant for circular trajectories
of the x-ray source, as is the case for FD-CT [8]. The sign
of σ0

1 is affected by the orientation of the image planes w.r.t.
the baseline B. This is important when two nearby cameras
look in almost the same direction. In this case, the original
formulation by Aichert et al. would provide incorrect results,
because the sign flips when the cameras are rotated.

C. Metric for Geometric Consistency

1) In Image Space of I0: An alternative approach of the
definition of an Epipolar Consistency metric to Equation 35
can be found in Aichert et al. [8]. They parametrize the one-
parameter family of epipolar lines lα0 using an angle α in
image I0. In image space, the points xα0 = (eu+cos(α), ev+
sin(α), eh)> lie on a circle around a finite epipole e0, no
matter the radius 1

eh
. It is thus possible to define a metric of

consistency between two views as an integral over the angle
α using the second row of Equation 33:

M̂1
0 =

ˆ π
2

−π2

(
d

dt
ρI0(e0 × xα0 )− d

dt
ρI1(F1

0x
α
0 )

)2

dα (38)

This formulation allows us to discretely sample an arbitrary
number of lines based on image points xα0 . The downside is
the integration happens over an angle α, which is related to the
plane angle κ but this formulation is in general not symmetric
in the images as we will now show.
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2) The Perspectivity on the Line at Infinity: The funda-
mental matrix is a rank deficient 3 × 3 matrix defined up to
scale and has 9− 1− 1 = 7 degrees of freedom (DOF). The
metric M̂1

0 is defined over two line bundles in the two image
planes. Given one line bundle defined by the first epipole
there remains the freedom of selecting a second epipole plus
a dual perspectivity from one bundle to the other. Again
there is a total of 2 + 2 + 3 = 7 DOF which define the
relationship between two views. One such parametrization
for finite epipoles can be found in Luong et al. [18], where
an epipolar line is associated with its intersection with the
line at infinity y∞0

∼= l0 × l∞ ∼= (1, τ0, 0)>, then the
mapping to the other line bundle y∞1 ∼= (1,Ψ(τ0), 0)

> with
Ψ : τ0 7→ τ1 = aτ+b

cτ+d has 4 parameters up to scale. W.l.o.g.
let eh = e′h = 1, then the fundamental matrix can be written
as F = fij with a = f12, b = f11 , c = −f22 and d = −f21,
defined up to scale. With lα0 = e0 × xα0 and Eα = P>0 l

α
0

Equation 38 can be written

M̂1
0 =

ˆ π
2

−π2

(
d

dt
ρI0(e0 × xα0 )− d

dt
ρIi (e1 × y∞1 )

)2

dα

(39)
In consequence M̂1

0 6= M̂0
1 , because the Jacobian deter-

minant JΨ of the perspectivity Ψ is in general not equal to
one. In addition, we have gained an expression for the relative
geometry between two projection images, which explicitly
parametrizes the epipoles and the mapping between the two
line bundles.

3) In World Space: Apart from notation and Euclidian and
projective descriptions of the ECC, the difference between the
algorithms proposed in Debbeler et al., Maass et al. [7], [10]
and Aichert et al. [8] is the space in which sampling occurs.
We have discussed in the previous section the somewhat
artificial asymmetry in computing M̂1

0 and M̂0
1 and in contrast,

we have Equation 35, which uses the angle κ around the
baseline B. We now replace x0 = P0X

κ and use the angle
κ in world space as in Figure 4. We can define a metric for
the consistency between two views as the squared difference
of these redundant 1D-signals depending only on κ:

M1
0 =

ˆ π
2

−π2
(R0(P0,C1, κ)−R1(P1,C0, κ))

2
dκ

!
= 0

(40)
The formulation is now symmetric in 1 and 0, so we have
M1

0 = M0
1 . The practical question remains, how to discretize

κ for an appropriate sampling, which we will discuss in
Section V.

