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Abstract- Augmented feedback of relevant training parameters is of great interest for athletes and 
coaches. In plyometric training, the ground contact time and the airtime were identified as crucial 
measures to monitor and optimize training. This paper introduces a method to determine these 
parameters with Inertial Measurement Unit measurements and a Hidden Markov Model analysis. To 
increase the jump phase detection performance, a signal-shift boosting method based on the 
enhancement of the observation vector was implemented and evaluated on a dataset of eight subjects. 
Our algorithm achieved an absolute ground contact time error of 12.3 ms and an absolute airtime error 
of 14.3 ms over all 80 jumps that were collected. The proposed measurement setup and analysis 
algorithm can be used to create a wearable augmented feedback system for plyometric training 
practice. 
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1. INTRODUCTION  
In the sports field, trainers constantly work on optimizing the performance of their athletes. Thereby, it is 
important to monitor the physical fitness and the training progress. This information is used to decide for the 
most effective training program according to the athlete level and demands of the particular discipline. Mobile 
wearable systems can provide the basis of the desired augmented feedback for coaches and athletes, and are 
therefore a valuable tool to enhance the training effectiveness outside of a lab situation. 
Augmented feedback is of great interest if training parameters are difficult to monitor or if small deviations 
from these parameters substantially change the training effects. This is e.g. the case in plyometric exercises that 
train reactive strength. The effectiveness of these exercises is determined by the characteristics of the muscle 
stretch-shortening cycle (SSC). The SSC is thereby influenced by the elastic energy storage of a muscle as well 
as the activity of the stretch reflex and the Golgi-tendon reflex. The length of the SSC determines the 
biomechanics of the movement and subsequently the training effects for the athlete. The SSC can be 
categorized in fast (< 250 ms) and slow (> 250 ms), where the training of a fast SSC is e.g. beneficial for 
sprinting movements and the training of a slow SSC is e.g. beneficial for maximal vertical jumps [1]. Due to 
the short length and sensitivity of this parameter, its precise and objective measurement is a valuable 
augmented feedback parameter. 
In literature, the SSC of the plyometric drop jump exercise was often investigated. This exercise consists of a 
drop from an elevated box or platform and a subsequent vertical jump. The jump is performed as fast and as 
high as possible and its SSC length coincides with the ground contact time (GCT) of the jump. It has been 
reported that one effect of plyometric training is a shortening of the drop jump GCT [2]. Furthermore, it has 
been found that the GCT has the largest effect on important biomechanical jump parameters [3]. Another 
application of the GCT is the computation of the reactive strength index (RSI), a measure to optimize and 
monitor plyometric training [1]. 
Up to date, the GCT of a drop jump is mainly determined by the analysis of the underlying ground reaction 
forces. Therefore, a force plate or contact mat is needed and data are analyzed offline after the training or 
recording session. Attempts have been made to compute the GCT and subsequently the RSI with inertial 
measurement units (IMU) using the root mean square of an accelerometer signal [4]. The authors underlined 
that the wearable nature and wireless data transmission capabilities of IMU systems enable mobile applications 
for training practice. However, the generic determination of the take-off proved to be difficult and the 
processing was performed in an offline manner. 
This paper presents a more advanced method to compute the temporal parameters of the drop jump exercise 
using kinematic IMU data. The analysis is based on a boosted Hidden Markov Model and is capable of 
computing the GCT as well as the airtime of a drop jump. The wireless sensor platform in conjunction with the 
java implementation of the analysis algorithm is the basis for a mobile and real-time implementation of the 
system for training practice. 



