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Abstract. In this paper, we augment multi-frame super-resolution with
the concept of guided filtering for simultaneous upsampling of 3-D range
data and complementary photometric information in hybrid range imag-
ing. Our guided super-resolution algorithm is formulated as joint max-
imum a-posteriori estimation to reconstruct high-resolution range and
photometric data. In order to exploit local correlations between both
modalities, guided filtering is employed for regularization of the pro-
posed joint energy function. For fast and robust image reconstruction,
we employ iteratively re-weighted least square minimization embedded
into a cyclic coordinate descent scheme. The proposed method was evalu-
ated on synthetic datasets and real range data acquired with Microsoft’s
Kinect. Our experimental evaluation demonstrates that our approach
outperforms state-of-the-art range super-resolution algorithms while it
also provides super-resolved photometric data.

1 Introduction

3-D range imaging (RI) based on active sensor technologies such as structured
light or Time-of-Flight (ToF) cameras is an emerging field of research. Over the
past years, with the development of low-cost devices such as Microsoft’s Kinect
for the consumer market, RI found its way into various computer vision appli-
cations [3,12,22] and most recently also to healthcare [2]. Opposed to passive
stereo vision approaches, active RI sensors feature the acquisition of dense range
images from dynamic scenes in real-time. In addition to range information, com-
plementary photometric data is often provided by the same device in a hybrid
imaging system, e.g. color images in case of the Kinect or amplitude data cap-
tured by a ToF camera. However, due to technological or economical restrictions,
these sensors suffer from a limited spatial resolution which restricts their use for
highly accurate measurements. In particular, this is the case for range sensors
that may be distorted by random noise and systematic errors depending on the
underlying hardware. In order to overcome a limited sensor resolution, image
super-resolution has been proposed [14]. A common principle for resolution en-
hancement is to fuse multiple low-resolution acquisitions with known subpixel
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displacements into a high-resolution image [7]. The utilized subpixel motion is
estimated using image registration methods. For photometric information, the
goal of super-resolution is to recover fine structures such as texture barely visible
in low-resolution images. In terms of RI, this concept enables accurate 3-D shape
scanning [5] which is hard to obtain based on low-resolution range data.

1.1 Related Work

Over the past years, super-resolution has been proposed for a variety of imaging
modalities and applications. Traditionally, super-resolution algorithms have been
applied to single- or multichannel images encoding photometric information.
In many approaches, such as the algorithms proposed by Elad and Feuer [6]
or Schultz and Stevenson [18], super-resolution is formulated as maximum a-
posteriori (MAP) estimation. In order to consider the presence of outliers, Farsiu
et al. [8] introduced a robust extension based on L1 norm minimization. Babacan
et al. [1] have formulated a variational Bayesian approach to estimate high-
resolution images and the uncertainty of the underlying model parameters.

In terms of range super-resolution, most prior work adopted techniques origi-
nally designed for intensity images. A MAP approach for range super-resolution
has been proposed by Schuon et al. [19,20]. Bhavsar and Rajagopalan [4] ex-
tended this method by an inpainting scheme to interpolate missing or invalid
regions in range data. A Markov Random Field based formulation has been
presented by Rajagopalan et al. [17]. Other approaches also exploit complemen-
tary photometric data as guidance to reconstruct high-resolution range images.
Park et al. [16] utilized adaptive regularization gained from color images to
super-resolve range data. A similar technique based on weighted optimization,
driven by color images, has been introduced by Schwarz et al. [21]. In the multi-
sensor approach proposed by Köhler et al. [10,11], photometric data is utilized as
guidance for motion estimation and outlier detection in order to reconstruct reli-
able high-resolution range images. However, the existence of reliable photometric
guidance data required for these methods is not always guaranteed, especially
in case of low-cost systems. Furthermore, super-resolution is only applied to a
single modality whereas guidance images are not super-resolved.

