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Abstract:
Objective: Automatic intelligibility assessment using automatic speech recognition is usually 
language-specific.  In  this  study,  a  language-independent  approach  is  proposed.  It  uses 
models that are trained with Flemish speech, and it is applied to assess chronically hoarse 
German speakers.  The research  questions  here  are:  is  it  possible  to  construct  suitable 
acoustic  features  that  generalize  to  other  languages and a speech disorder,  and is  the 
generated model  for  intelligibility  also  suitable  for  specific  subtypes of  that  disorder,  i.e. 
functional and organic dysphonia? 
Patients and Methods: 73 German speaking persons with chronic hoarseness read the text 
“Der Nordwind und die Sonne”. Perceptual intelligibility scores were used as ground truth 
during  the  training  of  an  automatic  model  that  converts  speaker-level  acoustic 
measurements  into  intelligibility  scores.  Cross-validation  is  used  to  assess  model 
performance. 
Results: The inter-rater agreement for all patients (n=73) and for the functional and organic 
dysphonia subgroups (n=45 and n=24) are r=0.82, r=0.83,  and r=0.75, respectively.  The 
automatic assessment based on phonologically-based acoustic models revealed correlations 
between  perceptual  and  automatic  intelligibility  ratings  of  r=0.79  (all  patients),  r=0.78 
(functional dysphonia), and r=0.80 (organic dysphonia). 
Conclusion: Automatic, objective measurement of intelligibility is a valuable instrument in an 
evidence-based clinical practice. 
 
Keywords:  Acoustic analysis - Intelligibility - Perceptual rating - Running speech - Voice 
disorders - Chronic hoarseness - Objective analysis - Phonologic features

1. Introduction

Subjective-perceptual  voice  and  speech  evaluation  cannot  fulfill  the  requirements  of 
evidence-based medicine [1]. For instance, it is problematic with respect to differences in 
degrees of experience among the examiners [2], because every person has used previously 
processed data to develop an individual way of judging new data. For this reason, subjective 
evaluation evolves continuously, and it therefore has to be replaced or at least supplemented 
by objective, automated methods. However, until recently, the latter were usually restricted to 
voice quality measurements on sustained vowels or single phones, i.e. speech stimuli that 
differ considerably from natural speech encountered in realistic communication settings [3, 4, 
5, 6]. Important speech criteria, such as intelligibility,  cannot be obtained in this way and 
require much more elaborate solutions. 

Intelligibility has been identified as one of the most important aspects of voice and speech 
assessment  [7,  8,  9,  10].  In  clinical  practice,  it  is  usually  evaluated  perceptually,  but 
automatic intelligibility assessment tools employing an automatic speech recognition (ASR) 
system have recently emerged and have shown big potential  [11, 12]. However, an ASR 
system encompasses acoustic models for the basic speech sounds (e.g. phonemes). These 
models are usually trained on non-distorted speech from one particular language. During 
speech assessment, a test subject reads a particular text, and the acoustic models establish 
how well the tested speech compares to the speech that would have been obtained from a 
“normal” person reading the same text (the “expected” speech). Consequently, the system 
can only  be used to  assess speech of  the  language that  was used for  acoustic  model 
training, and it may be affected by reading errors made by the tested subject since such 
errors also affect the “expected speech”. 

In  order  to  further  extend  automatic  speech  assessment  to  spontaneous  speech 
assessment, where no transcriptions of the speech are available anymore, Bocklet et al. [13] 
proposed  to  adopt a  speaker  verification  approach.  In  that  approach,  the  statistical 
distribution of the spectra of 20 milliseconds speech frames is represented by a Gaussian 
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Mixture Model (GMM), and the parameters of that GMM constitute the speaker features, i.e. 
measures that are characteristic for one specific person. Intelligibility is then inferred from 
the discrepancies  between  these  speaker  features  and the corresponding  features  of  a 
normal speaker set. If a GMM is trained on a sufficiently long speech sample, it is deemed to 
be largely text-independent. Middag et al. [14] propose an alternative approach. They train a 
neural network to convert a speech spectrum into a vector of phonological scores, and they 
subject these scores to a holistic analysis. Each score represents the posterior probability of 
one phonological class (e.g. central vowel), i.e. the probability that the currently processed 
section of the speech sample represents a phone of the respective class. By examining 
which fraction of  the time it  is  above a certain threshold,  how long on average are the 
intervals  in which it  stays above or below that  threshold,  etc.,  one obtains a number of 
speaker features that can be compared to the corresponding features derived from normal 
speech. These speaker features are regarded text-independent for the most part.

