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Abstract. The multi–scale Frangi vesselness filter is an established tool
in (retinal) vascular imaging. However, it cannot properly cope with
crossings or bifurcations since it only looks for elongated structures.
Therefore, we disentangle crossings/bifurcations via (multiple scale) in-
vertible orientation scores and apply vesselness filters in this domain.
This new method via scale–orientation scores performs considerably bet-
ter at enhancing vessels throughout crossings and bifurcations than the
Frangi version. Both methods are evaluated on a public dataset. Per-
formance is measured by comparing ground truth data to the segmenta-
tion results obtained by basic thresholding and morphological component
analysis of the filtered images.

Keywords: Multi-scale vesselness filters, continuous wavelet
transforms, line detection, gauge frames, retinal imaging.

1 Introduction

The retinal vasculature enables non–invasive observation of the human circu-
latory system. A variety of eye–related and systematic diseases such as glau-
coma, age–related macular degeneration, diabetes, hypertension, arteriosclerosis
or Alzheimer’s disease affect the vasculature and may cause functional or geo-
metric changes [1]. Automated quantification of these defects promises massive
screenings for systematic and eye–related vascular diseases on the basis of fast
and inexpensive imaging modalities, i.e., retinal photography.

To automatically assess the state of the retinal vascular tree, vessel segmen-
tations and/or models have to be created and analyzed. Because retinal images
usually suffer from low contrast at small scales, the vasculature needs to be en-
hanced prior to model creation/segmentation. One well–established approach is
the Frangi vesselness filter [2]. It is frequently used in robust retinal vessel seg-
mentation methods [3, 4]. However, the Frangi filter has a known drawback. It
cannot properly enhance vessels throughout crossings or bifurcations that make
up huge parts of the retinal vascular network. To generically deal with this issue,
we apply the principle of image processing via invertible orientation scores (Fig.
1) and derive a multi–scale crossing–preserving vesselness filter.

The construction of invertible orientation scores is inspired by the functional
architecture of the human cortical columns in the primary visual cortex [5],
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where decomposition of local orientation allows the visual system to separate
crossing/bifurcating structures. Similar approaches rely on other Lie-groups, see
[6, 7]. Here, we will develop vesselness filters on the extended Lie–group domains
of the rotation translation group SE(2) and the rotation, translation and scaling
group SIM(2). In the SIM(2) case we arrive at continuous wavelet transforms
on SIM(2) [8]. In the SE(2) case our approach is closely related (see [9, ch:2.3])
to the work by Krause at al. [10] who rely on a local Radon transform.

The general idea is as follows. Frangi’s vesselness relies on a Hessian in the im-
age domain and it only copes with one orientation per location. Since complex
structures in retinal images exhibit multiple orientations per position, invert-
ible (multiple scale) orientation scores provide a generic disentanglement of all
orientations and scales without tampering of data-evidence, see Fig. 2. The ori-
entation score carries a curved (sub)-Riemannian geometry. When moving in
θ-direction, spatial derivatives must rotate accordingly. We employ differential
frames in the score, providing us Hessians, and subsequent vesselness filters that
cope generically with (multiple-scale) crossings/bifurcations without having to
classify them.

In the end, we show the performance of this new type of vesselness filters
by comparison to the multi–scale Frangi vesselness [2], both qualitatively and
quantitatively on the High Resolution Fundus (HRF) image dataset available at
http://www5.cs.fau.de/research/data/fundus-images/.

Fig. 1. Image processing via in-
vertible orientation scores

Fig. 2. Exemplary image and corresponding ori-
entation score

2 Methods

An orientation score Uf : SE(2) → C is obtained by correlating an input image
f with a specially designed anisotropic wavelet ψ:

Uf (x, θ) =
(
ψθ � f

)
(x, θ) =

∫

IR2

ψ
(
R−1
θ (y − x)

)
f(y)dy (1)

where Rθ denotes a 2d counter–clockwise rotation matrix and ψθ(x) = ψ(R−1
θ x).

Exact image reconstruction is achieved by

f = F−1

[
M−1
ψ F

[
x �→ 1

2π

∫ 2π

0

(ψθ ∗ Uf) (x, θ)dθ
]]

(2)

http://www5.cs.fau.de/research/data/fundus-images/
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where ∗ denotes convolution, F [·] represents the unitary Fourier transform on

L2(IR
2) andMψ is given by

∫ 2π

0
|F [ψθ] |2dθ. Theoretically, reconstruction is well

posed for 0 < δ < Mψ < ∞ with arbitrary small δ. One type of wavelets that
meet the stability criteria in [11, 5, 12] are cake wavelets described by [13, 9].
They uniformly cover the Fourier domain up to a radius of about the Nyquist
frequency ρn to satisfy the discrete version of Mψ ≈ 1.

