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ABSTRACT

Purpose: To combine weighted iterative reconstruction with self-navigated free-breathing

coronary MRA for retrospective reduction of respiratory motion artifacts.

Methods: 1D self-navigation was improved for robust respiratory motion detection and

the consistency of the acquired data was estimated on the detected motion. Based on

the data consistency, the data fidelity term of iterative reconstruction was weighted

to reduce the effects of respiratory motion. In-vivo experiments were performed in 14

healthy volunteers and the resulting image quality of the proposed method was compared

to a navigator-gated reference in terms of acquisition time, vessel length, and sharpness.

Result: Although the sampling pattern of the proposed method contained 60% more

samples with respect to the reference, the scan efficiency was improved from 39.5±10.1 %

to 55.1± 9.1 %. The improved self-navigation showed a high correlation to the standard

navigator signal and the described weighting efficiently reduced respiratory motion ar-

tifacts. Overall, the average image quality of the proposed method was comparable to

the navigator-gated reference.

Conclusion: Self-navigated coronary MRA was successfully combined with weighted

iterative reconstruction to reduce the total acquisition time and efficiently suppress

respiratory motion artifacts. The simplicity of the experimental setup and the promising

image quality are encouraging towards future clinical evaluation.

Key words: Coronary MRA; Weighted iterative reconstruction, Motion sup-

pression; Compressed sensing.

2



INTRODUCTION

Excellent soft tissue contrast combined with the absence of ionizing radiation draws

magnetic resonance imaging (MRI) competitive to conventional computed tomography

angiography for the diagnosis of the coronary arteries. For coronary magnetic resonance

angiography (CMRA), an improved workflow has been provided with 3D whole-heart

imaging [1, 2], which promises to extend the feasibility of coronary MRA also to more

inexperienced operators.

The major drawback of whole-heart CMRA is the extended acquisition time, which

renders the resulting images susceptible to artifacts due to any type of motion. Such

artifacts originate from a reduced spatial consistency of the acquired data and typically

appear as blurring or ghosting [3] in the images. Thus, compensation is required either

during data acquisition or during image reconstruction in order to consistently achieve

diagnostic image quality. In this context, cardiac motion is efficiently reduced by ECG-

triggering and data acquisition during one of the cardiac resting phases, e.g. late systole

and mid-diastole. This introduces a strong temporal restriction to the data acquisition

window, as the late diastolic resting phase typically does not exceed 100 ms in the average

cardiac patient population. As a consequence, a large number of heartbeats are required

to complete the data acquisition. In free-breathing acquisitions, this prolongs the total

acquisition time and increases the susceptibility of the data acquisition to respiratory

motion. The latter is commonly addressed by prospectively gating the scan with a

navigator to a small acceptance window in end-expiration [4, 5]. The major limitation

of this method is that the acceptance rate of the navigator is often less than 50%, which

negatively affects the total acquisition time. Irregularities in the breathing pattern [6]

render this problem even worse and, more importantly, lead to an unpredictable scan

time. To shorten scan times and to make a more efficient use of all acquired data, self-

navigation has been proposed initially in combination with 3D radial imaging. In this

approach, a k-space line is acquired at the beginning of every heartbeat with a superior-

inferior (SI) orientation and used to detect and compensate for respiratory motion along

this direction. The 1D Fourier transform of such line is referred to as SI projection.

Because the detection of respiration by calculation of the center-of-mass [7] tends to

underestimate the true motion of the heart, cross-correlation has been suggested for
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the tracking of the blood pool [8, 9]. However, the robustness of such tracking methods

is based on a reliable segmentation of the blood pool within the SI projections and

can have a suboptimal performance in cases where the segmentation is uncertain [10].

Furthermore, the approximation of breathing motion as a 1D translation might not

always be sufficient [11].

To overcome these shortcomings, a novel approach is proposed in the current work

that aims to integrate and address the effects of respiratory motion in iterative image

reconstruction. In particular, Johnson et al. [12] introduced the concept of weighted

iterative reconstruction that generically accounts for data inconsistencies during a least

squares optimization. To achieve this, the data fidelity term of the cost function is

weighted relative to a data consistency measure. While, in the original work, data con-

sistency was determined by a simple difference of k-space center samples, in the current

work the data consistency measure is extracted from the respiratory displacement de-

tected in the SI projections. Preliminary results of this method for coronary whole-heart

imaging were shown in [13]. A similar approach based on the butterfly navigator has

been successfully applied to reduce respiratory motion artifacts in free-breathing pedi-

atric abdominal imaging [14]. In the current work, the respiratory motion detection

method proposed in [9] has been extended to provide a more robust tracking. Fur-

thermore, Johnson et al. already suggested that the image quality will greatly benefit

from random sampling in combination with either parallel imaging [15,16] or compressed

sensing [17]. Multiple ways to implement an incoherent sampling in the Cartesian phase-

encoding plane were presented in recent publications [18–22]. Among these, the spiral

phyllotaxis pattern [21] seemed to be particularly suitable for the current use case. In

this work, an adapted version of the weighted iterative image reconstruction was imple-

mented, which combines SI motion tracking and `1-regularized iterative SENSE recon-

struction of sparse, incoherent input data. This was applied to free-breathing CMRA for

the first time and was tested in 14 healthy volunteers in comparison to navigator-gated

reference measurements.
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METHODS