4) In Radon Space: Suppose we have a finite epipole,
w.l.o.g. eh = 1, we can parametrize the line bundle by a
single angle α as lα = e × xα, where xα = (cos(α) +
eu, sin(α) + ev, 1)> is any point on the unit circle around
e. We have observed that there exists a pencil of epipolar
planes, which intersect in the baseline joining the two source
positions. Therefore, all epipolar lines form a bundle which
has the epipole e ∼= (eu, ev, eh)> as the common point. We
get

lα =

 ev − eh(sin(α) + ev)
eh(cos(α) + eu)− eu

eu(sin(α) + ev)− ev(cos(α) + eu)


=

 −sin(α)
cos(α)

eusin(α)− evcos(α)


= line (α, eusin(α)− evcos(α))

(41)

The points lα = line (α, t(α)) in Radon space describe
a sinusoid curve t(α) = eusin(α) − evcos(α). Note that
t(0) = −ev and t(π2 ) = t(−π2 ) = −eu and that ‖e‖ becomes
large for translations parallel to the image plane with little
rotation outside the image plane. In consequence, the curve
will be close to linear within the narrow interval of α, for
which the lines intersect the image. If the epipole is at infinity,
the line bundle is parallel and therefore t(α) is undefined. The
curve in Radon space degenerates to a line parallel to the t-
axis.

This observation allows us to sample directly in Radon
space. A fast implementation of the ECC requires a pre-
computation of d

dtρI (α, t), which is a derivative in t-direction
of the Radon transform of a projection image. This means, we
have to choose a discretization in α and t. Using the last row
in Equation 33 we have a similar formulation to Equation
39:

M i
0(α) =

d

dt
ρI0(lα)− d

dt
ρI1
(
P+>

1 P>0 lα
)

(42)

but we can choose all lα on t(α) and take into account the
angular distance. Despite this approach allows us to optimally
sample the pre-computed information, the authors prefer the
more elegant implementation from Section IV-C3.

D. In Multiple Views

All formulations done until now only considered two arbi-
trary X-ray images. This is an advantage, because we have
imposed no constraints whatsoever on potential future appli-
cations, which might include motion correction in fluoroscopy,
tomosynthesis and FD-CT. All of these deal with many more
than two images. We simply sum up the metric over all pairs
of views. If we want to optimize over parameters in P0, for
example, we need not compute redundancies between (Pi, Ii)
and (Pj , Ij) for i 6= 0 6= j, because they remain constant
if only P0 changes. The correct metric for consistency in a
fluoroscope sequence would therefore be M0 =

∑
iM

i
0. If

however, the geometry of all images should be optimized, for
example, within an FD-CT scan, then the global metric for all
pairs would be M =

∑
∀i,j: i<j

M i
j . This observation also lets us

compute a numerical derivative more efficiently.

V. IMPLEMENTATION

A. Parametrization of the Pencil of Epipolar Planes

This section provides a detailed implementation of the
algorithm to compute an Epipolar Consistency Metric in world
space, compare Section IV-C3. We construct a mapping from
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a single angle κ to an epipolar plane Eκ through both source
positions. We do so, by finding an angle-preserving mapping
A ∈ R4×3 from the points on the unit-circle of two-space

xκ = (cos(κ), sin(κ), 1)> (43)

to the points on a circle around the baseline

Xκ = Axκ =

(
a1 a2

0 0
t

)
xκ , (44)

with orthogonal column vectors a1, a2 ∈ R3 and a translation
vector t ∈ R4, i.e. to find as a single 4×3 matrix K = [B̃]×A,
which maps a unit-vector in two-space directly to an epipolar
plane Eκ = Kxκ = [B̃]×Axκ = [B̃]×X

κ. This type of
transformation is also called a correlation.

We start by picking some point X0 as a reference point, for
example the center of the object or the center of rotation of
an FD-CT trajectory. We would like the zero-plane for κ = 0
to pass through that point.

E0 = [B̃]×X
0 (45)

We denote the normal direction with the three vector a2 of unit
length. The direction of the baseline can be represented as the
intersection with the plane at infinity π∞ ∼= (0, 0, 0, 1)>

N ∼= [B]× · π∞ ∼=
(

a3

0

)
(46)

with a three-vector a3, again of unit length. N can be
interpreted as a plane orthogonal to B through the origin.
We find that its normal is the direction of the line B and
hence the axis of rotation for the angle κ, in other words
N = null(A>). We complement a set of orthonormal vectors
with a1 = a2 × a3, which points in a direction from the line
to the points X0. Observe, that the base vectors a1 and a2

span the plane N and that the matrix

A′ =

(
a1 a2 0
0 0 1

)
(47)

maps the points (cos(κ), sin(κ), 1)> to a circle around the
origin of three-space contained in the plane N. Finally, we
add a translation t to move the origin to any point on the line
B, for example, one of the source positions. We summarize
the aforementioned steps in Algorithm 1.