1.2 Contribution

Opposed to prior work, we propose a novel guided super-resolution approach to
super-resolve images of two modalities simultaneously. In the context of hybrid
RI, we apply our method for photogeometric super-resolution, to reconstruct
both, high-resolution range and photometric data. Our algorithm is formulated
as joint energy minimization in a MAP framework. In order to exploit corre-
lations between two modalities, we introduce a novel regularizer based on the
concept of guided filtering. We employ iteratively re-weighted least square min-
imization embedded into a cyclic coordinate descent scheme for fast and robust
image reconstruction. Our approach is quantitatively and qualitatively evaluated
on synthetic data as well as real data captured with Microsoft’s Kinect.
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2 Photogeometric Super-Resolution Model

Let y(1), . . . ,y(K) be a sequence of low-resolution input frames, where each frame
y(k) is represented by a Ny-dimensional vector. For each input frame y(k), there
exists a complementary guidance image p(k) registered to y(k) and denoted as
Np-dimensional vector. In terms of hybrid RI addressed in our work, we use
range images as input and corresponding photometric data as guidance. The
pair of unknown high-resolution images (x, q) with x ∈ RNx , q ∈ RNq is related
to the low-resolution frames (y(k),p(k)) by a generative model according to:(
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where the system matrices W
(k)
y , W

(k)
p model geometric displacements between

(x, q) and (y(k),p(k)), as well as the blur induced by the camera point spread
function (PSF) and subsampling with respect to the high-resolution image. The
model parameters (γm, γa) and (ηm, ηa) are used to model out-of-plane motion
for range data and photometric differences between different guidance images,
respectively [10]. Without loss of generality, we model the PSF as a space in-
variant Gaussian function, to obtain the matrix elements by:
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)
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where vn ∈ R2 are the coordinates of the nth pixel in the high-resolution image,
um ∈ R2 are the coordinates of the mth pixel in the low-resolution frame mapped
to the high-resolution grid and σ denotes the width of the PSF.

In order to reconstruct (x, q), we propose a joint energy minimization based
on a MAP formulation. The objective function consists of a data fidelity term and
two regularization terms ensuring the smoothness of the estimates and exploiting
correlations between input and guidance images:

(x̂, q̂) = arg min
x,q
{Fdata(x, q) +Rsmooth(x, q) +Rcorrelate(x, q)} . (3)

2.1 Data Fidelity Term

The data fidelity term measures the similarity between the back-projected high-
resolution images (x, q) and all low-resolution frames (y(k),p(k)), k = 1, . . . ,K,
based on our forward model. In order to account for outliers in low-resolution
data, we use a weighted L2 norm error model [11]:

Fdata(x, q) =

KNy∑
i=1

βy,iry,i(x)
2

+

KNp∑
i=1

βp,irp,i(q)
2
, (4)

where ry : RNx → RKNy and rp : RNq → RKNp denote the residual terms, while
βy ∈ RKNy and βp ∈ RKNp represent confidence maps to weight the residuals
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element-wise. We concatenate the residual terms for all frames according to

ry(x) = (r
(1)
y , . . . , r

(K)
y )> and rp(x) = (r

(1)
p , . . . , r

(K)
p )>. The residuals of the

kth frames are given as:

r(k)y = y(k) − γ(k)m W (k)
y x− γ(k)a 1

r(k)p = p(k) − η(k)m W (k)
p q − η(k)a 1.

(5)

In order to set up our model, we employ a variational approach for optical flow
estimation [13] to estimate subpixel motion. Following the multi-sensor approach
proposed in [10], motion is estimated on photometric data used as guidance. For

range images, γ
(k)
m and γ

(k)
a are determined using a range correction scheme [10].

In terms of photometric data, η
(k)
m and η

(k)
a are obtained by photometric regis-

tration, where η
(k)
m = 1 and η

(k)
a = 0 is set to neglect photometric differences.

2.2 Smoothness Regularization

The smoothness regularization is defined as a sum of regularization terms for
the high-resolution images weighted by λx, λq ∈ R+:

Rsmooth(x, q) = λxR(x) + λqR(q). (6)

For regularization, we employ the edge-preserving bilateral total variation (BTV)
model [8], defined as:

R(z) =

P∑
i=−P

P∑
j=−P

α|i|+|j|‖z − SivS
j
hz‖1, (7)

where Siv and Sjh denote a shift of the image z by i pixels in vertical and j pixels
in horizontal direction, and P is a local window size. The shift operators act as
derivatives across multiple scales, where α (0 < α ≤ 1) is used to control the
spatial weighting within the window.