In  the  present  study,  we  investigate  the  latter  approach  [14]  because  we  already 
demonstrated that a phonological feature extractor trained on Flemish speech constitutes a 
suitable basis for assessing the intelligibility of German speaking patients with various voice 
pathologies [15].  However,  the inputs of  the phonological  feature extractor  [16]  are Mel-
Frequency  Cepstrum  Coefficients  (MFCCs)  that  just  represent  the  spectral  envelope. 
Therefore, in the present study we supplement the phonological speaker features with the 
AMPEX features proposed by Moerman et al. [10]. They originate from a holistic analysis of 
the  frame-level  volume,  fundamental  frequency,  and  voicing  evidences.  Note  that  this 
analysis can be conducted on arbitrary speech, irrespective of the language that is spoken, 
and that it therefore fits well in the multilingual setting of the present study. 

The  study is  part  of  a  research  project  on  the  analysis  of  chronic  hoarseness.  Elderly 
persons were reported to have 29% of a point prevalence and a lifetime incidence of 47% for 
a voice disorder. Hoarseness is one of the most important symptoms, appearing in 78% of 
the cases [17]. For this reason, a specific model for the intelligibility of hoarse persons was 
supposed to be created. Chronic hoarseness can have different causes, such as functional 
problems, organic variations, or laryngitis. Therefore, we tested whether one single model for 
all types of hoarseness is sufficient to evaluate the most prevalent subtypes reliably.

The focus  of  this  work  is  on  the  importance  of  the  different  phonological  and  prosodic 
dimensions for  the prediction of  intelligibility  (“prediction”  means a value computed by a 
statistical model in this case, not a prognosis on events in the future). More in particular, the 
following questions will be addressed:

• Do phonological feature extractors trained on undistorted Flemish speech enable a 
reliable assessment of the intelligibility deficiencies observed in a group of German 
persons with chronic hoarseness?

• Which measures (features) computed from which phonological dimensions are most 
important for creating a good intelligibility model?

• Do the obtained features work equally well for different speech pathology subgroups?

2. Material and Methods

2.1. Subjects and Test Samples

73 German persons with chronic hoarseness (24 men and 49 women) between 19 and 85 
years of age participated in this study (Table 1). The average age was 48.3, the standard 
deviation was 16.8 years. Patients suffering from cancer, patients with hearing problems, 
and persons who were not able to read a text from a sheet of paper were excluded. No other 
pre-selection was made. The most common pathologies were grouped into functional (n=45) 
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and organic dysphonia (n=24; Table 2). The four remaining persons suffered from laryngitis 
and were not evaluated separately. Each person read the text “Der Nordwind und die Sonne” 
(“The North Wind and the Sun”), a phonetically rich text with 108 words (71 distinct) and 172 
syllables.  This  text  is  frequently used in  medical  speech evaluation in  German-speaking 
countries and is acknowledged as a standard text for these purposes by the International 
Phonetic  Association [18].  The  text  was read as one passage,  recorded with a headset 
microphone AKG C 420 (AKG Acoustics, Vienna, Austria), sampled at a frequency of 16 kHz 
and digitally stored in 16 bit pulse code modulation (PCM).

The study respected the principles of the World Medical Association (WMA) Declaration of 
Helsinki on ethical principles for medical research involving human subjects and has been 
approved by the ethics committee of the university clinics in Erlangen. All patients gave their 
informed consent to participate in this study.