2. MATERIAL AND METHODS 

Data collection 
We recruited eight male subjects (age [years] 24.4 ± 2.3, height [cm] 185.4 ± 6.5, weight [kg] 83.5 ± 8.2) for 
data collection. They were trained athletes and had prior experience in plyometric training exercises. A 
minimum of 50 cm jump height in a Jump and Reach Test was the criterion to participate in the study. The data 
collection was conducted in a gymnasium in the sports center of Erlangen University. 
Subjects were equipped with instrumented sports shoes. A ShimmerTM 2R IMU (Shimmer, Dublin, Ireland) [5] 
was mounted on the heel (lateral) of each shoe using a sensor clip. The sensor node comprised of a 3-D 
accelerometer (range ± 6 g) and a 3-D gyroscope (range ± 500 °/s).  Data were sampled with 512 Hz and 
wirelessly transmitted to a recording PC. As reference, a Casio EX-FC100 high-speed camera (Casio, Tokio, 
Japan) recorded the experiment with a frame rate of 1000 fps. Both sensors and the video recording were 
synchronized with a specific movement pattern in front of the camera. 
The protocol of the study consisted of a warm-up phase, five drop jumps as well as other plyometric exercises 
(not used here) and a cool down phase. The subjects used a drop height of 30 cm and had to walk back to the 
drop platform to perform the next jump. Overall, eight experiments were recorded that incorporated two sensor 
recordings of five drop jumps. We used 80 labeled drop jumps for further analysis. 
The resulting data of the right and the left shoe were transformed to the same coordinate system to be able to 
process both sides with the same data analysis algorithm. We adapted the signs of the accelerometer axis in the 
transversal plane to account for the different lateral movement directions of the right and the left foot. We also 
adapted the corresponding gyroscope axes to harmonize supination and pronation movements of the right and 
the left foot. Data packets lost during wireless transmission were detected by inspecting the timestamps and 
data were linearly interpolated. 

Data analysis overview 
Our analysis processed the complete sequence of five drop jumps that also incorporated steps and 
miscellaneous movements during data collection. It consisted of three steps: 

1. Data segmentation: Trigger event to find a drop jump movement candidate. We used the ankle 
rotation in the sagittal plane as movement pattern to trigger the drop jump analysis. Values up to the 
maximum range of the IMU were discovered at the beginning of the impact of the drop jump. We 
manually set the segmentation threshold to ± 500 °/s and the beginning of the analysis window was 
set 20 samples (39.1 ms) prior to the threshold.  

2. Pattern analysis: Fine grain analysis of the candidate movement pattern. We used a Hidden Markov 
Model to determine the different phases of the drop jump. A static pattern length of 550 samples 
(~1.1 s) was analyzed. The algorithm is described in more detail below. 

3. Post processing: Elimination of misdetections. We assumed a minimum ground contact time of 
100 ms (52 frames) and regarded all patterns with a lower value as misdetection. 

Pattern analysis with Hidden Markov Model (HMM) 
We used a HMM [6] to analyze the candidate movement patterns in more detail and determine the ground 
contact time and airtime of a drop jump. HMMs are a popular methodology to analyze sequential data and have 
been successfully used to classify kinematic IMU data in the field of sports [7]. This technique combines the 
information of an observation (e.g. IMU signal) with the sequence information (system state). Thereby, the 
transition to the next state depends on the current observation and the current state (Markov property). Two 
underlying stochastic processes are considered: The relation of an observation to its corresponding model state 
(observation distribution) and the relation of two subsequent model states (state transitions distribution). A 
HMM is defined as λ = (A, B, Π) with A being the state transition distribution matrix and B being the 
observation distribution information. The probability of each state being the initial state of the sequence is 
encoded in the vector Π.  
We trained the analysis models with labeled drop jump sequences and the Baum-Welch algorithm [6]. This 
algorithm adjusted the parameters of the model λ according to the training data. The observation distributions 
were modeled as multivariate Gaussians. In the working phase, sequences were analyzed for their most 
probable state sequence according to a trained model. We used the Viterbi algorithm [6] to analyze the test 
sequences. 
We modeled a drop jump as a HMM with six states (Fig.  1). The segmentation was based on the reference 
video and visual inspection of the data (Fig. 2). It was partitioned to optimally reflect the different data 
characteristics and to encode the parameters of interest. The GCT comprised the impact phase and the take-off 
phase and the airtime phase coincided with the flight phase. Thus, the lengths of the resulting phases were used 
to compute the ground contact time and airtime in milliseconds. 



 
Figure 1.  Left-right state transitions of the HMM that was used to analyze a drop jump sequence. 

 
Figure 2.  Left foot accelerometer signal of one drop jump and corresponding state segmentation. 

