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Abstract—In computed tomography involuntary patient mo-
tion can lead to a severe degradation of image quality. Most of
the motion estimation methods rely on additional information,
such as fiducial markers or an ECG signal. In contrast, data
driven motion estimation exists which aims to estimate the motion
directly from the acquired projections. This is typically achieved
by the optimization of an error metric that is either defined in
the image or in the projection domain. In this work, we present
a novel data driven error function for motion compensation
in fan-beam CT and its combination with a simple motion
compensation scheme. The new method operates entirely in the
fourier domain of the sinogram, by enforcing zero energy regions
of the spectrum. Qualitative and quantitative results show that the
proposed method is able to remove most of the motion artifacts,
yielding a relative root mean square error of 7.09% compared
to 20.35% for the motion corrupted reconstruction.

Keywords—Computed Tomography, C-arm CT, Motion Com-
pensation, Image Reconstruction

I. INTRODUCTION

In computed tomography (CT) patient or scanner motion
can lead to severe motion artifacts, typically observable as
streaking. This is due to the fact that the acquired projections
are no longer consistent with the trajectory assumed for image
reconstruction. Detection and compensation of such motion
during the image reconstruction process can substantially in-
crease the image quality. However, often additional informa-
tion is necessary to detect the motion. For example external
markers which are clearly visible in the projection images can
be attached to estimate the patient motion [1]. The assumption
here is that the detected surface motion correlates to the motion
at the volume of interest (VOI), which might not always be
true. In the field of cardiovascular imaging, motion artifacts can
be reduced by ECG-gating. Here only a subset of the acquired
projections from similar heart phases is built by exploiting
information of the ECG signal that was acquired during the
scan. However, the ECG data might not correspond exactly
with the heart motion and reconstruction of such a subset can
also cause undersampling artifacts [2].

To allow for a motion compensated reconstruction inde-
pendent of additional information sources the motion needs
to be directly estimated from the acquired data. This type of
motion estimation typically requires an iterative minimization
of error metrics, where the motion is estimated such that the
error metric is minimized. The metrics can be defined directly
in the reconstructed image domain, but also in the sinogram
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space [3]. For parallel-beam geometry, it has been shown
that the two-dimensional Fourier transform of the sinogram
contains triangular shaped regions that have an absolute value
close to zero [4]. Recently this concept has been extended to
the fan-beam case [5]. In this work we utilize the findings of
[5] and propose an error metric and motion estimation scheme
that is entirely based in the fourier domain of the sinogram.

II. MATERIALS AND METHODS

A. Fourier Properties of the Sinogram

In Fig. 3(f) an example spectrum of a sinogram is shown
which clearly depicts the triangular regions. The size and
orientation of these regions depend on the maximum distance
of the object to the center of rotation rp, as well as the source-
to-patient distance L and the detector-to-patient distance D.
According to [5] the spectral zero regions for a flat detector
can be described by∣∣∣∣ ω

ω − ξ(L+D)

∣∣∣∣ > rp
L

, (1)

where ω and ξ are the frequency variables corresponding
to the projection angles and the detector rows, respectively.
The triangular regions are by definition designed for objects
centered in the rotation center. However, potential patient or
scanner motion violates this requirement. Hence, the overall
energy in the triangular spectral regions increases.

B. Error Measure for Motion Compensation

We now introduce the cumulative energy, i.e. the sum of
squared absolute values inside the triangular regions, as an
objective function for patient motion correction. The error
measure can be written as

e(P ) =
∥∥∥F ξ P F ω ◦W

∥∥∥2
F
, (2)

where P ∈ RM×N is the sinogram with N projections of
length M on its columns. F ξ ∈ RM×M and F ω ∈ RN×N

denote discrete fourier transform (DFT) matrices, correspond-
ing to DFTs along the detector and the projection angles,
respectively. W ∈ RM×N is a binary matrix that evaluates
to one where (1) is true and to zero otherwise. Further, ‖.‖2F
is the squared Frobenius norm and ◦ denotes the element-wise
matrix multiplication.

For the correction of the two-dimensional patient motion
we assume simple one-dimensional detector translations. Op-
timization of (2) requires frequent evaluations of the error
function including the 2D fourier transform. We utilize the
shift-theorem to move the detector translation after the 1D
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Fig. 1. Simulated periodic translation along the x-axis over the scan progress.

fourier transform along the detector. Let tn be the translation
of the n-th projection, then (2) can be rewritten as

[t1, · · · , tN ] = argmin
[t1,··· ,tN ]

∥∥∥ ((F ξ P )T )F ω ◦W
∥∥∥2
F
, (3)

with T =

e
−i 2πξM t1 · · · 0

...
. . .

...
0 · · · e−i

2πξ
M tN

 .

T ∈ RN×N is a matrix that has the phase factors on its
diagonal and is zero elsewhere. Note, that F ξP is independent
of tn and can thus be precomputed prior to optimization.
Thus, additional evaluations of (3) only require a 1D fourier
transform along the projection angles.