Free-breathing whole-heart CMRA is performed with interleaved acquisitions over

many heartbeats. For the minimization of cardiac motion, data acquisition is triggered

to the mid-diastolic resting phase. Henceforth, a set of readouts acquired within one

heartbeat will be referred to as interleave. At the beginning of each interleave, one

additional readout through the center of k-space is performed to obtain an SI projection.

The information of the respiratory motion, extracted from the SI projections, is then

utilized to estimate weighting factors to suppress respiratory motion artifacts during

weighted iterative image reconstruction.

Binning into Respiratory Phases

The objective of the respiratory binning procedure, as already described in [22–24],

is to robustly split the acquired data into subsets featuring minimum residual respiratory

motion and high spatial consistency. In previous work [9], a contiguous group of pixels

covering the signal of the blood pool in the SI projection was identified as a segment.

Respiratory motion was detected by means of tracking this segment in subsequent SI

projections. Instead of relying on the segmentation of the blood pool, in this work,

multiple target segments with a fixed width of 20 pixels are analyzed in parallel. Then,

one segment is identified that is most suitable to describe the respiratory pattern. This

algorithm is illustrated in Figure 1 and can be described with the following two steps:

1. All SI projections are normalized relative to the maximum intensity of the first SI

projection and sorted according to their time of acquisition as shown in Figure 1a.

Let SI(t, x) describe the t-th SI projection out of a set of NSI projections and x is

the corresponding pixel position within the projection. Then, the signal variance

over time is calculated for each pixel position by

vartemp(x) =
1

NSI

NSI∑
t=1

(
SI(t, x)− SItemp(x)

)2
, (1)

where SItemp(x) represents the mean signal intensity at x in the SI projections

over time. Finally, multiple target segments for motion detection are defined in

the first SI projection that fulfill two criteria: a) The center of a target segment
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is placed at a local maximum or minimum of the signal intensities in the first

SI projection. b) In addition, a target segment must include a local maximum

in vartemp(x). While the first criterion ensures that the target segments cover

the signal in the SI projection originating either from the center of an organ or

a tissue boundary, the second guarantees that the target segment is subject to a

significant degree of motion.

2. After the definition of multiple target segments in the first SI projection, respira-

tory motion is estimated for each segment in all subsequent SI projections using

cross-correlation as described in [8,9]. Exemplarily, the detected offsets of two seg-

ments are plotted in Figure 1b. To identify the most reliable of all segments, the

SI projections are then re-sorted according to the calculated offsets as illustrated

in Figure 1c. After re-sorting, the local signal variation is measured similarly to

the total variation norm [25] by the sum of finite differences of neighboring SI

projections along the offset direction. The result with the smallest estimate corre-

sponds to the target segment with the smoothest signal variation. Consequently,

the associated segment is assumed to provide the best performance describing the

respiratory pattern and is used for further processing.

Eventually, a binning is performed to split all imaging data into consistent subsets.

While other approaches use the navigator [22, 23] or a manually selected part of the SI

projection [24], the binning of the proposed method is based on the automatically chosen

target segment from the previously described procedure. For all successive steps, the bin

that contains the highest amount of spatially consistent data is chosen as reference. In

the majority of cases, this bin corresponds to end-expiration [26]. While a high spatial

consistency is expected within this reference, the consistency to the data of another bin

decreases with an increasing respiratory offset.

Weighted Iterative Reconstruction

Similar as described in [13,14], the relation of data consistency and respiratory offset

is exploited to reduce respiratory motion artifacts during weighted iterative reconstruc-

tion. In particular, readouts are weighted according to the respiratory distance of their

corresponding bin to the reference using a scaled Gaussian kernel with the maximum
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set to 1 and centered on the reference bin. While [14] tune their weighting function

to the maximum offset in end-expiration, the proposed method adjusts the weighting

to the bin providing the largest amount of consistent data. In both methods, samples

corresponding to respiratory phases close to the reference are weighted higher than those

from distant phases during iterative reconstruction. However, samples from far distant

bins are also weighted close to zero in this process, which renders the method equivalent

to a retrospective soft-gating. The solution of the iterative reconstruction tends towards

the reference respiratory phase and artifacts due to respiratory motion are inherently

suppressed. The diagonal matrix W contains the estimated weights for each k-space

sample, which is directly introduced into the data fidelity term of the cost function in

iterative image reconstruction [12]:

f(x) = argmin
x
‖W (Ax− y)‖22 + λR(x) (2)

The first part of the cost function optimizes the data fidelity of the reconstructed volume,

written as a concatenated vector x ∈ CNxNyNz with respect to the measured data

y ∈ CNkNc , where Nk is the number of acquired k-space samples and Nc are the coil

elements. A ∈ CNkNc×NxNyNz represents the MR system matrix including the receiver

coil sensitivities, the Fourier transform and the sampling pattern. The second part

represents the regularization term. In this work, regularization is realized using the total

variation (TV) norm [25], which transforms the optimization problem into a compressed

sensing reconstruction [17]. Equation 2 is solved using the limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) method [27].

