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ABSTRACT

In X-ray fluoroscopy-guided minimally invasive interven-

tions, overlays of pre-procedurally acquired image data can

be used to visualize soft-tissue. In the thoracic and abdomi-

nal regions, static overlays are inconsistent to the live X-ray

images due to respiratory motion of the patient. This error

can be reduced by dynamically adapting the overlay to the

respiration. A first step in this direction is the real-time ex-

traction of the respiratory state from the live X-ray images.

The respiratory state can drive a motion model to compensate

the breathing motion.

We present a method to extract respiratory signals from

X-ray sequences in real-time. Respiratory signal extraction is

viewed as a dimensionality reduction problem, which is per-

formed for each X-ray image using incremental Isomap. The

method has a correlation of 0.97± 0.02 with internal breath-

ing motion and an average runtime of 42 ms per image. The

method is accurate, robust, and can be used in a wide range

of clinical applications and fields of view.

Index Terms— respiratory signal extraction, motion

compensation, X-ray fluoroscopy, dimensionality reduction,

manifold learning

1. INTRODUCTION

Fluoroscopic guidance is well suited to visualize high density

structures like interventional devices and bones. However,

many minimally invasive interventions require the visualiza-

tion of soft tissues, e.g. heart, liver, or vasculature, which have

low contrast in X-ray images. Soft tissue can be visualized by

overlays generated from pre-procedurally acquired 3D or 4D

images like CT or MR. The usefulness of static overlays is

limited due to cardiac and respiratory motion of the patient.

The motion causes an inconsistency between the overlay and
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the live X-ray images. Dynamically adapted overlays are po-

tentially much more accurate. This work focuses on respira-

tory motion only.

There are many approaches to compensate for patient mo-

tion. Tracking of well-visualized objects that are coupled with

the breathing motion, e.g. certain interventional devices [1] or

body parts [2], provides a direct estimate of the desired mo-

tion, but is restricted to specific applications or fields of view.

A widely applicable method are respiratory motion models.

A model of the tissue motion due to respiration is generated

pre-procedurally. The model allows to infer the motion using

a surrogate respiratory signal. During the intervention, only

the surrogate signal has to be acquired. A comprehensive in-

troduction to respiratory motion models can be found in [3].

The respiratory signal can be acquired in different ways.

A straight-forward solution is to measure the respiration us-

ing an external device. External devices create additional

effort for patient setup and synchronization with the imag-

ing system. These drawbacks are avoided if the respiratory

signal is extracted directly from the X-ray images. Berbeco

et al. achieve this by measuring the intensity changes in a re-

gion of interest (ROI) [4]. Vergalasova et al. analyze the ef-

fects of respiratory motion on the frequency transform of X-

ray images [5]. Zijp et al. enhance diaphragm-like features

and track their movement along the cranio-caudal axis [6]. In

recent years, dimensionality reduction techniques have been

adopted frequently to extract the respiratory signal. Mani-

fold learning is a popular nonlinear approach to dimensional-

ity reduction. Wachinger et al. use manifold learning to gen-

erate a respiratory signal for ultrasound and MR gating [7].

Yan et al. approximate the breathing manifold locally using

foreground extraction and local principal component analysis

(PCA) for cone beam CT reconstruction [8].

So far, manifold learning has been applied to respiratory

signal extraction only retrospectively after all the images were

acquired, which is not suitable for dynamic overlays. This

work presents a method to extract a respiratory signal using

manifold learning from live X-ray sequences in real-time. In

addition, we experimentally compare it to the state of the art.



2. MATERIALS AND METHODS

2.1. Manifold Learning

Dimensionality reduction is the projection of N points X in

high-dimensional space RD to N points x in low-dimensional

space R
d. Manifold learning describes dimensionality reduc-

tion methods that assume that the data in high dimensional

space actually lies on a low-dimensional, nonlinear manifold.

The goal is to remove the unnecessary dimensions and un-

warp the nonlinearity in order to embed the data in a low-

dimensional Euclidean space.

There are a of number manifold learning algorithms, each

trying to preserve different properties of the high-dimensional

space. For our application, Isomap yields good results [9]. In

Isomap, the mapping to low-dimensional space is designed to

preserve the geodesic distances between the high-dimensional

points. The geodesic distance between two points is measured

along the manifold. This is realized by a discrete approxima-

tion of the manifold with a k-nearest-neighbor (kNN) graph.

The nearest neighbors are determined by the Euclidean dis-

tance ‖Xi −Xj‖2. The geodesic distance between points is

computed using shortest paths on the kNN-graph. The re-

sult is a matrix K ∈ R
N×N of geodesic distances between

points, which can be interpreted as a kernel matrix. The low-

dimensional embedding is determined by eigendecomposi-

tion of the centered kernel matrix K̃. Given the eigenvector

vj corresponding to the j-th largest eigenvalue of K̃, the em-

bedding of the i-th point is xi(j) =
√
Nvj(i), where vj(i)

is the i-th component of vj . As the relative importance of the

eigenvectors is not important for this application, the embed-

ding is not weighted by the eigenvalues as in standard Isomap.