Signal-shift boosting 
Boosting, the enhancement of the HMM signal space to increase analysis performance, has been successfully 
implemented for IMU data analysis [7]. The idea of our approach was to enhance the IMU raw data input space 
with additional time and frequency information. We generated the additional frequency information by filtering 
the IMU data with a low-pass Butterworth filter (order: 2, cut-off: 15 Hz). The additional temporal information 
was obtained by maintaining, removing or reverting the delay in the filtered signal. If the delay was reverted, 
we delayed the raw IMU signal instead of the filtered signal. The delay was estimated as described in [9] and 
had a value of 15 frames (29.3 ms). 
We ran different experiments to assess the influence of additional time or frequency information on the analysis 
performance: 

A. No Boosting: Raw IMU data; 6-D 
B. Boosting: Accelerometer and gyroscope; removed filter delay; 12-D 
C. Boosting: Accelerometer; removed and maintained filter delay; 12-D 
D. Boosting: Gyroscope; removed and maintained filter delay; 12-D 
E. Boosting: Accelerometer; removed, maintained, reverted filter delay; 15-D 
F. Boosting: Accelerometer and gyroscope; removed, maintained, reverted filter delay; 24-D 

Implementation and evaluation 
The analysis was implemented in Java using the Jahmm library [8] that provided an implementation of the 
HMM algorithms. All experiments were conducted with a leave-subject-out cross-validation. In this 
procedure, the data of one subject were used as test set and the data of the remaining subjects were used to 
train the model. This procedure was repeated for every subject. 
We used five measures to compare the performance. These were the absolute and the mean error of the 
automatically computed ground contact time and airtime, and the number of misdetections. The reference 
values were subtracted from the HMM results. Thus, a positive mean error resulted from a longer computed 
time compared to the reference time. Misdetected drop jumps were excluded from further analysis. 

3. RESULTS 
The experimental results are compiled in Tab. 1. All 80 drop jumps were successfully detected in every 
experiment. Experiment C showed the best results for the absolute GCT error and absolute airtime error. The 
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mean GCT error was positive in all experiments and five out of six experiments showed a negative mean 
airtime error. Experiments C, E and F showed a single or no misdetections. 

Table 1.  Experimental results of the drop jump analysis. Results were averaged over all jumps. Positive mean 
error values reflect longer HMM phases compared to reference video. 

Exp. Absolute error 
GCT [ms] 

Mean error 
GCT [ms] 

Absolute error 
airtime [ms] 

Mean error 
airtime [ms] Misdetections 

A 45.3 44.7 46.6 -45.3 19 
B 37.9 37.5 55.2 -20.0 9 
C 12.3 10.6 14.3 -12.8 1 
D 19.1 18.7 25.6 -8.7 7 
E 14.8 13.5 24.8 -24.4 0 
F 15.7 13.1 49.0 -3.8 0 

4. DISCUSSION 
The results of experiment C achieved the best values in the absolute error (GCT, airtime) among all boosting 
strategies. Thus, the detection of HMM states and therefore jump phases performed best in this experiment. 
As only one miscellaneous movement was detected as a jump, the HMM was also able to distinguish between 
drop jumps and other movements like walking or stepping on a platform. Depending on the application, the 
absolute error values of 12.3 ms and 14.3 ms might be too high for training monitoring and optimization. 
The positive values for the mean GCT error showed that this value was mostly overestimated. In contrast, the 
negative values for the mean airtime error showed that this value was mostly underestimated. As the ground 
contact and flight were neighboring phases, the error most probably originates in the detection of the take-off. 
This coincides with the findings in [4]. 
The signal-shift boosting of the HMM considerably improved the estimation of the essential drop jump 
parameters. For the purpose of drop jump temporal phase estimation the filtered accelerometer signal with 
removed and maintained filter delay performed best. This, of course, might not be the case for other 
applications. Consequently, filter parameters, shift intervals and axes need further investigation. A further 
option for further studies is to fuse the information from both feet in the case of two-legged jumps. 
The system we introduced can be used to estimate the crucial drop jump parameters ground contact time and 
airtime with shoe-mounted IMUs and a HMM analysis. Improved results were achieved with a signal-shift 
boosting of the HMM. It is planned to transfer the implementation to a mobile AndroidTM device to create a 
mobile augmented feedback application for athletes and coaches.  
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