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Abstract. In computed tomography fiducial markers are frequently used
to obtain accurate point correspondences for further processing. These
markers typically cause metal artefacts, decreasing image quality of the
subsequent reconstruction and are therefore often removed from the pro-
jection data. The placement of such markers is usually done on a surface,
separating two materials, e.g. skin and air. Hence, a correct restoration
of the occluded area is difficult. In this work six state-of-the-art interpo-
lation techniques for the removal of high-density fiducial markers from
cone-beam CT projection data are compared. We conducted a qualita-
tive and quantitative evaluation for the removal of such markers and the
ability to reconstruct the adjoining edge. Results indicate that an iter-
ative spectral deconvolution is best suited for this application, showing
promising results in terms of edge, as well as noise restoration.

1 Introduction

A crucial step in medical image registration is to find accurate point correspon-
dences, which can be clearly detected in all acquired images. In computed to-
mography (CT) fiducial markers, represented by small metallic beads, are often
the method of choice. An advantage of fiducials is that they are well recognis-
able in the 2D projection images. However, after having exploited the markers’
spatial information, it is often necessary to remove them prior to further pro-
cessing. One reason for this is that metallic markers typically lead to increased
streaking artefacts in the reconstructed domain, substantially decreasing image
quality. The position of the markers might also be used to provide ground truth
information for further, marker-free processing methods [1].

Marker removal recovers missing data in the areas occluded by the object,
using the known, surrounding pixel values. In CT reconstruction, various meth-
ods have been proposed to remove high-density objects from projection data. A
simple but often adequate approach is to linearly interpolate the missing regions
based on a specified neighbourhood. Additionally, spline-based techniques have
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been proposed [1]. In contrast to spatial interpolation, an iterative spectral de-
convolution approach has been introduced in [2], showing promising results on
radiographic data. In [3], a concept has been proposed that also incorporates the
hidden structural information underneath high-density objects.

Despite the multitude of available methods, little attention has been paid to
the locational properties of the defects. Fiducial markers are usually attached
externally at a distinct edge between two materials, e.g. skin and air. Accurately
recovering this edge poses an additional challenge to the removal algorithm as
many of them assume only low-frequency changes in a defect’s neighbourhood.
In this work we compare the performance of six different algorithms for marker
removal with a special focus on their ability to restore material edges.

2 Materials and Methods

2.1 Automatic Marker Detection

For marker detection we used a fully automatic pipeline based on the fast radial
symmetry transform (FRST) [4]. Identifying corresponding markers over all pro-
jection images helps to reduce false positive detections. We solve this problem by
an initial detection of the 3D marker positions. The algorithm works as follows:

1. Apply the FRST to all projection images fj(x), with x ∈ R2 and j ∈ [1, P ].
2. Backproject a blurred version of the FRST outcome to 3D, yielding distinct

blobs for each marker.
3. Binarise the blobs using the maximum entropy method [5] and apply a 3D

connected component analysis. The components’ centroids then represent the
3D reference positions of each marker, denoted as vi ∈ R3 with i ∈ [1, B].
The number of markers B is given by the number of components.

4. Given the projection matrices P j , forward project the 3D reference points
onto each projection image yielding the 2D reference points uij = P jvi,
where j and i denote the j-th projection and i-th marker.

5. Extract a set of 2D candidate points uij for each projection image from
the initial FRST result, using a heuristically determined threshold and a 2D
connected-components analysis.

6. Assign the candidate points to the closest 2D reference points, essentially
solving the correspondence problem.

For a better accuracy, the 3D marker positions can be updated by the newly
assigned candidate points and a method described in [6]. Thus, the algorithm can
be applied iteratively by repeating step 4) to 6) with the updated 3D positions.