B. Sampling Redundant Line-Integrals

Given an epipolar plane Ek, this section finds the corre-
sponding epipolar lines to sample the pre-computed Radon
transform. In practice, algorithms which compute the Radon
transform usually parametrize lines by angle α and distance
to the origin t relative to the center of the image. Different
coordinate systems can be accounted for with a projective
transformation of two-space H ∈ R3×3, under which a line
transforms as l′ ∼= H−>l (i.e. contra-variant). The intersection
of the epipolar plane Eκ with the image plane I0 provides
the epipolar line [L̃κ0 ]× = EκI>0 − I0E

κ> in three-space, L1

respectively. A Plücker line projects to the image as a 3 × 3
anti-symmetric matrix

[lκ0 ]× = P0[Lκ0 ]×P
>
0 . (48)

Algorithm 1 Parametrization of epipolar planes by angle κ.
1) Input: Source positions C0, C1, reference point X0

2) Compute Plücker coordinates of B via Equation 10.
• [B]× ← C1C

>
0 −C0C1

>

3) Find direction of B via Equation 9.
• N← [B]×π∞

4) Compute plane containing B and X0 via Equation 12.
• E0 ← join(B, X0) ∼= [B̃]×X

0

5) Find orthonormal basis from plane normals.
• a2 ← first three elements of E0

• a3 ← first three elements of N
• a1 ← a2 × a3

• Rescale a1,a2 and a3 to unit length
6) Find any point O on B, for example C0 or C1, and use

it as translation vector.
• t← 1

O4
·O

7) Assemble matrix A.

• A =

(
a1 a2

0 0
t

)
8) Output: A 4 × 3 matrix K = [B̃]×A, which maps

xκ = (cos(κ), sin(κ), 1)> directly to Eκ.

However, for planes through the center of projection, notably
epipolar planes, there is a simpler relationship

Eκ = P>0 l
κ
0 = P>1 l

κ
1 . (49)

From this equation, we can readily compute all corresponding
epipolar lines

lκ0 = P+>
0 Eκ = P+>

0 Kxκ (50)

and lκ0 accordingly. To sample the pre-computed Radon trans-
form, which is typically parametrized by angle α and distance
to the origin t, we can apply Equation 4 as summarized in
Algorithm 2.

To conclude, the epipolar lines on a particular image I0 and
projection matrix P0 are defined by another source position
C1. Using the more intuitive notation from Equation 35 we
have

R0(P0,C1, κ) =
d

dt
ρI0(P+>

0 Kxκ).

and R1(P1,C0, κ) =
d

dt
ρI1(P+>

1 Kxκ) (51)

with xκ = (cos(κ), sin(κ), 1)> and a K ∈ R4×3 as computed
using Algorithm 1.

C. Observable Motion in Projection Images

In Aichert et al. [8], it was shown that the metric for two
views is reliable in only one spatial direction, except for
opposing views. The metric consists of a sum of redundant
line integrals as in Equation 32. Think of a line integral as a
sum of pixel intensities along the line. When the image is
moved in direction of that line, the sum does not change.
In consequence, d

dtρI(l) is constant for translations of the
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Algorithm 2 Computing a pair of epipolar line integrals
R0(P0,C1, κ)) and R1(P1,C0, κ) for an angle κ around the
baseline given a point of reference X0.

1) Input: An angle κ, a matrix K = [B̃]×A, as computed
using Algorithm 1, projection matrices P0 and P1 and
pre-computed Radon transforms, derived by the distance
to the origin d

dtρI0 and d
dtρI1 .