2.2. Subjective Evaluation

A group of five voice professionals was instructed to estimate the intelligibility of the patients 
while  listening to  play-backs  of  the  recordings.  The samples  were presented in  random 
order. A five-point Likert scale was applied to rate the intelligibility of each recording, i.e. the 
listeners were asked to mark one of the grades “very high”, “rather high”, “medium”, “rather 
low”, or “very low”. For computation, these grades were converted to integer values from 1 
(very high intelligibility) to 5.  An averaged mark, expressed as a floating point value, was 
calculated for each patient as the mean of the single scores. These marks served as ground 
truth in our experiments.

2.3. Objective Evaluation

The objective evaluation of intelligibility is a four-step procedure. The pre-processing stage 
produces  a  spectro-temporal  representation  of  the  acoustic  signal.  The  phonological 
analysis  stage  converts  the  spectral  envelope  features  into  phonological  features  that 
expose the phonological properties of the subsequent speech frames. The speaker feature 
extraction stage then performs a holistic analysis of the phonological features and creates a 
compact set of speaker features. In the intelligibility assessment stage, the speaker features 
are converted into an intelligibility score by means of a regression model that is referred to 
as an intelligibility model. 

2.3.1. Pre-processing

During the pre-processing stage, a stream of Mel-frequency cepstral coefficients (MFCCs) is 
extracted from the recording. MFCCs are standard features in automatic speech processing 
[16],  because they describe the spectro-temporal evolution of speech in a compact way. 
Every 10  milliseconds,  a  speech  frame  of  25  milliseconds  centered  around  the  current 
timestamp is Hamming-windowed and analyzed. The analysis returns 12 MFCCs and an 
energy value. The MFCCs describe the shape of the spectrum in decibels as a function of  
the logarithm of the frequency. The energy value is computed from the amplitudes in the 
time domain. 

In parallel, the recordings are also analyzed by means of the auditory model proposed by 
Van Immerseel & Martens [19].  Every 10 milliseconds,  this analysis generates a voicing 
evidence  describing  the  degree  of  regularity  in  the  voiced  frames,  a  voiced-unvoiced 
decision, and a fundamental frequency value. Even if the voicing decision is “unvoiced”, the 
analysis  still  returns  the  “most  likely”  fundamental  frequency.  These  features  are  called 
prosodic features.
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2.3.2. Phonological Analysis

Per 10 milliseconds, a window of five MFCC vectors (representing the considered frame as 
well  as the two preceding and the two succeeding frames) is converted into a vector of 
phonological scores. Given the MFCC inputs, each score represents the probability that the 
considered frame belongs to a sound that belongs to a certain phonological class. Each 
phonological  class  refers  to  a  group of  basic  sounds  sharing  a  certain  property.  In  the 
present study, we consider the 14 properties that were also used in [14, 20], because they 
do not  require  analysis  of  longer  speech segments.  There  is  one property of  the vocal 
source  (voicing),  four  properties  referring  to  manner  of  articulation  (silence,  consonant-
nasality,  vowel-nasality,  turbulence),  six  properties  referring  to  place  of  consonant 
articulation (labial, labio-dental, alveolar, velar, glottal, palatal), and three properties referring 
to vowel features (height,  place, lip rounding).  Vowel height is ordered from low to high, 
vowel place is ordered from front to back. Most of them are of a binary nature, but a few 
(vowel height and place) are of a ternary nature.

The  envisaged  conversion  is  achieved  by  means  of  a  feed-forward  neural  network,  as 
described in [14, 20].  The network is trained on a corpus of Flemish continuous speech 
utterances elicited from speakers with no apparent  voice disorders.  Each utterance was 
automatically segmented and labeled into basic sounds and silences, and these labels were 
converted to target values for the phonological properties. In the case of a binary property, 
this target value is 0 or 1. In the case of a ternary variable, the target value can be 0, 0.5, or 
1. During training a frame belonging to a consonant will not contribute to the training of the 
network outputs referring to a vowel feature and vice versa.