2.1 Gaussian Derivatives in Orientation Scores

The orientation score domain is essentially the 2d special Euclidean motion group
SE(2) ≡ IR2

�S1 [13, ch.2]. Because of this, all operations Φ on this domain (see
Fig. 1) have to be left–invariant to produce a Euclidean invariant net operator Υ
on the image [13, ch.2]. This is desirable since the result should be independent
of rotation and translation of the input. Φ is left–invariant iff Φ ◦ Lg = Lg ◦ Φ
for all g = (x, θ) ∈ SE(2) with the shift–twist operator on the score given by

LgUf (h) = Uf (g
−1h) = Uf (R

−1
θ (x′ − x), θ′ − θ), (3)

for all g = (x, θ),h = (x′, θ′) ∈ SE(2). So we must rely on left–invariant deriva-
tives, attached to each (x, y, θ) ∈ SE(2) in the domain of the score, given by

∂ξ := cos θ ∂x + sin θ ∂y, ∂η := − sin θ ∂x + cos θ ∂y, and ∂θ, (4)

when constructing vesselness filters on SE(2). These derivatives provide a mov-
ing frame of reference on the group steered by the orientation of the wavelet.
Their non–zero commutators are given by [∂θ, ∂ξ] = ∂η and [∂θ, ∂η] = −∂ξ.
Later we will adapt this frame locally to the score, following the theory of best
exponential curve fits presented in [13, ch.6]. This will compensate for the fact
that our wavelet kernel is not always perfectly aligned with all local orientations
present in the image (For details, see [13, ch.6]).

Since orientation and spatial direction have different physical units, a conver-
sion factor is needed. This stiffness parameter β has unit 1/length. It determines
the shape of both exponential curves [13, ch.6] (i.e. the auto-parallel curves, see
[14, app.C]) and the geodesics (i.e. shortest distance curves) in SE(2). Intuitively,
increase of β makes it cheaper to bend curves, whereas decrease of β makes it
cheaper to stretch curves. See e.g. [14, Fig.17]. Mathematically, β appears as the
only free parameter in the (sub-)Riemannian metric on SE(2) given by

d(g1, g2) = inf
γ(0)=g1
γ(l)=g2
γ̇∈Δ,l≥0

∫ l

0

√
Gβ

∣
∣
γ(s)

(
γ̇(s), γ̇(s)

)
ds , (5)

with Δ = span {∂ξ, ∂η, ∂θ}, γ(s) = (x(s), θ(s)) and Gβ |γ(γ̇, γ̇) = β2(ẋ cos θ +

ẏ sin θ)2 + β2(−ẋ sin θ + ẏ cos θ)2 + θ̇2 in the Riemannian case. In the sub–
Riemannian case, the allowed part of the tangent space is Δ = span {∂ξ, ∂θ}.
The functional in (5) then reduces to

∫ l
0

√
κ2(s) + β2 ds with the curvature κ of

the spatially projected curve x(s) = PIR2γ(s), for details see [14]).
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In order to extract local features in SE(2) with well–posed, left–invariant
derivative operators, regularization is needed. The only left–invariant diffusion
regularization in SE(2) that preserves the non–commutative group structure via
the commutators is elliptic diffusion, isotropic w.r.t. the β-metric (5). Then reg-
ularization is achieved via a spatially isotropic Gaussian with scale 1

2σ
2
s and a

1d–Gaussian in θ with scale 1
2 (βσs)

2 [13, ch.5]. The regularized derivative opera-
tors are convolutions with differentiated β-isotropic Gaussians and generalize the
concept of Gaussian derivatives used in the Frangi vesselness filter [2] to SE(2).
In our subsequent extension to SIM(2), where we include scaling a > 0, we will
choose β = 0.05/a as we must take into account both physical dimensions, and
typical tortuosities of retinal vessels.

2.2 Scale-Orientation Scores

To make the cake kernels described by [13, 9] scale–selective, the pieces of cake
have to be further divided. By cutting out pieces in the log–radial direction, they
are made sensitive to a specific frequency range that can be identified with a scale
a in the spatial domain. To construct scale–selective cake kernels (anisotropic
wavelets), [12] uses a radial envelope function

BMS(ρ) =

Nρ−1∑

l=0

Bkl (ρ) :=

Nρ−1∑

l=0

Bk
(
log(ρal)

sρ

)
, with al = a0e

lsρ , (6)

where Bk(x) is the k-th order B–spline function, Nρ is the total number of scales
to sample in the Fourier domain and sρ > 0 denotes the stepsize in log–scale.
The multiplicative character in al = a0e

lsρ reflects the typical scale transitions
at bifurcations in bloodvessels. Because of the B–spline approach, the scale–
selective envelopes Bkl (ρ) sum to 1 and the Mψ ≈ 1 requirement is met (Fig. 3).
Scale layers outside a spatially defined range of interest are merged to reduce
computational load (Fig. 3). We propose the following multi–scale cake kernel

