Incremental Dimensionality Reduction for Respiratory Signal Extraction From X-Ray Sequences

Peter Fischer¹ Thomas Pohl² Andreas Maier¹ Joachim Hornegger¹ 2014\10\14

¹Pattern Recognition Lab, University Erlangen-Nuremberg, Germany

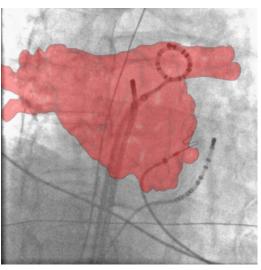
²Siemens Healthcare, Forchheim, Germany

1st Conference on Image-Guided Interventions, Magdeburg, Germany

Introduction

Guidance for Fluoroscopy

- Guidance of minimally invasive interventions
- X-ray fluoroscopy visualizes high-density structures well
- Overlays to visualize low-density structures of interest
- Pre-procedural creation of overlays,
 e.g. segmentation from CT, MR, ...
- Clinical applications
 - Cardiology
 - Electrophysiology
 - Abdominal interventions



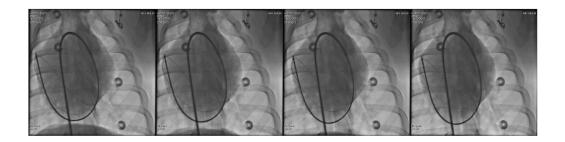
Guidance for Fluoroscopy

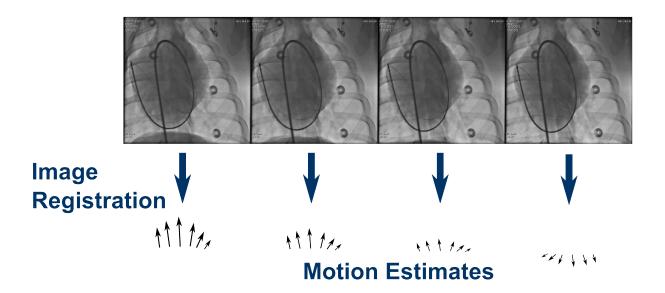
State of the art: static overlays

- Information about 3-D structure of soft tissue
- Navigation help for the physician
- Inconsistency between overlays and live images due to
 - patient motion
 - cardiac motion
 - respiratory motion

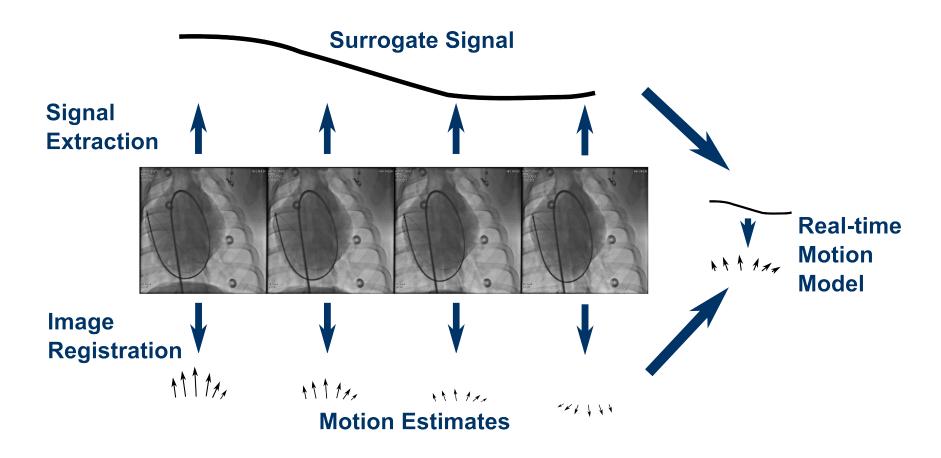
Motion compensation for overlays using motion models¹

¹Jamie R. McClelland et al. "Respiratory Motion Models: A Review." In: Medical Image Analysis 17.1 (2013), pp. 19–42.