2.3 Interdependence Regularization

We propose a novel interdependence regularization term to exploit local correla-
tions between two modalities. In order to include this kind of prior knowledge, we
use a linear, pixel-wise correlation model [9] for the high-resolution images (x, q).
Assuming that x ∈ RNx and q ∈ RNq have the same dimension N = Nx = Nq,
interdependence regularization is defined as:

Rcorrelate(x, q) = λc‖x−Aq − b‖22, (8)

where λc ∈ R+ weights the correlation between x and q. The filter coefficients
A ∈ RN×N and b ∈ RN are constructed to model this correlation. The higher
λc is chosen, the higher the correlation between input and guidance images is
enforced. In case of Nx 6= Nq, we use bicubic interpolation to reshape x and q
to the same size in order to compute Rcorrelate(x, q).
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3 Numerical Optimization Algorithm

A direct minimization of the joint energy function in Eq. (3) requires a simul-
taneous estimation of x and q with the associated confidence maps βy and βp
as well as of the filter coefficients A and b. However, this is a highly ill-posed
and computationally demanding inverse problem. For a fast and robust solution,
we utilize an iterative re-weighted least square (IRLS) minimization [11] embed-
ded into a cyclic coordinate descent scheme. We decompose the estimation of x
and q into a sequence of n least square optimization problems to determine x(t)

and q(t) at iteration t = 1, . . . , n. Simultaneously to image reconstruction, the

confidence maps β
(t)
y and β

(t)
p as well as the filter coefficients A(t) and b(t) are

determined analytically and refined at each iteration. In detail, our optimization
is performed as follows.

Confidence Map Computation. Let (x(t), q(t)) be the estimates for the high-

resolution images at iteration t and (r
(t)
y , r

(t)
p ) be the associated residual error

computed according to Eq. (5). Then, following [11] the confidence maps β
(t)
y

and β
(t)
p at iteration t are derived analytically according to:

β
(t)
y,i =

1 if |r(t)y,i| ≤ εy
εy

|r(t)
y,i|

otherwise
β
(t)
p,i =

1 if |r(t)p,i| ≤ εp
εp

|r(t)
p,i|

otherwise
, (9)

where εy and εp are initialized by the standard deviations of r
(t)
y and r

(t)
p , re-

spectively. For outlier detection, this scheme assigns a smaller confidence to
low-resolution observations that result in higher residual errors.

Guidance Image Super-Resolution. In order to estimate q(t), we solve

Eq. (3) with respect to q using the confidence map β
(t)
p while keeping x fixed.

For this step, we employ interdependence regularization in a non-symmetric way,
as super-resolution of guidance data would not benefit from the complementary
input images. The updated estimate q(t) is obtained according to:

q(t) = arg min
q
{Fdata(x, q) +Rsmooth(x, q)}x=x(t−1) . (10)

For the solution of this convex optimization problem, scaled conjugate gradient
(SCG) iterations [15] are used to determine q(t) using q(t−1) as initial guess.

Guided Filtering. Once the guidance image q(t) and the super-resolved image
x(t−1) from the previous iteration are determined, the filter coefficients A(t) and
b(t) are updated. In order to exploit the correlation between q(t) and x(t−1), we
keep both fixed and determine the filter coefficients analytically using guided
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Algorithm 1 Guided image super-resolution algorithm

1: for t = 1 . . . tmax do . tmax: maximum number of iterations
2: Update confidence maps β

(t)
y and β

(t)
p according to Eq. (9).

3: Estimate high-resolution photometric data q(t) at step t according to Eq. (10):

q(t) = arg min
q

KNp∑
i=1

β
(t)
p,ir

(t)
p,i(q)

2
+ λqR(q)

4: Determine A(t) and b(t) from q(t) and x(t−1) according to Eq. (11) and Eq. (12).
5: Estimate high-resolution range image x(t) at step t according to Eq. (13):

x(t) = arg min
x

KNy∑
i=1

β
(t)
y,ir

(t)
y,i(x)

2
+ λxR(x) + λc‖x−A(t)q(t) − b(t)‖22

6: If not converged proceed with next iteration

filtering [9]. Omitting the iteration index for sake of clarity, we construct A as
diagonal matrix and calculate the filter coefficients according to:

Ãk,k =

1
|ωk|

∑
i∈ωk

qixi − Eωk
(q)Eωk

(x)

Varωk
(q) + ε

(11)

b̃k = Eωk
(x)− Ãk,kEωk

(q), (12)

where ωk denotes a local neighborhood of size |ωk| and radius r centered at the
kth pixel in (x, q), ε is a regularization factor for guided filtering, and Eωk

(·)
and Varωk

(·) are the mean and variance in ωk. The filter coefficients A and b
are computed by box filtering of Ã and b̃ using the window defined by ωk.