2) Compute epipolar plane Eκ.
• xκ ← (cos(κ), sin(κ), 1)

>

• Eκ ← Kxκ

3) Compute corresponding epipolar lines
• lκ0 ← P+>

0 Eκ

• lκ1 ← P+>
1 Eκ

4) In practice: Correct for different coordinate systems with
a homography H

• lκ′0 ← H−>lκ0
• lκ′1 ← H−>lκ1

5) Compute angle and distance to origin via Equation 4.
• (a, b, c) ← λ · lκ′0 , with 0 < λ ∈ R, such that√

a2 + b2 = 1.
• ακ0 ← atan2(−a, b)
• tκ0 ← −c
• ακ1 and tκ1 accordingly for lκ′1

6) Output: Line integrals for corresponding epipolar lines,
R0(P0,C1, κ) = d

dtρI0 (ακ0 , t
κ
0 ) and R1(P1,C0, κ) =

d
dtρI1 (ακ1 , t

κ
1 ).

image in direction of the line l. We see that the ECC give
us information orthogonal to epipolar lines only. In fact, there
are parallels between the optimization of the ECC and 1D-
3D registration, with all the problems familiar from 2D-3D
registration. For example, the effect of a camera being rotated
slightly around the y-axis is almost the same as translating
the camera slightly along the x-axis, due to the 3D→2D
projection. Small translations towards and away from the
camera have little impact on the images, other than a minor
scaling. In addition, a translation parallel to epipolar lines
does not change the integral in that very direction, because
integration along lines is in effect a projection from 2D→1D.
These ambiguities cannot be resolved using redundancies from
just two views.

These observations may appear trivial, but it is one of the
most important points of this paper. We believe that by design
of the geometry, we can find an optimal set of views in
terms of the stability of the ECC. Equally spaced cameras
on a sphere around the object and looking directly at its
center are one such case. The locations of the epipoles decide
if the metric can be used to correct motion in a particular
spatial direction. Interventional C-arms generally allow for
a lot of flexibility in terms of direction of projection. In an
application where a certain motion shall be corrected for, its
main direction dictates the geometry of reference projections
for a stable result. A recent multi-axis robot system might even
automatically acquire a few low-dose shots before any FD-CT
short scan, to allow consistency metrics to correct for object

motion or refine calibration.

D. Considerations on Geometric Stability

In Figure 6 the location of the epipole for a circular FD-
CT trajectory is shown. Since all source positions are on a
plane, we do not get reliable information in the detector u axis,
except for opposing views. We would need at least one image,
which is not in that plane and greatly improve the condition of
the problem. We can summarize these considerations in three
conditions for an ideal situation for the sensitivity of our cost
function for 3D-parameters:

1) There should be two views of the object rotated by an
angle of approximately 90◦. This makes sure that we
can estimate the projection direction (i.e. away from the
camera) in either view

2) We need to have orthogonal epipolar lines in at least two
orthogonal projections. The effect of relative motion on
the location of the epipoles has been presented nicely
by Hartley [1]. For example, this can be achieved,
among other situations, by opposing views or by views
translated in parallel to the image planes and orthogonal
to the plane through the two camera centers and some
point inside the object. Our exploratory experiments
have indicated, that the ideal case consists of at least
three, preferably four equally spaced X-ray sources
around an object in all three dimensions, all seeing the
object center. Compare Figure 5.

3) The projection images must have variations in intensity
in both image dimensions. If the image gradient in the
image is mostly orthogonal to a set of epipolar lines
belonging to one line bundle, then the metric will not
reflect motion in that direction.

VI. EXPERIMENTS AND RESULTS

A. Parametrization and Optimization Algorithm

In Section IV-D we suggested a number of possible ap-
plications of the ECC. The exact algorithm depends on the
specific problem, i.e. the motion model, the kind of trajectory,
the time of acquisition of individual projection images and
so forth. In order to study the properties of the metric,
we restrict ourselves to the case where we optimize the
consistency of one particular projection 0 with a set of
reference projections 1...n. First, a parametrization of motion
has to be defined. In this paper, we restrict ourselves to the
largest set of colinearity-preserving transformations, namely
projective transformations. Without going into detail, suppose
we have a parametrization of homographies on either the
projection image Hφ ∈ R3×3, det(Hφ) > 0 or or the world
Tφ ∈ R4×4, det(Tφ) > 0 by some parameter vector φ. The
projection matrix then transforms as Pφ0 = HφP0T

φ. Just as
with image registration, a higher number of parameters may
negatively affect stability. In Section V-C we discussed that
not all errors may be observable in the metric. A transfor-
mation of the world or the image can also be explained by a
transformation of the camera, so we just presented a vast over-
parametrization. In reality we have at most n · 11 + 11 − 15
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Figure 5. Left: Sinusoid curves in Radon space containing redundant information given an angle between the principal rays of two projections. The color
of the lines corresponds to the geometry shown in Figure 6. Others: Three cases which allow us to optimize parameters in all three spacial directions. Left:
Opposing views, for all sources on a plane. Only epipolar lines for opposing views are shown. Center: One camera translates out-of-plane. The angle between
epipolar lines in image I′2 and I2 are closer to 90° than in I1. Right: Symmetric case when all source positions are roughly equally separated on a half sphere
around the object.