C. Gradient Computation

For a more robust numerical optimization it is advanta-
geous to have an analytically derived gradient of the cost
function [6]. In the following we derive the partial derivatives
of (3) with respect to the detector shifts tn. First, we build
the derivative of the Frobenius norm, where Tr(.) denotes
the trace and H the Hermitian operator. We used the identity
‖X‖2F = Tr

(
XXH

)
and define X = ((F ξ P )T )F ω ◦W .

∂

∂tn
‖X‖2F = Tr

((
∂

∂tn
X

)
XH +X

(
∂

∂tn
X

)H)
(4)

To evaluate (4) we need to derive the partial derivatives of X .

∂

∂tn
X =

∂

∂tn

(
((F ξ P )T )F ω ◦W

)
=

(
(F ξ P )

∂

∂tn
T

)
F ω ◦W (5)

=

(
(F ξ P )(−i2πξ

M
exp(−i2πξ

M
tn)J

nn)

)
F ω ◦W

= (E)F ω ◦W

Here Jnn is a single-entry matrix, which is one at (n, n) and
zero elsewhere. E ∈ RM×N can be interpreted as follows.
First we shift the projections by tn directly in the fourier
domain. Subsequent multiplication by −i 2πξM is equivalent to
the derivative over the shifted projections. With Jnn we then
select the n-th projection and set the others to 0. Because E
has only one non-zero column, the fourier transform over the
rows, F ω , degenerates to a simple vector multiplication

(E)F ω = enf
ω
n ,

Parameter Symbol/Unit High-quality Low-quality

Source-patient-distance L 600 600
Detector-patient-distance D 0 0
Approx. object extent [mm] rp 122.5 122.5
#Detector cells M 1240 620
Detector spacing [mm] du 0.25 0.5
#Projections N 892 240
Angular spacing [degree] dβ 0.404 1.5
Reconstruction size Rx × Ry 2048×2048 2048×2048
Pixel size [mm×mm] 0.125×0.125 0.125×0.125
Absorption model - monochromatic monochromatic
Photon Energy [keV] 80 50
#Photons - - 30000

TABLE I. SIMULATION PARAMETERS USED FOR THE EVALUATION.

where en ∈ RM×1 is the n-th column of E and fωn ∈ R1×N

is the n-th row of F ω . Considering the use of a fast fourier
transform (FFT) the complexity reduces from O(MN log(N))
to O(MN).

Because X is already computed when evaluating the error
function (3), the gradient computation does not require an
additional FFT and can be implemented efficiently.

III. EVALUATION AND RESULTS

A. Evaluation

To evaluate our method we used the central slice of the
FORBILD head phantom1. The experiments consisted of a
high quality, noise free scan, but also a low quality, noisy
simulation to investigate the method’s behaviour under more
realistic conditions. The geometric, as well as the reconstruc-
tion parameters used for the simulations are presented in
Table I.

Affine motion of the head phantom has been simulated as
an accelerated periodic translation around the x-axis, denoted
as tx(β). The motion model can be described by

tx(β) = t̂x

(
2

1 + exp (a cos (kβ))
− 1

)
, (6)

where t̂x is the amplitude, k is the number of periods per scan,
and a is an acceleration factor. For our simulation we chose
t̂x = 5 mm, k = 16 deg−1 and a = 4. Fig. 1 depicts a plot of
the x-axis translation over the scan progress.

The evaluation procedure for both, low-quality and high-
quality simulations, was as follows. First we analytically
computed the sinogram for the motion corrupted but also for
the motion free case. As a reference we also rendered the
phantom directly in the reconstruction space, where we used
the attenuation coefficients as pixel intensities. Note that the
attenuation coefficients are energy dependent, hence the low-
quality differs from the high-quality ground truth phantom.
All simulations have been carried out using the open source
software CONRAD [7].

For the minimization of the cost-function (3) we used the
L-BFGS algorithm, where we provided the partial derivatives
as given by (4). To compute the mask W the object extent rp
is required. We estimated rp from the sinogram by measuring

1www.imp.uni-erlangen.de/phantoms



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Qualitative reconstruction results for the high-quality (top row) and the low-quality (bottom row) simulations. From left to right: Ground truth rendering,
motion corrupted, motion corrected and the motion free reconstruction. Visualization windows are [0.07, 0.27] for the top and [0.07, 0.80] for the bottom row.

the maximum distance between the projection boundaries (see
Table I). The optimization was done repeatedly using a multi-
resolution approach. The sinogram scaling factors were 0.25,
0.5 and 1 and a zero vector was used for initialization. The
optimized shifts were incorporated into the reconstruction as
described in [8].