MR Experiments

In-vivo experiments were performed in 14 healthy volunteers on a 1.5 T clinical MR

scanner (MAGNETOM Aera, Siemens AG, Healthcare Sector, Erlangen, Germany),

with software release syngo MR D13A. Signal reception was performed using an 18 chan-

nel body array coil and 8 elements of a spine array coil. Free-breathing whole-heart coro-

nary MRA was performed in two successive experiments with sagittal slice orientation.

Both 3D volume-selective, T2-prepared, fat-saturated bSSFP imaging sequences shared

the following common parameters: TR/TE 4.0/2.0 ms, radio frequency excitation angle
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90◦, FOV 270 × 270 × 185 mm3, acquired matrix size 256 × 218 × 150, reconstructed

matrix size 256× 256× 176, slice-oversampling 22%, voxel-size 1.05 mm3 and a receiver

bandwidth of 849 Hz/Px. The sequence has been modified for use in this research study

such that the Cartesian readouts are distributed in the phase-encoding plane on a spiral

phyllotaxis arrangement similar to [21]. An additional SI projection was acquired at the

beginning of each heartbeat, but was not used for image reconstruction. Prior to the

imaging data, additional data was acquired in 21 heartbeats to fully sample the region

in the center of k-space and to obtain coil sensitivity maps for image reconstruction.

For reference, respiratory motion was compensated by navigator gating in the first

scan. An acceptance window of 5 mm was placed in end-expiration and slice tracking

was set to a fixed correlation factor of 0.6 [26]. In this acquisition, the spiral phyllotaxis

sampling pattern [21] was generated with 233 interleaves with 30 readouts. Including

the obtained data for the coil sensitivity maps, this resulted in a moderate sub-sampling

rate of 4.3 with respect to the fully sampled acquisition matrix.

In comparison to this, a second scan was performed with the proposed method. The

setup of this acquisition was adjusted to achieve equivalent conditions to the reference

during image reconstruction. For this purpose, the standard deviation of the Gaussian

for the weighting kernel was set to 1.25 pixels to obtain a similar width to the 5 mm

navigator acceptance window. In this setup, only the samples with a corresponding

weight greater than 0.05 noticeably contribute to the reconstruction of the final im-

age. Hence, solely those samples were considered for the calculation of the effective net

acceleration in reconstruction relative to the size of the acquisition matrix in the phase-

encoding plane. Even in the presence of a retrospective soft-gating by the weighting

procedure, the incoherent sampling within one heartbeat and a golden angle rotation

between the readouts of consecutive heartbeats of the spiral phyllotaxis pattern makes

the reacquisition of data unnecessary to preserve a uniformly covered k-space. However,

this retrospective sub-sampling of k-space during reconstruction must be compensated

during data acquisition by an increased number of interleaves in order to facilitate a

comparable sub-sampling rate to the reference. Prior experiments established that this

can be accomplished by setting the number of interleaves to the next Fibonacci number,

i.e. 377, which provides also an equivalent sampling of the readouts within each heart-
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beat at the same time. Although respiratory gating was deactivated for this scan, the

navigator signal was still acquired to perform an offline correlation with the outcome of

the motion detection based on the SI projections.

All data was reconstructed with the described iterative reconstruction, but different

settings were applied: First, retrospective soft- and hard-gating were compared. For

this purpose, the acquired data of the second scan were reconstructed with weighting

kernels featuring different acceptance windows that were obtained from Gaussian and

box functions. In retrospective hard-gating, the width of the box function was set to

A) ±2.5 pixels, B) ±5.5 pixels, and C) ±7.5 pixels. A similar setup in soft-gating was

achieved by setting the Gaussian to 1.25 pixels in case of A). For B) and C), the Gaus-

sian was adapted such that it intersects the corresponding box function at the same

value, which was achieved by 2.75 pixels and 3.75 pixels for the standard deviation,

respectively. For each subject, the weighting kernels were centered to the identical res-

piratory reference phase. Iterative reconstruction was performed without regularization,

i.e. λ = 0, and the optimization was terminated after a fixed number of 8 iterations.