2.3.3. Speaker Feature Extraction

The frame-level phonological and prosodic features are each subjected to a holistic analysis 
which does not need any precise knowledge of the text that was read.

Prosodic Features (AMPEX)
The  frame-level  prosodic  features  are  converted  into  8  so-called  AMPEX  features,  as 
described in [10]. The voicing evidence and the signal loudness (see [19, 21]) are used to 
label the frames as voiced/unvoiced and as speech/silence, and to locate pauses, defined as 
intervals  of  more than 200 ms long.  Based on these classifications,  the AMPEX feature 
extractor computes the features listed in Table 3. They can be grouped into voicing-related 
parameters  (e.g.  the  percentage  of  speech  frames  classified  as  voiced)  and  F0-related 
features (e.g. average jitter of the fundamental frequency F0 in voiced frames). The features 
were computed for the whole length of each speech sample. In earlier studies it has been 
shown that supplementing phonological features with these F0-and-voicing related speaker 
characteristics leads to enhanced intelligibility prediction [20]. 

Phonological Features (ALF-PLFs)
The frame-level values of one phonological feature (e.g. the vowel-nasality feature) form the 
samples of a temporal pattern, and the speaker feature extraction performs an analysis of 
the static and dynamic properties of this pattern, as described in [14]. Each pattern gives rise 
to 18 properties, and all samples of a pattern have a value between 0 and 1. Among the 
static  properties  are  the  mean  and  standard  deviation  of  the  sample  distribution,  the 
percentage and mean values of samples with a value between 0 and 0.33 (low), between 
0.33 and 0.66 (intermediate), and between 0.66 and 1 (high). Among the dynamic features 
are the mean value of the peaks and valleys (maxima, minima) in the pattern, the mean 
lengths of the sections with the aforementioned value intervals, and the mean time to reach 
a maximum or minimum value. There are 14 phonological patterns, each of them specified 
by its relevance and presence, and 18 speaker features extracted for each of these patterns. 
Hence, 504 speaker features are computed for each speech sample. Note that the holistic 
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analysis of the vowel features is restricted to the time intervals where the vowel evidence is 
larger than 0.5. For the consonant features, this holds accordingly.

Since these phonological features do not require a transliteration of the spoken text, they will 
be denoted as alignment-free phonological features (ALF-PLFs), in accordance with [20].

2.3.4. Intelligibility Model – Experimental Setup

Once every speaker is characterized by a set of speaker features, a regression model is 
trained.  The  aim  is  to  minimize  the  mean-squared  difference  across  training  speakers 
between the model output, i.e. the computed intelligibility values, and the target output, i.e. 
the average perceptual mark. 

In order to avoid over-fitting to the training data, a 5-fold cross-validation setup was used, in 
which always four-fifths of the utterances form a training partition meant for model training. 
The remaining utterances form a test partition meant for model testing.

The  models  were  trained  using  support  vector  regression  (SVR,  [22]).  The  underlying 
Support Vector Machine (SVM) employs a Gaussian kernel. During training on a particular 
training fold, the learning parameters (kernel parameters, fault threshold) are retrieved from 
a  grid  search  which  is  based  on  an internal  5-fold  cross  validation  scheme.  In  such  a 
scheme, the aforementioned training partition for the models is split up again. Models are 
trained on four-fifths of  the training partition and evaluated on the remaining fifth of that 
partition. The experiment is repeated five times for five subdivisions of the training partition. 
Once the learning parameters are fixed, a new SVM is trained on the full training partition 
and evaluated on the corresponding test partition.

In order to determine which features are most relevant, we ranked the features according to 
their absolute weights in the SVR models. To that end we divide the raw feature weights 
emerging from one training by the maximum over  all  feature weights,  and we take the 
means of these normalized feature weights over the five folds. The theoretical maximum of 
this mean is then equal to 5. 