Ci

ei

ca. 
180°

C0

Ci

ei

C0ca. 
155°

Ci

C0

ei

ca. 120°

CiC0

ei ca. 0°

Figure 6. Sketches of the relative geometry for 4 pairs of views out of an
FD-CT trajectory. Since there is no out-of-plane motion or rotation in case
of a circular trajectory, the epipoles move on a line (dashed orange) in the
center of the image. In case of ca. 0°, the detectors are visualized next to
each other for better visibility when in reality they would be overlapping: In
this case, the epipole is almost at infinity.

independent parameters (n + 1 projection matrices up to a
transformation of the world). We will thus select only a subset
of the aforementioned parameters, for example detector shifts
or a rigid motion of the world. Using equation 51 we denote
the Epipolar Consistency metric

M(φ) =
∑
∀i>0

(
Rφ0 (P0,Ci, κ)−Ri(Pi,C0, κ)

)2

(52)

and obtain optimal consistency of the 0-th view with the other
views for an optimal set of parameters

φ? = argmin
φ

(M(φ)) (53)

Second, we need an optimization algorithm. Since the metric
is smooth, it seems safe to assume it is in C2 and we may
use one of many local non-linear optimization algorithms
and start from an initial guess φ0. In practice we have an
initial guess either from an inaccurate calibration or from
previously acquired data, for example in a fluoro sequence.
Most non-linear optimization algorithms, which do not assume
convexity can be used for this purpose. For example, we can

Figure 7. 3D-plots of the Metric of Epipolar Consistency for various
combinations of axes of ±10 and ± 2 cm. . From top left to bottom right:
Translation x and y, Rotation x and y, Translation y and Rotation y and
Translation x and Rotation z. Note that the same parameter dependencies as
in 2D-3D registration apply to this problem: translation in view direction of
the camera are more difficult to estimate than the other two spacial directions,
because they have a smaller effect on the projection image. Additionally, small
rotations about the z-axis have a similar effect as translations along the x-axis
(as with y, x swapped), which is also reflected in the valley-shaped plot of
the metric on the bottom right.

use a gradient-free optimizer in case of few parameters like
Downhill Simplex or, preferably, a gradient-based algorithm
and compute a numerical gradient.

B. Implementation Overview

We present the algorithm in world space using sum of
squared difference, to compute the ECC for k = 1 . . . n views.

1) Define a parametrization of projection matrices (e.g.
Pφ0 = P0T

φ with one rigid 6 DOF transformation Tφ).
2) Input: Several views (Ii,Pi), where i indexes the view

number, an angular distance dκ (for example: 0.1◦)
and the number of subdivisions of α and t for Radon
transform ρIi(α, t).
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3) Pre-processing: Compute discrete approximations to the
Radon derivatives d

dtρIi(α, t) for all images. This means
computing the 2D Radon transform and differentiating
numerically in t-direction. The pre-computed Radon
transform can be re-used, because the images do not
change during the optimization.

4) for each two-set containing the view which is being
optimized for {(I0,Pφ0 ), (Ii,Pi)}

a) for each integer j, such that the angle κ = j · dκ
meets −π2 ≤ κ <

π
2 (in parallel)

i) Compute a plane Eκ, see Algorithm 1
ii) Sample R0(P0,Ci, κ) and Ri(Pi,C0, κ), see

Algorithm 2
iii) m1

0 =
∑
κ

(R0(P0,Ci, κ)−Ri(Pi,C0, κ))
2

b) Sum up m := m+m1
0

5) Result: M(φ) = m

A smart algorithm could skip planes, which do not intersect
the detectors and/or planes which do not intersect the object.
In our implementation, the world origin X0 = (0, 0, 0, 1)>

is in the center of the object. We start with the plane E0 =
[B]× (0, 0, 0, 1)> and increment κ until we find a plane, which
no longer meets the object. Then, we go back to X0 and
decrement κ until we find another plane which again no longer
meets the object.