Thereafter, data of the navigator-gated acquisition were reconstructed for comparison

to the proposed method. For this purpose, W was set to the identity matrix, which

deactivated the weighting procedure. The data of the second scan were reconstructed

twice: first without weighting to demonstrate the effect of motion in the data and then

with soft-gating using kernel A) towards end-expiration. For this comparison, iterative

reconstruction was performed with a fixed regularization parameter λ = 2 · 10−5 was

terminated after a fixed number of 8 iterations.

Data obtained for the estimation of the coil sensitivity maps were also included in im-

age reconstruction. Therefore, a book-keeping was integrated into image reconstruction

to manage redundant readouts. While duplicate readouts replaced previously acquired

data when the weighting was deactivated, readouts with the closest distance to the res-

piratory reference phase were selected otherwise. Both respiratory motion detection and

compressed sensing image reconstruction were fully integrated into the software of the

MR scanner.
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Data Analysis

The average acquisition time of the proposed method was compared to the navigator-

gated reference scan in order to assess the scan efficiency. For evaluation of the respi-

ratory motion detection, the offsets detected in SI projections were correlated to the

outcome of the simultaneously acquired navigator signal. The slope of the linear re-

gression between the feedback of the navigator and the proposed motion detection was

computed. Furthermore, the automated selection of the target segment in the SI pro-

jection was evaluated by comparing it to the corresponding anatomy in the field of view

of the imaging volume. For this purpose, the region of the segment in a SI projection of

the reference bin was matched to the reconstructed volume. During all reconstructions,

the residual error of the data fidelity term was recorded. The difference of the estimated

image to the measured data at the final iteration was used for comparison of the different

reconstruction methods. As the deviation of the estimated image and the acquired data

is expected to be minimal and close to the noise level in the optimal case and increases in

the presence of data inconsistencies. This measure provides an indication on the existing

data consistency. However, this value is biased by the underlying signal intensities and

scales with the number of considered samples. Therefore, it was normalized by ‖Wy‖22
for the evaluation in each case, which is equivalent to the difference of the measured

data to a zero image x = 0 at the initialization of the iterative reconstruction. For

quantitative assessment of the influence of different weighting kernels on the resulting

image quality, vessel sharpness was evaluated in the reconstructed images. In particu-

lar, a centerline in the right coronary artery (RCA) and left anterior descending (LAD)

was manually segmented in the 3D isotropic volume using CoronaViz (Work in progress

software, Siemens Corporate Research, Princeton, NJ, USA). Within the first 40 mm of

each centerline, five points were selected in the volumes that were at consistent positions

for each volunteer. At each measurement point, a cross-section was sampled perpendic-

ular to the centerline. On this cross-section the sharpness was evaluated as described

in [28]. Finally, vessel sharpness for each coronary vessel was estimated by averaging

the results of all cross-sections. In the comparison study to the navigator reference,

the length of the segmented centerline was additionally measured. Furthermore, image

quality was qualitatively assessed by two independent observers (M.O.Z and C.F.) with
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more than 8 and 3 years experience in the field of cardiovascular MRI, respectively. Vi-

sual scores were given to rate the delineation of the RCA and LAD following the study

design described in [22] with a five-point scale: 0, no; 1, poor; 2, fair; 3, good; and 4,

excellent. A paired two-tailed Student’s t-test was performed in all obtained results to

evaluate statistical significance. P -values of 0.05 or less were considered as statistically

significant.

RESULTS

All whole-heart free-breathing acquisitions were successfully completed in all volun-

teers. The average navigator acceptance rate was 39.5±10.1%, which resulted in a total

acquisition time in the range of 6.6 min to 20.2 min and required 10.1±2.3 min, on aver-

age. Although 144 more interleaves were used for the sampling pattern of the proposed

method compared to the reference scan, acquisition time was reduced to 6.3± 0.9 min.

This reduction of scan time is statistically significant (P < 0.001). Since the proposed

method is only dependent on the subject’s heart rate, the range of the acquisition times

was reduced to 5.0 min and 7.4 min.

When correlating the target segments which were selected for motion detection by the

proposed algorithm with the anatomy of the volunteers, it turned out that such segments

were always automatically defined near the position of the diaphragm. Representatively,

Figure 8 shows a series of 50 consecutive heartbeats that were acquired in the experiment

with one of the subjects. In this plot, the defined interval is highlighted with a red

line that also outlines the detected effect of respiratory motion. Re-sorting these SI

projections according to the estimated offsets enables a visual assessment of the efficacy

of the proposed approach. Generally, the detected offsets had an average correlation

to the simultaneously acquired navigator signal of 0.92 ± 0.06. For the same subject,

Figure 3 illustrates in a joint histogram that the feedback of the proposed method is in

full accordance with the feedback from the navigator. This observation is quantitatively

confirmed for all volunteers by an almost unitary average slope of the linear regression:

0.96± 0.22.