2.3.5.  Agreement  within  the  Rater  Group  and  between  Raters  and  Automatic 
Evaluation 
 
Pearson’s  correlation  coefficient  r  was  used  to  measure  the  correlation  between  the 
computed intelligibility values and the human ratings. For the agreement within the rater 
group, Pearson’s r and Krippendorff’s α [23] were determined. Per definition, Krippendorff’s α 
can be computed for the whole group all at once. In order to achieve a corresponding value 
for r, the correlation between one rater’s scores and the average scores of the remaining 
four raters were computed. All five of these “four vs. one” scores were then averaged to form 
the final  correlation value.  For  the human-machine agreement,  Krippendorff’s α was not 
used since it would have required a mapping of the real-valued regression results to integer 
numbers, which would have introduced another source of error. 

3. Results

3.1. Subjective Evaluation

The perceptual  scores for  the 73 patients covered the whole range of  the 5-point  scale 
(Table 4), with an average mark of 2.51 for the whole group. Intelligibility of the persons with 
functional  dysphonia  was  regarded better  (average:  2.27)  than that  of  the  persons with 
organic dysphonia (3.06). The distribution of the judgments is depicted in Figure 1. Fifteen 
persons with functional dysphonia were rated to have a very high intelligibility of below 1.5 
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on the average. For the organic dysphonia, this was not a single person. The inter-rater 
correlations for the entire patient group, the group with functional dysphonia, and the organic 
dysphonia  group  were  r=0.83,  r=0.82,  and  r=0.75,  respectively  (p<0.001).  The 
corresponding values for Krippendorff’s α were 0.70, 0.67, and 0.64, respectively.

3.2. Objective Evaluation

The human-machine correlation between the average perceptual intelligibility ratings and the 
automatically computed values was r=0.79 for the whole patient group. For the functional 
dysphonia  group,  it  was  r=0.78,  for  the  organic  dysphonia  group,  r=0.80 was  achieved 
(p<0.001). The figures confer well with the human inter-rater agreement.

Table 5 shows the 10 features which had the highest weight in the models and which can 
thus be considered most important for predicting the intelligibility of the considered type of 
dysphonic speakers. Among the 10 features, we find four AMPEX features (AVE, PVS, PVF 
and PVFU) and six ALF-PLF features. Two of the latter features are related to turbulence, 
two to vowel-consonant distinction, one to consonant nasality and one to the presence of 
silences in the speech.

4. Discussion

The main target of this study is reaching good predictions of intelligibility. In this respect, our 
results show that the model predictions for the entire patient group correlate almost as much 
with the ground truth (r=0.79) as the scores of an arbitrary human rater (r=0.83) who actually 
contributed to that ground truth. Moreover, the human-machine correlation is very similar 
when measured on the entire speaker group, the functional dysphonia subgroup, and the 
organic dysphonia subgroup. The two subgroups cover about the same age range (Table 1), 
and they were recorded with the same microphone at the same place. The speakers all live 
in  the same region and do not  suffer  from other  impairment  than hoarseness.  It  is  not 
possible to form two groups which are identical in every single aspect, but according to our 
experience,  we suppose that  a large portion of  the differences between their  evaluation 
results emerges from different causes of hoarseness. The human-machine correlations, on 
the other hand, can also be influenced by the different size of the subgroups. Nevertheless, 
the results suggest that our automatic intelligibility assessment can deal with different types 
of  hoarseness.  To find more substantial  evidence for  this,  we could have compared our 
general  intelligibility model with specific models trained on one speaker subset. However, 
due to the small size of the subgroups, we would not have been able to construct specific 
models of the size of the general model, and the conclusions of the experiment would have 
been debatable.