C. Random Studies

1) Artificial Data Set: We use a multistart local optimizer
(NLOpt’s Direct method [19] with a SBPLX [20] local op-
timizer, but other local optimizers were also successful) in a
range of ±10° and ±2 cm consistently in all our experiments.
We use attenuation-only forward projections with a resolution
of 640×640 px2 of a CT of a carp1 (ca. 200×200×400 mm3)
to test the behavior of the metric without truncation and few
symmetries in the data. We rendered digitally reconstructed
radiographs using ray-casting based on a simple monochro-
matic noise-free absorption-only model according to the Beer-
Lambert law, which does not model scatter.

Truncation as well as the magnitude and direction of edges
plays an important role for the metric, so a small animal
seems to be an ideal object to study geometric aspects of the
optimization. In order to correct for 3D motion, we need to
select reference views from all three sides of the object (e.g.
front, side, top). Further, we need enough views, such that
we have horizontal and vertical epipolar lines in all of the
views. Then, any other view around the object will also have
orthogonal epipolar lines for some of these reference views.
An example is shown in Figure 8. Note how the location of
the epipoles indicates, that we can “explain away” up to three
of the six images shown and get stable solutions with as few
as three reference images. Observe in Figure 7, that the cost
function is smooth and has a clear local minimum for rotations
and translations in all spacial directions within the range ±10°
and ±2 cm.

1http://www9.informatik.uni-erlangen.de/External/vollib/

Figure 8. Reference Images of the fish data set. We show two epipolar lines
for each other image, in the color of the frame around the other image. In order
to optimize for a 3D motion, we need to select views which do not all look in
the same or opposing direction and whose respective epipolar lines are almost
orthogonal in all images. For example, just by considering the direction of
epipolar lines, we can tell, that with respect to the red, green and blue images
in the top row, approximately the same information can be derived from the
yellow view as from the turquoise and magenta views combined. Another
example is, that the magenta, turquoise and any of the top row views together
allow for an optimization of 3D object motion .

2) Error and Accuracy: Reprojection error (RPE) was
calculated from the corner points of the bounding box denoted
as the set X containing 8 points. It is defined as

RPE =
∑
X∈X

distance (PreferenceX, PinputX) (54)

We summed up all RPEs of views that we optimized for. Note
that by choosing the bounding box corners for evaluation, we
are taking the extreme points of the object, which is an upper
bound to the error inside the object. We define the accuracy
of the method as the error introduced by the optimization
algorithm, when the ground truth is used as a starting point.
In a study of 100 different views of the object, we achieved a
mean accuracy of about 1.3 px. In most cases, the inaccuracy
of the method is not even noticeable close to the center of the
object. Accuracy deteriorated when truncation was involved.

3) Precision: In order to judge the reliability of our algo-
rithm, we artificially introduced disturbances to the projection
matrices. We did so, by applying our parameter model and
right-multiplying a rigid transformation of world space to the
input projection matrices. The following experiments are “ide-
alized”, since we disturbed only one of the projection matrices,
while the reference projection matrices were ground truth.
In practice, one would start by optimizing the consistency
of the reference views. In all of the following experiments,
we chose disturbances uniformly distributed over a range of
10° and 20 mm in all three axes. This corresponds to a quite
large mean RPE of about 25 px, or 4% of the image size. If
for example, input images were being acquired at a rate of
15Hz, this would correspond to a sudden object (i.e. patient)
movement at 30 cm per second and a rotation by 90◦ in just
0.6 seconds. We define precision as the mean RPE between
the most accurate solution and the solution for all randomly
disturbed samples. Figure 9 shows the relationship between

http://www9.informatik.uni-erlangen.de/External/vollib/
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Figure 9. Random Study of 250 random samples with uniform random
disturbance of ±10° and ±20 mm sorted by reprojection error before (left)
and after (right) optimization. In this case, accuracy was < 0.1 px and we
achieved a precision of 2.0 px after optimization, down from ca. 25 px before
optimization. In 90% of cases did we achieve an error below 5 px, which is
a threshold, beyond which errors are visually noticeable.

random disturbance and optimization result for one of many
input frames we tested.