The comparison of different weighting kernels is exemplarily shown in Figure 4 for

the RCA of one subject and all quantitative results are summarized in Figure 5 Increas-

11



ing the standard deviation of the Gaussian kernel for soft-gating only slightly reduced

the vessel sharpness of the RCA, which was measured with 0.408±0.036 mm−1 for kernel

A), 0.399± 0.039 mm−1 for kernel B), and 0.389± 0.034 mm−1 for kernel C). A similar

trend was observed for the measurements in the LAD with 0.367± 0.029 mm−1, 0.352±

0.037 mm−1, and 0.343±0.041 mm−1, respectively. This effect is enhanced when increas-

ing the acceptance window during hard-gating: 0.403±0.036 mm−1, 0.382±0.034 mm−1,

and 0.361± 0.034 mm−1 for the RCA and 0.358± 0.029 mm−1, 0.340± 0.037 mm−1, and

0.311± 0.032 mm−1 for the LAD.

For each volunteer, the data of 219.1 ± 36.3 heartbeats were weighted greater than

0.05. After the retrospective soft-gating, this corresponds to a net acceleration of 5.1±0.9

relative to the fully sampled k-space. This implies that the amount of consistent data was

on average lower than in the navigator-gated reference scan featuring a net acceleration

of 4.3. n all cases, the improvement of the data fidelity in the last iteration was less

than 0.1 % relative to the `2-norm of the acquired data, which confirms convergence of

the optimization. Without compensation, motion-induced inconsistency leads, after 8

iterations, to a data fidelity as low as 0.14± 0.04. Considering the estimated weights in

the proposed method, this normalized difference converged to 0.06± 0.02, which means

a significant improvement (P < 0.001). However, prospective navigator gating of the

data acquisition resulted in the lowest value of the data fidelity term with 0.04 ± 0.01

(P < 0.02). For two selected volunteers, Figure 6 shows the reformatted images of the

RCA and LAD for a side-by-side comparison. The quantitative results are summarized in

Figure 7. As expected, volumes reconstructed without respiratory motion compensation

were corrupted by artifacts. Hence, a reduced visible vessel length of 68.5± 20.0 mm for

the RCA and 54.9±38.0 mm for the LAD were observed in these volumes. The evaluation

of vessel sharpness resulted in 0.381±0.047 mm−1 and 0.328±0.051 mm−1, respectively.

The resulting image quality was rated by the observers with 1.3± 0.8 for the RCA and

1.0± 0.8 for the LAD. Using the proposed weighted reconstruction, both the perceived

and the quantitative image quality was improved. This enabled a continuous detection

of the coronary vessels over a significantly increased length (P < 0.01): i.e. 101.6 ±

18.9 mm for the RCA and 99.7±15.7 mm for the LAD. The evaluation of vessel sharpness

along the segmented centerlines followed the same trend with 0.426 ± 0.057 mm−1 and
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0.384 ± 0.045 mm−1 (P < 0.001). This significant improvement (P < 0.001) was also

measured in the visual scores with 2.8± 0.8 and 2.5± 0.7, respectively. The navigator-

gated reference volumes showed a slightly superior vessel length with 108.6 ± 15.7 mm

(RCA) and 109.6 ± 20.2 mm (LAD) as well as vessel sharpness 0.449 ± 0.051 mm−1

and 0.401 ± 0.043 mm−1, respectively. Compared to the results of the navigator-gated

reference acquisition, an equivalent vessel length was detected in the volumes obtained

with the proposed method (P > 0.32). While vessel sharpness of the RCA followed the

same trend (p > 0.1), still a significant difference was found for the LAD (P < 0.01).

The visual scores confirmed this observation with 3.0± 0.9 for the RCA (P > 0.59) and

3.1± 0.7 for the LAD (P < 0.01).

Figure 8 shows the reconstructed images of two volunteers to assess the influence

of the breathing pattern on the resulting image quality. The histograms illustrate the

distribution of the respiratory offsets as detected in the SI projections during the scan.

Both volumes were reconstructed with a similar amount of data that were weighted

greater than 0.05. However, the distribution of the data in the histogram is different. In

the first dataset, end-expiration was consistently in the same respiratory phase through-

out the entire scan, which lead to a reference respiratory phase containing roughly one

third of all available data. The weighted reconstruction of this dataset has a comparable

image quality to the navigator-gated reference. In the second dataset, the end-expiratory

phase drifted in the middle of the scan and only 18% of the data fell into the reference

phase. While the respiratory phase corresponding to the detected offset 0 represents

the most consistent phase in end-expiration, the data of the remaining heartbeats is

approximately uniformly distributed over the detected respiratory phases resulting in

residual artifacts after weighted reconstruction.