2.2 Marker Removal

As input for the marker removal we had the estimated 2D marker positions uij ,
which were then used to extract a binary defect mask

wj(x) =

{
0 if ‖(x− uij)‖2 < r, ∀i ∈ [1, B]

1 otherwise
, (1)
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where r is derived from the marker size and determines the invalid area and ‖.‖2
denotes the L2-norm. The removal was done separately for each marker using a
square region centred at the marker’s position. Let us define the set

Ωij = {x | ‖x− uij‖∞ < N/2} , (2)

that includes all pixel locations that are part of the square region, where N is the
region’s side length and ‖.‖∞ the infinity norm. Hence, the inputs for a removal
method are given by fj(xΩ) and wj(xΩ), for all xΩ ∈ Ωij . Let us further define
a subset of Ωij that contains all positions that are marked as defect, i.e.

Γij = {x | x ∈ Ωij ∧ wj(x) = 0} . (3)

Then the marker removal is described by estimating the missing data values at
positions Γij given the known data points at positions (Ωij \ Γij).

Six different interpolation techniques are compared. First we used a linear
interpolation (LinInt) approach. Further we applied cubic B-splines (BSpl), esti-
mated for each row and column separately [1]. The interpolation at the missing
position xΓ is then computed by the mean of the corresponding row and col-
umn spline. We also used the more general thin-plate smoothing spline (TPSpl).
Here a 2D surface is fitted to the valid pixels and evaluated at the missing posi-
tions. Normalised convolution (NConv) was applied as introduced in [7], which
is a Gaussian low-pass filter, normalised by incorporating information from the
given defect mask. We also applied the Subtract-and-Shift (SaS) method [3],
which aims to recover remaining high-frequency structure from the occluded
areas. Finally, the spectral defect interpolation (SpecInt) as proposed in [2] is
applied. This method estimates the missing information by an iterative approach
in the frequency domain, minimising the mean squared difference between the
estimated and observed image over all positions in (Ωij \ Γij).

2.3 Data and Experiments

We had access to a C-arm CT scan of a left knee, containing 8 fiducial tanta-
lum markers with 1 mm diameter, attached at distinct positions at the height
of the patella. The data was acquired on an Axiom Artis dTA (Siemens AG,
Forchheim, Germany), with a detector resolution of 1240×960 pixels, a pixel
size of 0.308×0.308 mm2 and an angular resolution of 496 projections acquired
over a range of 200◦. Further we generated synthetic phantom projections, using
the same geometry as for the real scan. The phantom consists of three encap-
sulated cylinders representing a simple model of tissue, bone and bone marrow.
The cylinders have radii of 80 mm, 35 mm and 31.5 mm and their attenuation
coefficients are set to water, bone and bone marrow, respectively. Eight metallic
beads with 1 mm diameter are attached in a helical trajectory around the outer
cylinder such that they overlap the cylinder’s surface by 0.1 mm. We also created
marker free reference projections, to obtain ground truth data.

Each removal method was applied to all 8 markers over 496 projections yield-
ing a total of 3968 interpolation steps per dataset and algorithm. Afterwards,
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Table 1. Quantitative results for each marker removal method based on the synthetic
dataset. The evaluated edge separates water (0 HU) and air (−1024 HU). “None” equals
the reconstruction without marker removal.

None LinInt BSpl TPSpl NConv SaS SpecInt

RMSE (HU) 30.12 13.84 9.26 9.91 19.50 14.62 8.08

σrmse (HU) 4.36 4.84 4.27 4.35 6.46 4.33 3.31

256×256×256 cubes were reconstructed centred at the bead positions, with a
spacing of 0.125×0.125×0.125 mm3. We also reconstructed the non-corrected
projections and the marker-less projections in the case of the synthetic data.
For a quantitative comparison the root mean squared error (RMSE) between
marker-free and interpolated reconstructions and its standard deviation over
the different markers (σrmse) were computed. The methods’ parameters, e.g. the
window width N , have been manually adjusted on the synthetic data.

3 Results

The quantitative results are shown in Tab. 1. Spectral interpolation performed
best with an RMSE of 8.08 HU and a standard deviation of 3.31 HU. The spline-
based approaches performed similarly well, followed by the linear interpola-
tion and Subtract-and-Shift. The normalised convolution showed a substantially
worse performance and also the highest standard deviation.