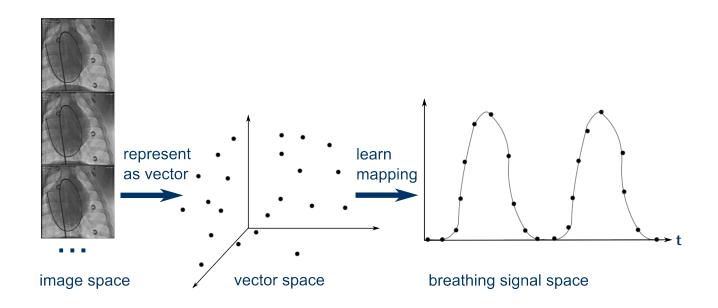






Methods

Dimensionality Reduction for Respiratory Signal Extraction



Dimensionality Reduction

Recover underlying causes of image variation from the X-ray sequence by learning the relationship between images and causes

Dimensionality Reduction

- Dimensionality reduction: $\mathbf{X} \in \mathbb{R}^{N \times M} \to \mathbf{X} \in \mathbb{R}^{N \cdot M} \mapsto \mathbf{y} \in \mathbb{R}^1$
- Learn mapping from data in unsupervised manner
- Preserve geometric properties in the embedding
- Major distinction: Linearity
 - Linear approaches: Principal component analysis, multidimensional scaling
 - Nonlinear approaches: Manifold learning, clustering
- Respiratory signal extraction from X-ray feasible with manifold learning²

Are linear approaches sufficient?

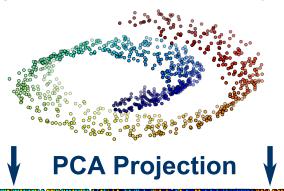
²Peter Fischer, Thomas Pohl, and Joachim Hornegger. "Real-Time Respiratory Signal Extraction from X-Ray Sequences using Incremental Manifold Learning". In: Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on. IEEE. Beijing, China, 2014.

Incremental Principal Component Analysis

Maximizes explained variance of projected components

$$\max \sum_{i} \operatorname{var}(y_i)$$

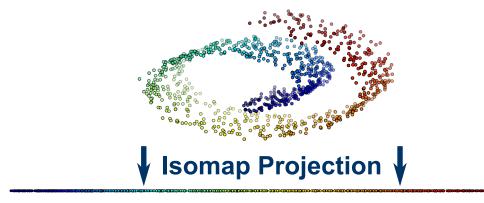
- Projection is restricted
 - Linear projection model y = Wx
 - Orthogonal dimensions $\mathbf{w}_0 \perp \mathbf{w}_1 \perp \dots$
- Incremental version approximates W iteratively for each new x



³ Juyang Weng, Yilu Zhang, and Wey-Shiuan Hwang. "Candid covariance-free incremental principal component analysis". In: *Pattern Analysis and Machine Intelligence, IEEE Transactions on* 25.8 (2003), pp. 1034–1040.

Incremental Manifold Learning

- Preserve geodesic distance between images
- Geodesic distance approximated using neighborhood graph
- Incremental version saves unnecessary computations⁴



⁴Martin H. C. Law and Anil K. Jain. "Incremental Nonlinear Dimensionality Reduction by Manifold Learning." In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 28.3 (2006).

Evaluation

Evaluation Setup

Data

- 13 X-ray sequences of 76 to 465 images from animal studies
- Images of 1024×1024 pixels downsampled to 256×256 pixels
- Varying point of view and clinical devices
- Training phase of 40 images
- Number of neighbors in Isomap k = 20

⁵Juyang Weng, Yilu Zhang, and Wey-Shiuan Hwang. "Candid covariance-free incremental principal component analysis". In: *Pattern Analysis and Machine Intelligence, IEEE Transactions on* 25.8 (2003), pp. 1034–1040.