DISCUSSION

One of the advantages of self-navigated coronary MRA is that the total scan time is

predictable. This potentially allows to integrate coronary imaging into an existing car-

diac routine examination, similarly as done in the first patient study on self-navigation

described in [29]. In the current study, it was demonstrated that the total acquisition

was approximately two times faster with weighted iterative reconstruction although 60%
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more data were acquired compared to a navigator gated reference scan. As the objec-

tive of this study was to examine the reduction of motion artifacts during iterative

reconstruction, a moderate net acceleration was chosen for data acquisition. More ad-

vanced regularization techniques, that e.g. incorporate spatial similarities learned from

the images during reconstruction [30], promise to be superior to the presented TV reg-

ularization and might also allow the reconstruction at an increased sub-sampling rate.

Such methods can be combined with weighted iterative reconstruction, which might

enable a further acceleration.

In this work, it was proven that reliable motion detection is possible without prior

knowledge of the object and without the need for manual user interaction. Respiratory

motion detection was successfully able to define a segment in the SI projection that reli-

ably describes the respiratory motion pattern in all the volunteers. Automatic selection

of this segment renders the entire method independent of the position of the field of view

chosen for imaging. Although this detection method is not limited to a sagittal slice

orientation, it clearly benefits from readouts acquired along the predominant direction

of respiratory motion. Generically, the proposed algorithm aims to detect signal vari-

ations in the intensities that describe the motion pattern during the data acquisition.

This provides the potential for other applications also in other regions in the abdomen

or with different imaging contrasts.

Segments used for motion detection were always automatically defined in the SI pro-

jections at locations that coincide with the position of the diaphragm within the selected

field of view. With the current acquisition protocol, the high contrast between the lung

and the liver favors an easy detection of motion in the SI projection. Additionally, this

region is also most prominently subject to respiratory motion [26]. Since the diaphragm

also provides the basis for the navigator signal, this is a highly probable explanation

for the high correlation with the proposed respiratory motion detection. Moreover, the

almost unitary slope of the linear regression implies that the detected offsets of both

methods are nearly identical. Thus, the signal of a navigator monitoring the diaphrag-

matic position could alternatively be used as input for the described weighted iterative

reconstruction. However, this would require a higher expertise of the operator and come

with the price of an additional expenditure for its setup during the planning of the
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examination. Similarly to the navigator, segment locations near the diaphragm might

render the proposed method prone to respiratory hysteresis. As a consequence, this

would negatively affect the linear model between the diaphragm and the heart motion

and possibly lead to incorrect estimated weights for the data consistency. The hysteretic

loops [6] describing the respiratory hysteresis suggest that the impact of this effect can

be reduced by the discrimination between inspiration and expiration. Hence, taking

the temporal information of the SI projections into account for the binning process

could potentially provide a solution for this problem. Furthermore, as observed in [6]

the hysteretic loops show a minimum deviation from the linear model linking the heart

and diaphragmatic motion between end-expiration and inspiration. Typically, the pro-

posed weighting is maximum for this particular phase and respiratory phases that are

subject to an increasing impact of respiratory hysteresis are weighted less during the

iterative reconstruction or are even not considered. Since none of the performed in-vivo

experiments of this study showed noticeable hysteresis effects, its influence on weighted

reconstruction still needs to be investigated.

As expected, motion-induced data inconsistency leads to a degraded image quality

in the reconstructed images, which is also reflected in a high residual difference of the

data fidelity term and low image quality scores. Weighting the data during iterative

reconstruction efficiently preserves the data consistency, which was confirmed by a data

fidelity that is evolving towards the navigator-gated reference. Low differences between

hard- and soft-gating in case of kernel A) can be explained with a low motion-induced

data inconsistency for respiratory phases close to the reference. However, as the data

inconsistency increases with the size of the acceptance window, this decreased the vessel

sharpness in hard-gating. While the iterative reconstruction is biased towards one con-

sistent respiratory phase during soft-gating, effects of respiratory motion are suppressed

independently of the direction of motion even in the presence of large acceptance win-

dows. Effects of respiratory motion in any direction that increase linearly with the

respiratory offset relative to the reference phase are likewise suppressed during weighted

iterative reconstruction. This also becomes evident in the scores evaluating the image

quality in the reconstructed images that are in a comparable range to the outcome of

the navigator acquisition.
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The major limitation of the proposed method is that retrospective soft-gating leads

to a further reduction of the available data for image reconstruction. In this context, the

distribution of the acquired data in the different respiratory phases also seems to have

an effect on the resulting image quality. The proposed method is still coupled with the

subject’s breathing pattern during data acquisition. In some cases, this combination of

residual motion and an increased sub-sampling might lead to artifacts that still impair

the image quality in the reconstructed volumes. This might be particularly the case

when the breathing pattern changes frequently during the scan. In this study, weighting

of the data fidelity term led to an increased sub-sampling compared to data available for

reconstruction of the navigator-gated reference acquisition. Potentially, this explains the

slightly inferior image quality scores and the remaining significant difference in vessel

sharpness of the LAD between the proposed method and the reference.