Input Image Super-Resolution. Finally, we solve Eq. (3) with respect to x
to obtain a refined estimate x(t) under the guidance of q(t). This is achieved by
means of interdependence regularization based on A(t) and b(t) according to:

x(t) = arg min
x
{Fdata(x, q) +Rsmooth(x, q) +Rcorrelate(x, q)}q=q(t) . (13)

In the same way as for the guidance images, the resulting convex optimization
problem is solved employing SCG, where x(t−1) is used as initial guess. The
outline of the proposed algorithm is depicted in Table 1.

4 Experiments and Results

We compared the proposed guided super-resolution (GSR) approach to MAP
super-resolution using the L2 norm [6] and L1 norm model [8] working on a sin-
gle modality. For photometric data, all methods were directly applied to intensity
images using optical flow [13] for motion estimation. For range super-resolution,
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Table 1. Peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM, in brack-
ets) for synthetic data averaged over ten sequences. We compared bicubic interpolation
(second column), MAP super-resolution using the L1 norm (third column) as well as the
L2 norm (forth column) to the proposed guided super-resolution (GSR, last column).

Sequence Interpolation MAP - L1 MAP - L2 GSR

R
a
n
g
e

Bunny-1 32.78 (0.96) 34.10 (0.96) 34.05 (0.97) 35.01 (0.98)

Bunny-2 31.29 (0.94) 32.84 (0.95) 33.22 (0.97) 33.34 (0.98)

Dragon-1 24.63 (0.57) 27.68 (0.72) 28.71 (0.84) 30.00 (0.91)

Dragon-2 27.14 (0.75) 29.09 (0.84) 29.76 (0.93) 30.80 (0.95)

P
h
o
t
o
.

Bunny-1 28.48 (0.79) 29.82 (0.87) 29.79 (0.87) 29.79 (0.88)

Bunny-2 30.05 (0.81) 31.35 (0.86) 31.42 (0.86) 31.43 (0.86)

Dragon-1 23.34 (0.65) 24.25 (0.72) 24.24 (0.71) 24.27 (0.72)

Dragon-2 24.65 (0.66) 25.60 (0.72) 25.51 (0.70) 25.60 (0.72)

we employed the multi-sensor super-resolution approach [10] to derive the mo-
tion estimate from the corresponding photometric data. Super-resolution was
applied in a sliding window scheme using K = 31 successive frames, where the
central frame was chosen as reference for motion estimation. We used a mag-
nification factor of f = 4 for range and photometric data. The PSF width was
approximated to σp = 0.4 for photometric data and σy = 0.6 for range data.
For BTV regularization, we set α = 0.7 and P = 1. For guided filtering, we set
ε = 10−4 and r = 1. The regularization weights were optimized using a grid
search on a training data set with known ground truth and were set to λx = 0,
λq = 0.002 and λc = 1 for all experiments. We used SCG with a termination
tolerance of 10−3 for the pixels of (x, q) and the objective function value. The
maximum number of SCG iterations was set to 50 for 15 IRLS iterations3.

4.1 Synthetic Hybrid Range Data

We simulated synthetic range data with known ground truth using a RI simu-
lator [23]. The ground truth was generated in VGA resolution (640 × 480 px)
using RGB images to encode photometric information. All low-resolution frames
were downsampled by a factor of f = 4. Range data was affected by distance-
dependent Gaussian noise (σn = 8 mm) and Gaussian blur (σb = 3 mm). Pho-
tometric data was disturbed by space invariant Gaussian noise (σn = 5 · 10−4).
We generated random displacements of consecutive frames to simulate camera
movements. The quality of super-resolved data with respect to the ground truth
was assessed using the peak-signal-to-noise ratio (PSNR) and structural similar-
ity (SSIM). For RGB images, this evaluation was performed on the gray-scale
converted color images. Table 1 shows the PSNR and SSIM measures averaged
over ten subsequent sequences in sliding window processing. Qualitative results
are depicted in Fig. 1 for range images and Fig. 2 for photometric data.