Fig. 1 depicts 16×16 mm2 regions centred around each marker. The ground
truth surface of the cylinder is overlayed as a dashed yellow line. Spectral inter-
polation shows the best result, almost perfectly recovering the cylinder’s edge.
The spline-based approaches show similar results with a slightly more blurred
edge. Increased blurring can be seen with linear interpolation and SaS, where the
latter could not remove the marker completely. Normalised convolution produced
streaking artefacts and could not sufficiently restore the missing information.

In Fig. 2 we show the results for the C-arm CT acquisitions, where Fig. 2a
gives an overview of the full reconstruction. A considerable amount of noise
was present which ideally would be restored in the defective area. The spectral
interpolation approach performed best, yielding a distinct edge profile and also
restoring the noise level. Compared to the synthetic data, the B-spline approach
produced noticeable streaking artefacts, whereas the thin-plate-splines showed
increased blurring making the outcome comparable to a linear interpolation.
The SaS was not able to remove the marker completely, yet the edge was well
restored and the noise level retained. The normalised convolution showed similar
artefacts as for the simulated data and performed worst.

4 Discussion

The results show that the spectral interpolation approach accurately restores
edges as well as noise properties. An important parameter for this algorithm is
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(a) Ground Truth (b) LinInt (c) BSpl (d) TPSpl

(e) None (f) NConv (g) SaS (h) SpecInt

Fig. 1. Bead removal results for the synthetic dataset. The images show a 16×16 mm2

region centred around the marker. The display window was [-922, 51] HU.

the location and width of the support region. In our data the markers’ size was
constant and their positions known, which might be one reason for the good per-
formance. The spline-based approaches did not retain the high performance seen
from the synthetic data when applied to the real data. The B-Spline approach
showed increased streaking artefacts which might be due to the increased noise
level of the real data. This seems reasonable as values are determined by informa-
tion based on the line and column only, not involving any other neighbourhood.
The thin-plate-spline shows an increased smoothing effect on real data, which
might be due to an additional increase in the regularisation parameter needed
to cope with the noise level. Simple linear interpolation robustly removes mark-
ers but tends to smooth the adjoining edge. By definition the SaS method aims
to retain high-frequency information, which is then aligned with the surround-
ing intensities [3]. The method was not able to remove the markers completely,
which we think is due to the high frequency implied by the small markers itself.
No sufficient performance was obtained when using the normalised convolution
which does not seem to be suitable for marker removal on surfaces.

We compared six techniques for the removal of high-density fiducial markers
from cone-beam CT projection data. The placement of the markers is typically
done on a distinct surface, which makes a correct restoration of the 3D recon-
struction more difficult. This study shows a qualitative and quantitative compar-
ison for the removal of such markers and the ability to reconstruct the adjoining
material edge. The results show that the spectral interpolation approach is best
suited for our application, showing promising results in terms of edge, as well as
noise restoration. An extension of this evaluation to arbitrary shaped markers
as well as data with patient-motion will be the subject of future work.
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(a) Full View (b) LinInt (c) BSpl (d) TPSpl

(e) None (f) NConv (g) SaS (h) SpecInt

Fig. 2. Bead removal results for the real dataset. Fig. a) shows the full reconstruction.
Fig. b) to h) show the method comparison focused on the marked rectangular region.

Acknowledgements

The authors gratefully acknowledge funding of the Research Training Group 1773
“Heterogeneous Image Systems” and the Erlangen Graduate School in Advanced
Optical Technologies (SAOT) by the German Research Foundation (DFG).

References

1. Mitrovic U, Spiclin Z, Likar B, Pernus F. 3D-2D Registration of Cerebral An-
giograms: A Method and Evaluation on Clinical Images. Medical Imaging, IEEE
Transactions on. 2013;32(8):1550–1563.

2. Aach T, Metzler VH. Defect interpolation in digital radiography: how object-
oriented transform coding helps. In: Proc. SPIE. vol. 4322; 2001. p. 824–835.
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