Support Vector Regression on all 504 ALF-PLF and 8 AMPEX features revealed the 10 most 
relevant features for modeling the human reference. Four of them describe the speaker’s 
control  over  his  or  her  phonation:  voicing evidence in  voiced frames,  the percentage of 
frames classified as voiced, the percentage of speech frames classified as voiced, and the 
percentage of frames classified as voiced with an unreliable F0.  Among the phonological 
features,  the  most  important  ones  are  turbulence-related.  This  was  expected  since 
dysphonic speakers are known to produce turbulence in vowels that are normally supposed 
to exhibit a harmonic spectrum. The selection of the silence property may stem from a higher 
speaking effort  for dysphonic speakers which leads to more breathing noise and thus to 
“filled” rather than clear silences in the speech. This has been shown similarly in the effort  
ratings  for  laryngectomized  persons  [11].  The  importance  of  the  feature  concerning  the 
relevance of the nasality of consonants may have a similar reason. 

Earlier studies using speech recognition techniques have also shown that the durations of 
pauses and voiced segments within words are highly correlated with intelligibility ratings, at 
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least for the case of partially and totally laryngectomized persons [11, 12]. The results of our 
current study confirm these findings. In future experiments, the selection procedure for the 
most relevant features will be enhanced based upon feature ranks according to the amount 
of variance in the computed intelligibility score across the training samples they represent. 
According to our experience and the mentioned former studies, however, we do not expect 
significant changes in the results.

The  procedure  of  perceptive  evaluation,  which  was  used  for  this  study,  may  raise  the 
question  whether  the  raters  really  evaluated  intelligibility.  The  way  of  evaluation  was 
supposed to depict the methods that are usually applied in therapy sessions. The raters 
were clearly instructed to evaluate intelligibility instead of voice quality, because it is known 
that the degree of voice distortion influences the rating of intelligibility [24]. It is very difficult, 
however, to exclude this effect in clinical practice where intelligibility is often not evaluated as 
a percentage of correctly understood words, because these exact tests are time-consuming. 
Additionally, a percentage scale is too detailed to be relevant for therapy suggestions. The 
percentage values would very likely be grouped into a small  number  of  intervals  with a 
certain decision for therapy for each of them. For this reason, we decided to instruct the 
therapists to rate intelligibility in five classes right from the beginning. It is obvious that these 
labeled classes may not be assigned uniformly by the raters due to certain bottom or floor 
effects,  which actually makes the conversion to integer  numbers a  non-linear  operation. 
However,  in  the same way we regard it  as very likely that  the effect  on communication 
success  by  differences  in  percentage  intelligibility  is  also  not  equally  distributed.  A 
comprehensive study on these effects is not the topic of this work, but we believe that the 
difference between 30% and 40% of  understood words,  for  instance,  will  cause another 
degree of information loss than between 90% and 100%. The average value of the ratings of 
several raters was used in order to get a representative evaluation, not a single one with 
personal bias. Some researchers prefer the consensus method, where the raters agree on a 
common rating. But this does not reflect the average of independent ratings, since some of 
the involved persons may neglect their own impression and rather choose a label which is 
more consistent with the others. 

Another point of criticism may be the use of a standard text for this study. This was done in 
order to be consistent with former studies, where ASR-based evaluation methods were used 
[11,  12,  13].  They required the same words spoken by every patient,  and the reference 
evaluation  was  obtained  in  the  same  way.  On  the  other  hand,  this  ensures  the  same 
vocabulary  and  number  of  words  in  every speech  sample  to  the  most  possible  extent. 
Hence, human perception is not influenced by variations in those aspects.

It  has  been shown in  this  study that  the  proposed phonological  approach is  essentially 
language-independent: phonological models trained on normal Flemish speech can assess 
German pathologic  speech.  Experiments  with  more  dissimilar  language  pairs  should  be 
conducted in order to further substantiate the above statement. Also within one language, 
the features may be partly determined by the underlying phoneme and word frequencies. 
Consequently,  variations  in  the  read  text,  e.g.  variations  due  to  reading  errors  and 
hesitations, do increase the inter-subject variability. Preliminary experiments with the data 
presented in this study have shown that this influence is on average not significant, but it  
should nevertheless be examined more in detail. A remaining challenge for future work is to 
develop  a  methodology  that  is  capable  of  predicting  intelligible  of  speech  spoken  over 
different  media:  plain old telephones,  mobiles and internet  (e.g.  Skype)  [12,  25].  This is 
important since after all, these media presently constitute important communication means.