3 Supplementary material is available at http://www5.cs.fau.de/research/data/
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(a) Original (b) Low-resolution (c) MAP L1

(d) MAP L2 (e) GSR (f) Ground truth

Fig. 1. Results for simulated Dragon-2 dataset: Low-resolution range data (a) and
selected region of interest (b), results of MAP super-resolution using the L1 (c) and L2

norm model (d), and our proposed GSR method (e) compared to the ground truth (f).

4.2 Microsoft’s Kinect Datasets

We acquired real range data using a Microsoft Kinect device. Range and photo-
metric data was captured in VGA resolution (640× 480 px) using a frame rate
of 30 fps. Color images in the RGB color space were used to encode photomet-
ric data. We applied super-resolution to the gray-scale converted color images
for visual comparison. During the acquisition, the device was held in the hand
such that a small shaking ensured the required motion for super-resolution over
consecutive frames. We used the same parameter settings as for synthetic data.
Qualitative results are shown for different acquisitions in Fig. 3 and Fig. 4. Fi-
nally, we also rendered 3-D meshes with a texture overlay from super-resolved
range data. A comparison of the different approaches is depicted in Fig. 5.

5 Discussion

In this work, we introduce a novel method for photogeometric resolution en-
hancement based on the concept of guided super-resolution. Unlike prior work,
our method super-resolves range and photometric data simultaneously. This al-
lows us to exploit photometric data as guidance for range super-resolution within
a joint framework. Our experimental evaluation demonstrates the performance
of our method on real as well as synthetic data. In case of range images, we
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(a) Original (b) GSR (c) Ground truth

Fig. 2. Results for simulated Bunny-1 dataset: Low-resolution photometric data (a)
and result of guided super-resolution (GSR) (b) compared to the ground truth (c).

(a) Original (b) Low-res. (c) MAP L1 (d) MAP L2 (e) GSR

Fig. 3. Real data set example showing range data (first row) and photometric data
(second row): Low-resolution range and RGB frame (a), selected low-resolution region
of interest (b), results for MAP super-resolution using L1 norm (c) and L2 norm (d),
and the super-resolved images using the proposed guided super-resolution (GSR) (e).

achieved an improvement of ∼ 1 dB for PSNR and ∼ 0.04 for the SSIM mea-
sure compared to super-resolution applied only on range data (see Table 1). On
photometric data, our method achieved similar performance as other state-of-
the-art algorithms. However, this behavior was expected since the photometric
data is not guided by range images in our formulation. Visual inspection using
Kinect acquisitions demonstrates the benefits of our approach for real data. For
range images, we observed an improved trade-off between edge reconstruction
and smoothing in flat regions as depicted in Fig. 3 and Fig. 4. This is caused
by the proposed interdependence regularization, which exploits local correlation
between modalities. Additionally, invalid range pixels are corrected as comple-
mentary information from multiple frames is fused in image reconstruction.
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(a) Original (b) Low-res. (c) MAP L1 (d) MAP L2 (e) GSR

Fig. 4. Real data set example showing range data (first row) and photometric data
(second row): Low-resolution range and RGB frame (a), selected low-resolution region
of interest (b), results for MAP super-resolution using L1 norm (c) and L2 norm (d),
and the super-resolved images using the proposed guided super-resolution (GSR) (e).

(a) MAP L1 (b) MAP L2 (c) GSR

Fig. 5. 3-D meshes with texture overlay triangulated from super-resolved range data.

6 Conclusion and Future Work

This paper proposes guided super-resolution to super-resolve images of two com-
plementary modalities within a joint framework. We applied this concept to re-
construct high-resolution range and photometric data in hybrid range imaging.
Our method exploits local correlations between both modalities for a novel in-
terdependence regularization based on guided filtering. Experiments on real and
synthetic images demonstrate the performance of our approach in comparison to
methods working solely on one modality. In our future work, we will investigate
the applicability of our method to different RI setups, e. g. for ToF imaging to ac-
quire range and amplitude data. As the proposed interdependence regularization
is independent of the utilized modalities, its adoption to different multi-sensor
setups such as RGB or multispectral imaging seems attractive.
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