Instead, the eigenvectors are normalized to length N to avoid

shrinkage of the eigenvector components due to newly arriv-

ing samples.

2.2. Incremental Isomap

Real-time computation of Isomap is not feasible for each live

image. With the standard implementation, nearest neighbor

search grows with O
(

N2
)

, while all pair shortest path and

eigendecomposition each grow with O
(

N3
)

. An option is to

compute Isomap in a training sequence and use out of sam-

ple extension to embed live images. However, this option

does not use the live images to improve the mapping and is

not adaptive. A better option is incremental Isomap, which

updates the embedding without recomputing unchanged in-

formation [10]. This is achieved by only computing the Eu-

clidean distances between the new point XN+1 and the old

points. The changes in the kNN-graph are tracked and only

the affected shortest paths are recomputed. In addition, the

eigendecomposition is not computed from scratch, but up-

dated from the previous solution, assuming that the new point

does not change the manifold and thus the eigenvectors and

eigenvalues drastically.

2.3. X-Ray Sequence Processing

For X-ray processing, the input of the dimensionality reduc-

tion is a sequence of images of M × M pixels, each corre-

sponding to a vector of dimensionality D = M · M . The

manifold assumption is well justified for medical X-ray se-

quences, as the imaging system is a controlled environment.

All the variations in the images stem from motion of the pa-

tient, e.g. cardiac and respiratory motion, or interactions of

the physician, e.g. device motion and contrast agent injec-

tion. We are interested in respiratory motion, which is as-

sumed to be the most dominant cause of variation. If this is

not true, the images are embedded in more than one dimen-

sion. The dimension with the largest eigenvalue that has a

dominant frequency in the known range of human breathing

is then identified as the respiratory signal. However, the as-

sumption is valid in all our experiments. Consequently, the

algorithm maps each image to a one-dimensional respiratory

state (d = 1).

The mapping is learned for each sequence in an unsuper-

vised manner. Therefore, no manual interaction is required

and the algorithm does not need to deal with inter-patient

variation. As the breathing motion is not parametrized, com-

plex motion patterns can be handled automatically [7]. This

approach also implies constraints. Respiratory motion is as-

sumed to be quasi-periodic, i.e. images from the same respi-

ratory state have a similar appearance. The reason is that the

embedding is based only on image similarities. This also im-

plies that at least one full breathing cycle must be observed in

a training phase of T images in the beginning of the procedure

until the mapping can give correct results. Another drawback

of this method is that a change of the C-arm angulation or

the table position invalidates the mapping. Therefore, it must

be relearned after each system movement. However, if image

acquisition is paused and the C-arm position is not changed,

the mapping is still valid. In addition, if only a few fixed C-

arm positions are used during a clinical procedure, a separate

mapping can be maintained for each position.

Apart from real-time computation, incremental Isomap al-

lows for adaptively changing the manifold [10]. This is useful

to adapt the embedding to gradual changes of the image ap-

pearance. This can be implemented easily by removing the

oldest image from the problem each time a new image arrives

[10]. Additionally, this has the benefit that memory consump-

tion and runtime, which grow approximately linearly with the

number of images, are bounded. However, the experiments of

this paper keep all the images of the respective sequence.

3. EVALUATION AND RESULTS

The data set consists of 48 X-ray sequences from animal stud-

ies containing moving catheters and contrast agent. The field

of view includes images of the thorax and abdomen. The se-

quence length N varies between 74 and 588. The images have



a size of M = 1024 pixels in each dimension, at a sampling

rate of 8 to 15 images per second. The C-arm position is not

changing during a single sequence.

The proposed incremental Isomap method (INCISO) is

compared to the following algorithms:

• IA: intensity analysis in a ROI [4]

• AS: tracking of diaphragm-like features in the Amster-

dam Shroud [6]

• LPCA: foreground extraction and local PCA [8]

• BATCH: manifold learning with standard Isomap

These algorithms cover a wide range of approaches to res-

piratory signal extraction. The BATCH and LPCA methods

require the full sequence for processing and are thus not ap-

plicable to real-time respiratory signal extraction. The ROI

for IA is fixed to the lower two thirds of the image. The pa-

rameters for INCISO are K = 20 neighbors for the graph and

a training phase of T = 40 images. The same K is used for

BATCH. The algorithms are not sensitive to changes in K,

the results for 5, 10, 20 and 30 are similar. As fine image de-

tails are not crucial for BATCH and INCISO, the images are

downsampled by a factor of 4 for these algorithm.

The quantitative comparison of algorithms is difficult as

a ground truth respiratory signal is in general not available.