⁶Peter Fischer, Thomas Pohl, and Joachim Hornegger. "Real-Time Respiratory Signal Extraction from X-Ray Sequences using Incremental Manifold Learning". In: Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on. IEEE. Beijing, China, 2014.

Evaluation Setup

Data

- 13 X-ray sequences of 76 to 465 images from animal studies
- ullet Images of 1024 imes 1024 pixels downsampled to 256 imes 256 pixels
- Varying point of view and clinical devices
- Training phase of 40 images
- Number of neighbors in Isomap k = 20

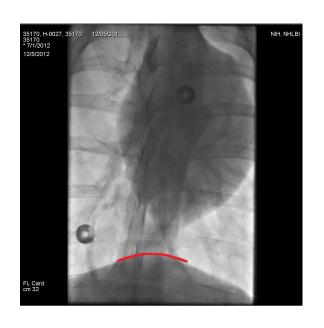
Compared Algorithms

- IPCA: incremental PCA (linear)⁵
- INCISO: incremental manifold learning (nonlinear)⁶

⁵Juyang Weng, Yilu Zhang, and Wey-Shiuan Hwang. "Candid covariance-free incremental principal component analysis". In: *Pattern Analysis and Machine Intelligence, IEEE Transactions on* 25.8 (2003), pp. 1034–1040.

⁶Peter Fischer, Thomas Pohl, and Joachim Hornegger. "Real-Time Respiratory Signal Extraction from X-Ray Sequences using Incremental Manifold Learning". In: *Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on.* IEEE. Beijing, China, 2014.

Correlation with Diaphragm Tracking

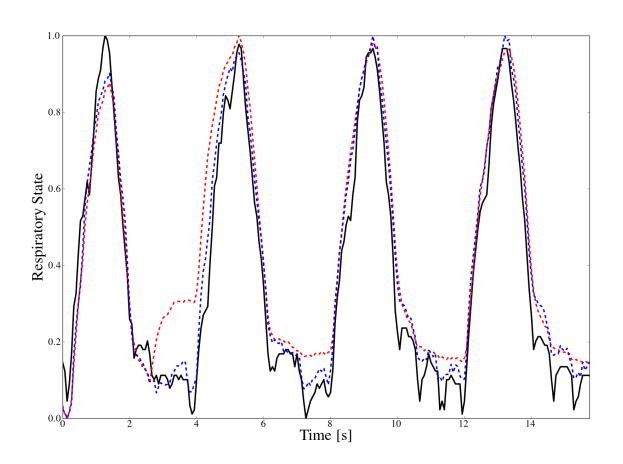


- Tracking of the diaphragm⁷
- Comparison with the y-coordinate of the diaphragm top
- Measure similarity using normalized cross-correlation $NCC_{diaphragm}$ (mean \pm standard deviation)

Method	<i>NCC</i> _{diaphragm}	Runtime [ms]
IPCA	0.93 ± 0.05	4.6 ± 1.1
INCISO	0.97 ± 0.02	22.7 ± 12.0

⁷Marco Bögel et al. "Diaphragm Tracking in Cardiac C-Arm Projection Data". In: Bildverarbeitung für die Medizin. 2012, pp. 33–38

Example Respiratory Signal from X-Ray Sequence



- Diaphragm tracking
- IPCA
- INCISO

Conclusion

Conclusion and Outlook

- Real-time respiratory signal extraction from X-ray sequences
- Linear and nonlinear dimensionality reduction to learn breathing manifold
 - In theory, nonlinear relationship between respiratory motion and image intensities
 - Tradeoff between accuracy and speed
- ⇒ Nonlinear dimensionality reduction is superior

Conclusion and Outlook

- Real-time respiratory signal extraction from X-ray sequences
- Linear and nonlinear dimensionality reduction to learn breathing manifold
 - In theory, nonlinear relationship between respiratory motion and image intensities
 - Tradeoff between accuracy and speed
- ⇒ Nonlinear dimensionality reduction is superior
- Future work combination with a motion model to enable motion compensation

Thank you for your attention!