4) Pre-Computation of Radon Transform: The algorithm
as suggested in this paper has two input parameters: the dis-
cretization of the derivative of the Radon transform d

dtρI(α, t)
in α and t, as well as the angular distance dκ between epipolar
planes Eκ. In this section, we study the effect of errors
introduced by the pre-computation of the Radon transform.
We used the same number of subdivisions in angular α and
intercept t direction, i.e. k samples per rotation by π and k
samples per translation by image diagonal. We found, that RPE
increases rapidly, when the resolution of the Radon derivatives
is chosen below 2562. It also does not improve when chosen
larger than 3842, compare Figure 12, left. In all other experi-
ments we constantly used 5122. These numbers are related to
the resolution of the image, examined in Section VI-C6. Note
that we are working with digitally reconstructed radiographs,
which due to reconstruction naturally have a lower spacial
resolution than a real X-ray image (the carp data set has just
256× 256× 512 voxels to begin with).

5) Sampling the Pencil of Planes: The other important
parameter is the angular difference dκ, which determines how
many samples will be drawn from the Radon derivative. An
upper bound is reached, when in both images epipolar lines are
less than one pixel apart within image bounds (here: ≈ 0.1°).
In theory, the computational effort depends linearly on this
angle. See Figure 10 for the result of random studies for dκ
from 0.1° to 3°, just like the one in Figure 9. We also show the
number of cost function evaluation per second, depending on
dκ. Observe, that at dκ = 1, we obtained decent results and are
able to compute the Epipolar Consistency metric for 7 images
about 6 thousand times per second with a CPU implementation
on low-end mobile hardware. Interestingly, one can see in
Figure 11, that the cost function is less smooth for fewer
epipolar planes.
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Figure 10. Effect of sampling the Radon transform more densely on quality
of optimization and computational speed (mobile Intel i3 CPU).

Figure 11. Plots of the cost function for varying angular distance between
epipolar planes dκ. From top left to bottom right: dκ =0.1, 0.5, 1.0, 2.0

6) Image Resolution and Noise: Find the results of the
random study for a Gaussian kernel with standard deviation
from 1− 10 px in Figure 12. Surprisingly, accuracy is merely
affected. It may be possible to use a scale-space approach
in the optimization. In Figure 13 find results for a simplistic
model for both detector and quantum noise. For detector
noise, we added Gaussian random values to the line integrals.
For quantum noise, we weighted Gaussian random values by
intensity. Albeit not a very good approximation to physics,
observe in Figure 13, that even for large amounts of noise,
we achieve high precision. This is due to the fact that noise
averages out during the computation of the line integrals.
While this is an expected result, it is nevertheless an important
validation, because it implies that we are able to work with
very low-dose X-ray images. Interventional C-arms are very
flexible in terms of geometry. It would be acceptable, for
example, to acquire a few out-of-plane shots before an FD-
CT scan, if that allowed us to apply stable motion correction
via data redundancies, compare Section V-C. Any robotic C-
arm were - in theory - able to acquire two or three low-dose
out-of-plane shots before any FD-CT acquisition by default.

7) Real Data Set: In addition to the simulation study, we
decided to demonstrate applicability on real hardware using
projection images from a interventional multi-axial C-arm.
To avoid truncation of the object, we use a pumpkin as a
phantom, which barely fits the field of view. Note that the
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Figure 12. Left: Effect of size of pre-computed Radon derivatives by
percentage of random samples with reprojection error less than 2 (magenta)
and 5 (red) pixels after optimization. Right: Accuracy (blue) and precision
(red) with standard deviations of σ1 = 0 and σ10 = 3.2 pixels.
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Figure 13. A simplistic model of detector (left) and quantum (right) noise. Top
row: a plot of accuracy (blue) and plus precision (red) in a random study with
n = 50. Center row: A plot of the metric for rotation x,y in case of 25% (left,
detector) and 30% (right, quantum) noise, for which the algorithm still works
acceptably well. Bottom row: Corresponding noisy digitally reconstructed
radiographs. The algorithm proved to be quite resilient to noise.