The incorporation of data from all respiratory phases might allow to overcome these

limitations. This requires an integration of a 3D non-rigid motion model similarly as

proposed by [22,31,32]. In order to avoid the need for extra calibration data [33], effects

of respiratory motion might also be visualized utilizing multiple iterative reconstructions

weighted to different respiratory phases. Accepting longer processing times due to the

demanding computational complexity, such methods promise to reduce artifacts origi-

nating from an increased sub-sampling. Alternatively, individual respiratory phases can

be seen as a temporal component. Thus, equivalent as proposed for k-t SPARSE [34] or

low-rank methods [35,36], the redundancy in these volumes could be exploited by a com-

pressed sensing reconstruction to obtain the final image without the need to explicitly

estimate a motion model.

CONCLUSION

In the current work, weighted iterative reconstruction was first applied to whole-

heart coronary imaging and was successfully combined with self-navigation which al-

lowed to significantly reduce the total data acquisition time. The improved motion de-

tection algorithm together with the highly predictable scan time advocates this method

for further testing in patients. In some cases, however, the current solution remains

a tradeoff between increased sub-sampling artifacts or residual motion artifacts. Nev-
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ertheless, these promising initial results and the consequent integration of the current

prototype solution into a clinical MR scanner is appealing for more extensive studies in

volunteers and patients.
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Jonathan, Koestner Simon C, Rutz Tobias, Littmann Arne, Zenge Michael O,

Schwitter Juerg, Stuber Matthias. Respiratory Self-navigated Postcontrast Whole-

Heart Coronary MR Angiography: Initial Experience in Patients. Radiology

2014;270:378–386.
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FIGURE LEGEND

Figure 1: Block diagram illustrating the workflow of the respiratory motion detection:

a) A series of SI projections are plotted in temporal order. Target segments for

motion detection are identified in the first SI projection. Two segments are exem-

plarily highlighted with a red box. b) The offsets for all subsequent SI projections

are detected using the self-navigation principle and plotted for each segment. c)

Then, the SI projections are resorted according to the detected offsets. The seg-

ment corresponding to the lowest signal variation in the resorted SI projections

provides the best performance to describe the respiratory pattern.

Figure 2: A series of 50 SI projections, acquired in the first 50 consecutive heartbeats

in the experiment with volunteer 5 is representatively displayed (left) as acquired

and (right) after sorting with respect to the detected offsets. The selected interval

of the respiratory motion detection is highlighted with a red line. The offsets were

detected using cross-correlation with respect to this interval.

Figure 3: For volunteer 5, a 2D histogram visualizes the number of occurrences of all

pairs of values from the navigator signal and the detected offset of the proposed

method with colors in the background. While red dots highlight all available pairs

of values, linear regression is represented by the black line. The resolution in the

SI projection is given by the acquired voxel size, here 1.05 mm, whereas that of the

navigator was 1.0 mm. For this specific volunteer, both signals had a correlation

of 0.96 and the slope of the linear regression was 0.99.

Figure 4: Reformatted images showing the RCA of the same volunteer at the identical

position. The volumes were reconstructed with the proposed weighted iterative

reconstruction utilizing different weighting functions. For “Gaussian”, the stan-

dard deviation of the weighting kernel was set to A) 1.25 pixels, B) 2.75 pixels,

and C) 3.75 pixels, which resulted in an estimated vessel sharpness of 0.385 ±

0.076 mm−1, 0.375±0.065 mm−1, and 0.343±0.029 mm−1, respectively. For “Box”,

the size of the acceptance window was set to A) ±2.5 pixels, B) ±5.5 pixels, and

C) ±7.5 pixels. In the resulting volumes, vessel sharpness was estimated with

0.369± 0.083 mm−1, 0.306± 0.044 mm−1, and 0.288± 0.032 mm−1, respectively.
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Figure 5: Box plot for comparison of image quality after weighted iterative recon-

struction with different weighting functions. Vessel sharpness was estimated in

the LAD (top) and RCA (bottom) in the reconstructed volumes obtained from

14 volunteers.

Figure 6: Reformatted images of two selected volunteers showing the LAD and RCA.

Reconstructed volumes without compensation suffer from artifacts due to respira-

tory motion during the free-breathing acquisition (“Uncompensated”), while the

proposed method was able to improve the vessel sharpness significantly by sup-

pressing motion artifacts in image reconstruction (“Weighting”). Additionally,

reconstructed volumes of the weighted approach show a comparable vessel length

and sharpness to the navigator-gated reference acquisition.

Figure 7: Box plot for comparison of image quality parameters estimated in vessel

sharpness (top), length (middle), and visual scores (bottom) obtained from the

reconstructed volumes of 14 volunteers. Data was acquired during free-breathing

and reconstructed with and without weighted iterative reconstruction. The re-

sulting image quality was compared to a navigator-gated reference acquisition.