ψMS(x) =
(
F−1

[
M−1F

[
ψ̃MS

]
(ω)

])
(x) (7)

where ψ̃MS(x) denotes the wavelet

ψ̃MS(x) =
(F−1

[
ω �→ A(ϕ)Bk0 (ρ)

])
(x) Gsx,sy (x) (8)

at the finest scale a0. The function A(ϕ) is given by Bk(s−1
θ [(ϕmod 2π)− π/2])

for ρ > 0 and 1/Nθ for ρ = 0 with the angular stepsize sθ = 2π/Nθ. The
anisotropic Gaussian window Gsx,sy (x) reduces long tails along the orientation
of the wavelet and suppresses oscillations perpendicular to it induced by narrow
sampling bandwidths in BMS(ρ). Changes in the Fourier domain are resolved

via normalization with M(ω) = N−1
ρ N−1

θ

∑Nρ−1
l=0

∑Nθ

j=1 a
−1
l |F [ψ̃MS ](alR

−1
θj

ω)|.
Thereby, approximative reconstruction is done by summation over scales and
angles. The continuous wavelet transform (Wψf)(x, θ, a) = (ψaθ � f)(x) with
ψaθ (x) = a−1ψMS(a−1R−1

θ x) is now set and processing can begin.



Crossing-Preserving Multi-scale Vesselness 607

Ω x

Ω y

Ρ 3 Ρ 2 Ρ1 Ρ n
Ρ0.0

0.2

0.4

0.6

0.8

1.0

1.2

B l
k
� Ρ �

Fig. 3. Real and imaginary part of the multi–scale cake kernel at a2 (left), Fourier
contours of all wavelets (at 70% of the maximum) and BMS(ρ) (red, dashed) with
components Bk

l (ρ) (blue)

2.3 Vesselness Filtering on Scale-Orientation Scores

The single–scale Frangi vesselness filter VFr
0 makes use of an anisotropy measure

R and a structure measure S based on second order derivatives in a coordinate
system aligned with elongated structures [2]. This approach is now generalized
to (scale–)orientation scores for crossing–preserving vesselness filtering. Given a
convexity criterion Q > 0 on transversal vessel profiles and the measures R resp.

S, the setup for the SE(2) vesselness expression VSE(2)
0 (Uaf ) : SE(2) → IR+ is

identical to the one proposed by [2]:

VSE(2)
0 (Uaf ) =

{
0 if Q ≤ 0

exp
(
− R2

2σ2
1

) [
1− exp

(
− S

2σ2
2

)]
if Q > 0

(9)

where Uaf (x, θ) = (Wψf)(x, θ, a), a > 0 fixed, is a single scale layer of the
multi–scale wavelet transform. We always set σ1 = 0.5 and σ2 = 0.2 ||S||∞.

There are two natural generalizations of VFr
0 to SE(2) that differ in the choice

of coordinate system used to define R,S and Q. One option is to work in the
moving frame of reference {∂ξ, ∂η, ∂θ}, recall Eq. (4). Second order Gaussian
derivatives along the directions (ξ = x cos θ+y sin θ, η = −x sin θ+y cos θ) carry
the same information as the eigenvalues of the Hessian in VFr

0 [2], and we set

R =
(∂2ξ Uaf )s,β
(∂2η Uaf )s,β

, S =
[
(∂2ξ Uaf )s,β

]2
+
[
(∂2η Uaf )s,β

]2
, Q = (∂2η Uaf )s,β (10)

where the superscripts s,β indicate Gaussian derivatives at spatial scale s = 1
2σ

2
s

and angular scale 1
2 (βσs)

2. The generalization of the filter in the {∂ξ, ∂η, ∂θ}
frame is referred to as Vξ,η0 at single scales and as Vξ,η in the multiple scale re-
combination, similar to the notation in [2]. The other possible coordinate system
is the Gauge frame {∂a, ∂b, ∂c} determined by the eigendirections of the 3D-
Hessian (Hs,β Uaf )(g), given in [13, ch:5.3], computed with scale s at g ∈ SE(2),
normalized w.r.t the β–metric (5). As the filter is no longer confined to fixed
θ-slices, and the Gauge frame is fully aligned with the 3D-line structures in the
score, the analogies to [2] are even stronger in this frame. Given the eigenvalues
of the Hessian (Hs,β Uaf )(g) ordered |λ1| ≤ |λ2| ≤ |λ3|, R,S,Q are computed as
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Fig. 4. Retinal image f and multi–scale vesselness filtering results for the Frangi filter
VFr(f) and our two methods Vξη(f) resp. Va,b,c(f) (left to right)