In the 13 sequences where the diaphragm is visible through-

out, a diaphragm tracking algorithm with additional manual

supervision is used as ground truth [2]. The movement of

the diaphragm in cranio-caudal direction is assumed to corre-

spond to respiratory motion. The benefit of the above meth-

ods is that they are applicable even if the diaphragm is not

visible. The algorithm outputs are compared to the diaphragm

signal using normalized cross-correlation (NCCdiaphragm).
To investigate how consistent the methods are over different

views, the respiratory signals extracted from 6 simultaneous

biplane sequences are compared to each other using normal-

ized cross-correlation (NCCbiplane). Ideally, the respiratory

signals should be the same irrespective of the view. To be

able to evaluate all 48 sequences, the full inhale peaks were

identified manually in the images. Full exhalation is not used

as it is a longer state where the start and end are hard to de-

fine and measure exactly. The offset (in number of images)

of the manually extracted peaks to the nearest peaks of the

algorithm signals is used as a measure (∆peak). A peak is

detected in the respiratory signals automatically if the signal

value is higher than the 3 previous and subsequent samples.

The results of the experiments are summarized in Table 1.

Either BATCH or LPCA is always the best method. BATCH

has a high correlation of 0.98 to the diaphragm tracking

signal, which shows that breathing motion is captured accu-

rately. The LPCA signals from both detectors in the biplane

sequence correlate almost perfectly. The results for INCISO

are only slightly worse than for BATCH. Therefore, the in-

cremental approximation is not harmful to the results. This

is remarkable, as the incremental method has much less in-

formation available to compute the embedding, especially

Method NCCdiaphragm ∆peak NCCbiplane

IA 0.85± 0.16 1.2± 1.2 0.37± 0.25
AS 0.88± 0.10 1.9± 2.0 0.13± 0.13

LPCA 0.96± 0.01 1.3± 2.6 0.99± 0.003
BATCH 0.98± 0.01 1.0± 1.8 0.97± 0.01
INCISO 0.97± 0.02 1.1± 1.4 0.97± 0.01

Table 1. Comparison of respiratory signal extraction methods

using several error metrics (mean ± standard deviation).
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Fig. 1. Respiratory signals extracted from a biplane se-

quence using the investigated methods. The red lines are with

anterior-posterior view, the blue lines with lateral view. Grey

background indicates the length of the training phase.

for the first images. IA and AS perform badly using both

correlation measures, as the signals are noisy and influenced

by many effects not related to breathing. Especially the low

NCCbiplane of 0.37 and 0.13 show that the breathing signals

are not reliable. The peak errors show no clearly superior

method, only AS has a substantially higher error.

In Figure 1, a qualitative impression of the extracted sig-

nals using the various methods is given. For all methods, 1
corresponds to full inhale and 0 to full exhale if the respira-

tory signal is extracted correctly. The signals originate from

a biplane sequence, for which the first images are shown in

Figure 2. The sequences of the two planes have different mo-



Fig. 2. The initial images of the biplane sequence used in

Figure 1. The left image is acquired with anterior-posterior

view, the right with lateral view.

tion directions, fields of view, and intensity distributions. IA

and AS react sensitively to these changes. Especially the blue

signals in Figure 1 from the lateral view do not correspond

to breathing motion. The three other methods are based on

dimensionality reduction and seem to be robust to different

fields of view. Note that the difference between incremen-

tal and standard Isomap is getting smaller at the end of the

sequence, because the incorporated data is more similar.

The average runtime of INCISO on a consumer laptop us-

ing a Python/Cython implementation is 42 ± 43 ms per im-

age. The high standard deviation is a result of the different

sequence lengths, which can be limited by forgetting old im-

ages, see Section 2.3. The computationally most intensive

task is updating the shortest paths, followed by computing the

image distances. For comparison, BATCH needs on average

6.9± 9.6 s to process a whole sequence.

4. CONCLUSIONS

We presented an accurate, real-time capable respiratory sig-

nal extraction algorithm based on incremental dimensionality

reduction. It can be used in clinical applications that require

an adaptive respiratory signal or real-time performance and

infrequent changes of the field of view. The method is not

restricted to C-arm X-ray imaging, but can be transferred to

many other modalities like range imaging, MR, or CT. In fu-

ture work, the algorithm could be improved by introducing

more robust image similarity measurements, for example by

detecting and removing the influence of catheters or collima-

tors.

5. ACKNOWLEDGMENT

The authors thank Hao Yan for providing software to compute

the IA, AS, and LPCA methods. We thank Anthony Faranesh

and Robert Lederman from the National Institutes of Health,

Bethesda, Maryland, USA for providing the X-ray images.

6. REFERENCES

[1] Alexander Brost, Andreas Wimmer, Rui Liao, Felix

Bourier, Martin Koch, Norbert Strobel, Klaus Kurzidim,

and Joachim Hornegger, “Constrained Registration for

Motion Compensation in Atrial Fibrillation Ablation

Procedures,” IEEE Trans. Med. Imag., vol. 31, no. 4,

pp. 870–881, 2012.
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