8



5. Conclusion

Until  now,  there is  no generally accepted objective method for  the evaluation of  speech 
intelligibility.  Here,  we  present  an  automatic  evaluation  system that  can  assess  speech 
spoken  in  languages  that  were  not  used  during  the  development  of  the  system.  It  is 
achieved by the analysis  of  running  speech  which  corresponds to  the everyday use of 
voices.  Furthermore,  the  test  speaker  set  consisted of  hoarse persons,  and the training 
speakers did not show any voice pathology. The generated model for intelligibility can even 
be applied to subgroups of chronic hoarseness without model adaptation. The correlation 
between the automatic analysis and a human reference is on the same level as the inter-
rater correlation within a group of experienced voice pathologists. The additional advantage 
of the system is that its results are reproducible, since it is based on acoustic measures. It 
cannot be fully objective, since intelligibility is a subjective measure. However, the reference 
for the training of the computed model was a representative average opinion of a panel of 
voice  and speech therapists.  Hence,  such a model  can serve as  the basis  for  a future 
“objective”, evidence-based approach for diagnostics and therapy support.
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Tables 

Table 1. Age statistics for the automatically evaluated patient groups
 

n
men women avg. age st.dev. (age) min. 

age
max. age

total 
group

73 24 49 48.3 16.8 19 85

functional 45 13 32 47.1 16.3 20 85

organic 24 9 15 52.2 15.6 25 79
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Table 2. Diagnoses within the speaker groups

subgroup diagnosis n

functional 
dysphonia 

hyperfunctional dysphonia 23

hypofunctional dysphonia 8

combined functional dysphonia 14

organic 
dysphonia

organic dysphonia 9

organic dysphonia + paresis 1

spasmodic dysphonia 1

vocal fold polyp 6

paresis 4

paresis + Reinke’s edema 1

Reinke’s edema 2

laryngitis laryngitis 2

laryngitis + functional dysphonia 1

laryngitis + organic dysphonia 1

Table 3. The AMPEX features (for details, see [21])

feature description

PVF percentage of all frames in the recording that were labeled voiced

PVS percentage of speech frames that were labeled voiced

AVE average voicing evidence in voiced frames

PVFU percentage of voiced frames with an unreliable F0

Jit average F0-jitter in voiced frames

Jc average F0-jitter in voiced frames with a reliable F0

VL90 90th percentile (in seconds) of the voiced fragment durations

Tmax duration (in seconds) of the longest speech fragment (not interrupted by a pause)

Table 4. Perceptual evaluation results (intelligibility on a 5-point scale)
avg. st.dev. min. max. inter-rater correlation r Krippendorff's α

total group 2.51 1.02 1.00 5.00 0.82 0.70
functional 2.27 1.00 1.00 5.00 0.83 0.67
organic 3.06 0.91 1.60 4.80 0.75 0.64
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Table 5. Weights of the ten most important features in the intelligibility model
feature 
group

feature weight

ALF-PLF average maximum of turbulence being present 4.58
AMPEX AVE – average voicing evidence in voiced frames 4.45
AMPEX PVS – percentage of speech frames that were labeled voiced 4.27
ALF-PLF average minimum of relevance of nasality of consonants 3.67
ALF-PLF average minimum of absence of turbulence 3.63
ALF-PLF average evidence for absence of vowels 3.63
AMPEX PVF – percentage of all frames in the recording that were labeled voiced 3.52
AMPEX PVFU – percentage of voiced frames with an unreliable F0 3.27
ALF-PLF average evidence for vowel dimension low 3.05
ALF-PLF average evidence for the absence of silence 2.98

Figure 1. Perceptual evaluation of intelligibility for the functional (n=45) and the organic 
dysphonia group (n=24); the y-axis denotes the number of speakers with the respective 
intelligibility rating.
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