For a quantiative evaluation we computed the relative root
mean square error (rRMSE) of the motion corrupted, the
corrected and the motion-free reconstruction with respect to
the corresponding ground truth. The rRMSE is defined as

rRMSE (R,G) =
1

Îg
‖R−G‖F

where R is the reconstructed and G the ground truth image
and Îg the intensity range of G.

B. Results

Figure 2 shows the reconstruction results for the high (top
row) and low-quality (bottom row) simulations. In both cases
the image quality improved substantially when comparing
the corrected to the motion corrupted reconstructions. The
proposed method was able to restore edges, especially at the
lateral boundaries. However, in the high-quality simulations
we still observe some residual streaking artifacts compared to
the reference reconstruction where no motion was present. For
the low-quality simulations our approach yielded comparable
results to the motion free reconstruction.

The sinograms and their spectra are depicted in Fig. 3 for
the high-quality simulations. The motion and its correction
is clearly visible in the spatial domain. This observation is
supported by the corresponding spectra, where we clearly see
a reduced energy in the superimposed triangular regions. This
is in agreement with the actual error function values provided
in Table II.

Measure With motion Corrected Reference

High-quality
rRMSE [%] 20.35 7.09 2.48
e(P ) [×106] 1648.49 32.35 0.34

Low-quality
rRMSE [%] 25.12 13.97 12.57
e(P ) [×106] 109.55 6.32 4.12

TABLE II. ERROR FUNCTION AND RRMSE VALUES FOR THE MOTION
CORRUPTED, THE CORRECTED AND THE REFERENCE SPECTRA.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Sinograms (top row) and their logarithmically scaled spectra (bottom
row) for the noise-free projections. From left to right: motion corrupted,
motion corrected and the motion free reference. Visualization windows are
[1.0, 5.5] for the sinograms and [1.5, 5.0] for the log-spectra.

In Fig. 4 we can see a detailed view of the reconstructed
area around the phantom’s resolution pattern for the noise-free
data. In comparison to the motion corrupted reconstruction,
where the pattern is no longer visible, the proposed method
could restore the pattern adequately. However, we can see some
loss of information compared to the motion free reconstruction.
For the noisy data a close-up of the phantoms ear is shown
in Fig. 5. Compared to the non-corrected reconstruction, our
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Fig. 4. The reconstructed resolution pattern for the high quality simulations.
From (a) to (d): Ground truth, motion corrupted, motion corrected and motion
free reconstruction. The region’s position is superimposed in Fig. 2(a).

(a) (b) (c) (d)

Fig. 5. The reconstructed left ear in case of the noisy data. From left
to right: Ground truth, motion corrupted, motion corrected and motion free
reconstruction. The region’s position is superimposed in Fig. 2(e).

method was able to restore the encapsulated air bubbles,
yielding similar results to those seen in the motion free
reconstruction.

To get an impression of how accurate the translations
were estimated, we forward projected the moving phantom’s
center position to the detector for each projection. In Fig. 6
the forward projected (gray, solid line) and the estimated
translations (orange, dashed line) are plotted for the high-
quality simulations. The plot shows that our approach reliably
estimated the translational effect of the motion. A very similar
result was obtained for the low-quality case.

IV. DISCUSSION

Our evaluation shows promising results for ideal high-
quality data without noise. Because the error function is
defined in the fourier domain we show that the method also
works for low-quality simulations which contain a significant
amount of noise. Compared to the reconstructions without
motion correction, our approach improved image quality sub-
stantially. For the low-quality case the motion compensated
reconstruction yielded comparable results to those of the
reference reconstruction without motion. This is in line with
the achieved quantitative results as shown in Table II.

In case of the high-quality data our method was able to
restore most of the structures, yet we still observe some re-
maining motion-based artifacts. This limitation might be due to
our relatively simple motion model which only takes detector
shifts into account. Shifting the detector can effectively only
compensate for that part of the motion that was parallel to the
detector. It does not take potential scaling of the projections
into account that occur from motion orthogonal to the detector.
The resulting residual artifact is represented by small ripples
in the corrected sinogram in Fig. 3(b). In Fig. 6 we show that
when we only consider the motion parallel to the detector, the
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Fig. 6. Forward projection of the phantom’s center (solid line) compared to
the estimated detector shifts (dashed line), for the high-quality data.

optimization of our error measure is capable of estimating the
motion with high accuracy.

A simulated periodic motion along the x-axis was used for
this proof of concept. Evaluations with a more realistic patient
motion will be part of future work. Further, we plan to extend
the underlying fourier properties to a cone-beam formulation
where we also want to incorporate short-scans. This would
then allow its application on real C-arm CT data.

V. CONCLUSION

In this work we present a novel data driven error function
for motion compensation in fan-beam CT. Further we introduce
its combination with a simple motion compensation scheme
by incorporating projection shifts. We also derive the gradient
and show that its computation can be implemented efficiently.
Our qualitative and quantitative results show that the proposed
method is able to correct most of the motion artifacts.
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