Incremental Dimensionality Reduction for Respiratory Signal Extraction From X-Ray Sequences

Peter Fischer1 Thomas Pohl2 Andreas Maier1 Joachim Hornegger1

2014\textbackslash10\textbackslash14

1Pattern Recognition Lab, University Erlangen-Nuremberg, Germany
2Siemens Healthcare, Forchheim, Germany

1st Conference on Image-Guided Interventions, Magdeburg, Germany
Introduction
Guidance for Fluoroscopy

- Guidance of minimally invasive interventions
- X-ray fluoroscopy visualizes high-density structures well
- Overlays to visualize low-density structures of interest
- Pre-procedural creation of overlays, e.g. segmentation from CT, MR, ...
- Clinical applications
 - Cardiology
 - Electrophysiology
 - Abdominal interventions
Guidance for Fluoroscopy

State of the art: static overlays

- Information about 3-D structure of soft tissue
- Navigation help for the physician
- Inconsistency between overlays and live images due to
 - patient motion
 - cardiac motion
 - respiratory motion

Motion compensation for overlays using motion models

Motion Compensation for Overlays
Motion Compensation for Overlays

Image Registration

Motion Estimates
Motion Compensation for Overlays

Surrogate Signal

Signal Extraction

Image Registration

Motion Estimates
Motion Compensation for Overlays

Image Registration → Motion Estimates → Real-time Motion Model → Surrogate Signal → Signal Extraction
Methods
Dimensionality Reduction for Respiratory Signal Extraction

Dimensionality Reduction
Recover underlying causes of image variation from the X-ray sequence by learning the relationship between images and causes.
Dimensionality Reduction

- Dimensionality reduction: \(X \in \mathbb{R}^{N \times M} \rightarrow x \in \mathbb{R}^{N \cdot M} \rightarrow y \in \mathbb{R}^{1} \)
- Learn mapping from data in unsupervised manner
- Preserve geometric properties in the embedding
- Major distinction: **Linearity**
 - Linear approaches: Principal component analysis, multidimensional scaling
 - Nonlinear approaches: Manifold learning, clustering
- Respiratory signal extraction from X-ray feasible with manifold learning²

Are linear approaches sufficient?

Incremental Principal Component Analysis

- Maximizes explained variance of projected components
 \[\max \sum_i \text{var}(y_i) \]

- Projection is restricted
 - Linear projection model \(y = Wx \)
 - Orthogonal dimensions \(w_0 \perp w_1 \perp \ldots \)

- Incremental version\(^3\) approximates \(W \) iteratively for each new \(x \)

Incremental Manifold Learning

- Preserve geodesic distance between images
- Geodesic distance approximated using neighborhood graph
- Incremental version saves unnecessary computations

Evaluation
Evaluation Setup

Data

- 13 X-ray sequences of 76 to 465 images from animal studies
- Images of 1024×1024 pixels downsampled to 256×256 pixels
- Varying point of view and clinical devices
- Training phase of 40 images
- Number of neighbors in Isomap $k = 20$

Evaluation Setup

Data

- 13 X-ray sequences of 76 to 465 images from animal studies
- Images of 1024×1024 pixels downsampled to 256×256 pixels
- Varying point of view and clinical devices
- Training phase of 40 images
- Number of neighbors in Isomap $k = 20$

Compared Algorithms

- IPCA: incremental PCA (linear)5
- INCISO: incremental manifold learning (nonlinear)6

Correlation with Diaphragm Tracking

- Tracking of the diaphragm
- Comparison with the y-coordinate of the diaphragm top
- Measure similarity using normalized cross-correlation $NCC_{\text{diaphragm}}$ (mean ± standard deviation)

<table>
<thead>
<tr>
<th>Method</th>
<th>$NCC_{\text{diaphragm}}$</th>
<th>Runtime [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPCA</td>
<td>0.93 ± 0.05</td>
<td>4.6 ± 1.1</td>
</tr>
<tr>
<td>INCISO</td>
<td>0.97 ± 0.02</td>
<td>22.7 ± 12.0</td>
</tr>
</tbody>
</table>

7 Marco Bögel et al. “Diaphragm Tracking in Cardiac C-Arm Projection Data”. In: Bildverarbeitung für die Medizin. 2012, pp. 33–38
Example Respiratory Signal from X-Ray Sequence

- Diaphragm tracking
- IPCA
- INCISO
Conclusion
Conclusion and Outlook

- Real-time respiratory signal extraction from X-ray sequences
- Linear and nonlinear dimensionality reduction to learn breathing manifold
 - In theory, nonlinear relationship between respiratory motion and image intensities
 - Tradeoff between accuracy and speed
- ⇒ Nonlinear dimensionality reduction is superior
Conclusion and Outlook

- Real-time respiratory signal extraction from X-ray sequences
- Linear and nonlinear dimensionality reduction to learn breathing manifold
 - In theory, nonlinear relationship between respiratory motion and image intensities
 - Tradeoff between accuracy and speed
 ⇒ Nonlinear dimensionality reduction is superior
- Future work
 combination with a motion model to enable motion compensation
Thank you for your attention!