Figure 8: For two volunteers, the distribution of the respiratory offsets as detected in

the SI projections is illustrated using histograms. The acquired data was recon-

structed using weighted iterative reconstruction based on the plotted weighting

function. Both volumes were reconstructed with data from 262 (top row) and

252 (bottom row) heartbeats that were weighted greater than 0.05 in the weight-

ing matrix. Axial and sagittal slices of the resulting volumes are depicted next

to the corresponding histograms. The corresponding navigator-gated reference

acquisition of both volunteers required 6.9 min and 6.6 min, respectively.
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Figure 1: Block diagram illustrating the workflow of the respiratory motion detection:
a) A series of SI projections are plotted in temporal order. Target segments for motion
detection are identified in the first SI projection. Two segments are exemplarily high-
lighted with a red box. b) The offsets for all subsequent SI projections are detected using
the self-navigation principle and plotted for each segment. c) Then, the SI projections
are resorted according to the detected offsets. The segment corresponding to the lowest
signal variation in the resorted SI projections provides the best performance to describe
the respiratory pattern.
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Figure 2: A series of 50 SI projections, acquired in the first 50 consecutive heartbeats
in the experiment with volunteer 5 is representatively displayed (left) as acquired and
(right) after sorting with respect to the detected offsets. The selected interval of the
respiratory motion detection is highlighted with a red line. The offsets were detected
using cross-correlation with respect to this interval.
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Figure 3: For volunteer 5, a 2D histogram visualizes the number of occurrences of all
pairs of values from the navigator signal and the detected offset of the proposed method
with colors in the background. While red dots highlight all available pairs of values,
linear regression is represented by the black line. The resolution in the SI projection
is given by the acquired voxel size, here 1.05 mm, whereas that of the navigator was
1.0 mm. For this specific volunteer, both signals had a correlation of 0.96 and the slope
of the linear regression was 0.99.
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Figure 4: Reformatted images showing the RCA of the same volunteer at the identical
position. The volumes were reconstructed with the proposed weighted iterative recon-
struction utilizing different weighting functions. For “Gaussian”, the standard deviation
of the weighting kernel was set to A) 1.25 pixels, B) 2.75 pixels, and C) 3.75 pixels, which
resulted in an estimated vessel sharpness of 0.385 ± 0.076 mm−1, 0.375 ± 0.065 mm−1,
and 0.343 ± 0.029 mm−1, respectively. For “Box”, the size of the acceptance window
was set to A) ±2.5 pixels, B) ±5.5 pixels, and C) ±7.5 pixels. In the resulting vol-
umes, vessel sharpness was estimated with 0.369 ± 0.083 mm−1, 0.306 ± 0.044 mm−1,
and 0.288± 0.032 mm−1, respectively.
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Figure 5: Box plot for comparison of image quality after weighted iterative reconstruc-
tion with different weighting functions. Vessel sharpness was estimated in the LAD (top)
and RCA (bottom) in the reconstructed volumes obtained from 14 volunteers.
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Figure 6: Reformatted images of two selected volunteers showing the LAD and RCA.
Reconstructed volumes without compensation suffer from artifacts due to respiratory
motion during the free-breathing acquisition (“Uncompensated”), while the proposed
method was able to improve the vessel sharpness significantly by suppressing motion
artifacts in image reconstruction (“Weighting”). Additionally, reconstructed volumes of
the weighted approach show a comparable vessel length and sharpness to the navigator-
gated reference acquisition.

30



0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Uncompensated Weighting Navigator

Left Anterior Descending

Uncompensated Weighting Navigator

Right Coronary Artery

V
e
s
s
e
l 
S

h
a
rp

n
e
s
s
 [

m
m

-1
]

4
3

2
1

0

Uncompensated Weighting Navigator

Left Anterior Descending

Uncompensated Weighting Navigator

Right Coronary Artery

V
is

u
a
l 
S

c
o
re

s
 [

a
.u

.]

40
60

80
10
0

12
0

V
e
s
s
e
l 
L
e
n

g
th

 [
m

m
]

Uncompensated Weighting Navigator

Right Coronary Artery

Uncompensated Weighting Navigator

Left Anterior Descending

Figure 7: Box plot for comparison of image quality parameters estimated in vessel sharp-
ness (top), length (middle), and visual scores (bottom) obtained from the reconstructed
volumes of 14 volunteers. Data was acquired during free-breathing and reconstructed
with and without weighted iterative reconstruction. The resulting image quality was
compared to a navigator-gated reference acquisition.
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Figure 8: For two volunteers, the distribution of the respiratory offsets as detected in the
SI projections is illustrated using histograms. The acquired data was reconstructed using
weighted iterative reconstruction based on the plotted weighting function. Both volumes
were reconstructed with data from 262 (top row) and 252 (bottom row) heartbeats that
were weighted greater than 0.05 in the weighting matrix. Axial and sagittal slices of the
resulting volumes are depicted next to the corresponding histograms. The corresponding
navigator-gated reference acquisition of both volunteers required 6.9 min and 6.6 min,
respectively.
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