table is truncated in all projections. We had no control over
tube parameters and they vary between projections, which
forced us to choose Itube manually per projection. Ideally,
the vendor software would extract ray-sums. We present three
projection images in Figure 15, along with a visualization of
projection geometry in Figure 14. To extract the line-integrals,
we divided by a manually chosen initial intensity, which was
slightly above the maximum observed intensity. Apart from the
bead-phantom presented in Aichert et al. [8], this is the first
time motion compensation is applied to real projection images
from an interventional C-arm. We conduct two random studies
of sample size n = 500, for which we randomly disturbed
the projection matrix of the image with the black frame in
Figure 14 and 15, respectively. The first experiment randomly
displaced the object in parallel to the image plane by uniformly
distributed offsets in a range of ±3 cm, which corresponds
on average to about 150 px on the detector. Analogously to
2D-3D registration, depth is difficult to optimize in projection

Figure 14. Example for two source positions C0 and C1 and detectors (red
and green) , their joining baseline B (bold black) and three exemplary pairs
of epipolar lines (three different shades of blue)

-3
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-6 -4 -2 0 2 4 6

Figure 15. Top: Real projection images (X-ray intensities), which belong to
the red and green detectors in Figure 14 and one additional projection (black)
which shows a few epipolar lines for both the red and green projections.
Ground truth projection matrices were taken from the scanner’s odometry.
Bottom row: Plot of the signals R0(P0,C1, κ) (green) and R1(P1,C0, κ)
(red) for green epipolar lines in red detector and vise-versa (compare Equation
51).

space, which is why we neglected the direction orthogonal
to the image plane. Errors in that direction have relatively
little influence on the projection image, hence consistency.
The results are shown in Figure 16, right. The correct pose was
recovered up to 10 px, except for < 5% of cases, down from as
much as 250 px. This corresponds to a precision of well below
three millimeters. The method failed only for extreme offsets
of above ca. 300 px. The second random study examined a
combination of rotation and translation of the pumpkin. We
modeled translations in a range of 10 mm and rotations about
all three world axes in a range of ±1°. The results are shown
in Figure 16, left. The correct pose could be recovered up to
15 px down from as much as 100 px, except for two outliers.

VII. CONCLUSION

We present a new formulation for redundancies in transmis-
sion images based on the epipolar geometry between any pair
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Figure 16. Two random studies of n = 500 performed on the rightmost
image in Figure 15, sorted by initial error. The left study examines random
translations parallel to the image plane in a range of ±3 cm. The second
study included random translations of ±10 mm and rotations about all three
world axes of ±1°. Accuracy was ∼ 2.5 px and mean error ∼ 7.5 px in both
cases.

of projections of the same object. We use oriented projective
geometry to make the connection from Grangeat’s theorem
to the epipolar geometry of two X-ray projections, which
enables us to identify redundant line integrals in the projection
data. The beauty of this paper lies in the combination of
three fundamental topics of any course on Medical Imaging
and Computer Vision, namely the Beer-Lambert law of X-ray
attenuation, the 2D Radon transform and the Epipolar Geom-
etry between two pinhole cameras. We formulate the Epipolar
Consistency Conditions (ECC), whose relationship to other
consistency conditions, such as Helgason-Ludwig [21], [22]
and John’s equation [23] have yet to be established. Possibly,
some such formulations of consistency are special cases of
ECC. We further derived a metric for geometric consistency,
which exploits redundancies of line integrals to optimize the
projection geometry. We present a fast algorithm and detailed
implementation to compute the metric and observe some of
its properties, especially its ability to correct 3D parameters,
without the need for 3D reconstruction. By expression of
redundancy between two arbitrary projection views, we in
fact support any device or acquisition trajectory which uses
a cone-beam geometry. We acquired three projections of a
pumpkin using a standard clinical C-arm and could show that
Epipolar Consistency allows us to optimize geometric param-
eters. Additionally, we use synthetic data for more detailed
and controlled random studies. We argue, that the computation
of line-integrals on epipolar lines is essentially a projection
from 2D to 1D, which is analogous to the X-ray projection
from 3D to 2D. The understanding of the underlying epipolar
geometry gives us control over the sampling in Radon space
and it helps us to identify geometries for which the metric is
reliable. Potential applications might include tracking of the
patient or a rigid object in X-ray projections and automatic re-
calibration of the imaging system for FD-CT reconstruction.
Epipolar Consistency could spark more research applications
such as truncation or beam-hardening correction. Future work
could also attack inconsistencies due to truncation by pre-
weighting of intensities or plane-integrals and alternative ways
to compare the signals R1(P1,C0, κ) and R1(P1,C0, κ).
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