R =
λ1
c

, S = λ21 + c2 , Q = c (11)

with c = 1
2 (λ2 + λ3). As such, c is comparable to the orientation confidence de-

fined by [13, ch.5]. The SE(2)-generalization of the vesselness filter in this frame

is referred to as Va,b,c
0 , whereas the multi-scale SIM(2)-generalization is written

as Va,b,c. In the SIM(2)-generalizations of the vesselness filters (regardless the
choice of reference frame) the final image reconstruction from vesselness filtered
scale–orientation scores are obtained via

(VSIM(2)(f)
)
(x) = μ−1

∞
Ns∑

l=1

μ−1
l,∞

Nθ∑

j=1

(VSE(2)
0 (Ualf )

)
(x, θj) (12)

where μ∞ and μl,∞ are the maximum values, i.e. || · ||∞ norms, taken over the
subsequent sums. For comparison, the multi–scale Frangi vesselness filter is also
computed via summation over single scale results and max-normalized.

Fig. 4 shows multi–scale vesselness filtering results for a retinal image f ob-
tained with the Frangi filter and our two methods for five scales {1.5, 2.4, 3.8,
6.0, 9.5} px, β = 0.05/a and 12 orientations. Both our methods clearly outper-
form the Frangi filter at crossings and bifurcations. The Gauge–frame method
Va,b,c gives best results as it aligns with 3D-elongated structures in the score.

3 Experiments

To show the benefit of crossing–preservation in multiple scale vesselness filtering,
we devised a simple segmentation algorithm to turn a vesselness filtered image
V(f) into a binary vessel map. First, a local thresholding is applied so that we
obtain the binary image fB = Θ

(
[V(f)−Gγ ∗V(f)]−t

)
where Θ is the Heaviside

step function and Gγ is a Gaussian with standard deviation γ � 1. In a second
step, the connected morphological components in fB counting less than τ pixels
or showing elongations below a threshold ν are removed. The parameters γ, τ
and ν are fixed at 100 px, 500 px and 0.85 respectively. V(f) is either obtained
with VFr or via the SIM(2) method Va,b,c using the settings mentioned earlier.

This segmentation algorithm is evaluated on the HRF dataset consisting of
fundus images for a healthy, diabetic retinopathy and glaucoma group (15 images
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Fig. 5. Mean accuracy and sensitivity on the HRF dataset over threshold values t.
Shading shows ±1σ (left). Retinal image and patch ground truth/segmentation at
t = 0.05 (center). Full ground truth and segmentation (right).

Fig. 6. Shaded regions spec-
ify areas containing junction
points. Junction points are
found by thinning and pruning
the binary ground truth.

Table 1. Results for bifurcation and crossing areas
(Junctions) compared to the complement of this set
(Non-junctions). See Fig. 6 for sample areas.

Junctions Non-junctions
Method Sensitivity Accuracy Sensitivity Accuracy

Our method
All 0.84 0.92 0.76 0.97
Healthy 0.82 0.94 0.75 0.97
Glaucoma 0.84 0.93 0.74 0.97
Diabetic 0.85 0.90 0.78 0.96

Frangi [2]
All 0.71 0.92 0.67 0.97
Healthy 0.71 0.93 0.67 0.97
Glaucoma 0.75 0.93 0.68 0.97
Diabetic 0.69 0.91 0.65 0.97

each, ground truths provided). Average sensitivity and accuracy on the whole
dataset are shown in Fig. 5 over threshold values t. Our method via invertible
scale–orientation scores performs considerably better than the method based on
the multi–scale Frangi filter. The segmentation results obtained with Va,b,c are
more stable w.r.t variations in the threshold t and the performance on the small
vasculature has improved as measured via the sensitivity. Average sensitivity,
specificity and accuracy at a threshold t = 0.05 resp. given by 0.786, 0.988, 0.969
(healthy), 0.811, 0.963, 0.953 (diabetic retinopathy) and 0.797, 0.976, 0.964 (glau-
coma) compare well with other algorithms evaluated on the HRF dataset (see
[3, Tab. 5]). On the diabetic retinopathy group, our method even outperforms
existing segmentation methods. Fig. 5 shows a full segmentation computed with
the proposed method and an in–detail patch. In Table 1 and Fig. 6 we see that
our method improves sensitivity both at non-crossing line structures (due to line
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propagation of anisotropic wavelets) and at crossing/bifurcating structures. As
expected, we observe a larger improvement at crossings.

4 Discussion

We developed (multi–scale) crossing–preserving vesselness filters as generaliza-
tions of [2] to the extended Lie–group domains SE(2) resp. SIM(2). The new
filters were evaluated qualitatively and quantitatively on a public dataset and
outperformed the Frangi filter and existing segmentation methods. This shows
the method’s potential for application in other areas of vascular imaging. Future
work includes concatenation with enhancements [13, 12] and tracking [9].
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