An Unsupervised Material Learning Method for Imaging Spectroscopy

Johannes Jordan, Elli Angelopoulou, Antonio Robles-Kelly University of Erlangen-Nuremberg; National ICT Australia

FRIEDRICH-ALEXANDER JNIVERSITÄT ERLANGEN-NÜRNBERG

TECHNISCHE FAKULTÄT

Multispectral Imaging / Imaging Spectroscopy

Multispectral Imaging / Imaging Spectroscopy

Benefits:

- feature-rich
- high accuracy possible

Multispectral Imaging / Imaging Spectroscopy

Benefits:

- feature-rich
- high accuracy possible

Challenges:

- high-dimensional
- highly correlated, but noisy

Contribution

Application: Material Learning

- False-colour visualisation of scene materials
- Extraction of material prototypes
 - Common application in remote sensing: Spectral unmixing

Contribution

Application: Material Learning

- False-colour visualisation of scene materials
- Extraction of material prototypes
 - Common application in remote sensing: Spectral unmixing

Methodology:

- Unsupervised manifold learning
- Fast clustering using established methods

Manifold Learning vs Dimensionality Reduction

Original data (image spectral gradient)

Principal Component Analysis

Manifold Learning vs Dimensionality Reduction

Principal Component Analysis

Concept

- graph G_M = (Y, E_M), node set Y comprises of y_i ∈ ℝ^m
- determining E_M is a hard problem
- graph G_Q = (X, E_Q), constructed to help derive the manifold topology

Concept

- graph $G_M = (Y, E_M)$, node set Y comprises of $y_i \in \mathbb{R}^m$
- determining *E_M* is a hard problem
- graph G_Q = (X, E_Q), constructed to help derive the manifold topology
- X, Y are linked via $x_j = \sum_{y_k \in Y} \mathbb{I}(x_j \sim y_k) \Gamma(y_k)$
- $\Gamma : \mathbb{R}^m \mapsto \mathbb{R}^q$, $\mathbb{I}(x_j \sim y_k)$ indicator function for adjacency

Concept (1)

- G_Q is a Gibbs Field
- conditional probability of vertex x_i : $P(x_i \mid C_{x_i}) = \frac{1}{Z_Q} \prod_{x_i \in C_{x_i}} f_Q(x_j, x_i)$
- C_{x_i} clique centered at x_i
- Z_Q partition function, f_Q(x_j, x_i) potential function, also edge weight between x_i and x_i

Concept (1)

- G_Q is a Gibbs Field
- conditional probability of vertex x_i : $P(x_i \mid C_{x_i}) = \frac{1}{Z_Q} \prod_{x_i \in C_{x_i}} f_Q(x_j, x_i)$
- C_{x_i} clique centered at x_i
- Z_Q partition function, f_Q(x_j, x_i) potential function, also edge weight between x_i and x_i
- maximum-likelihood estimation (MLE) on the vertex-set *Y* ∈ *G_M* based upon the vertices *X* ∈ *G_Q*

Concept (2) Q Qí C_{x_i} Μ Μ

We introduce the parameter set ξ_i with correspondence to x_i .

Concept (3)

- $x_j = \sum_{y_k \in Y} \eta_j \mathcal{K}(y_k, \xi_j)$
- prior η_j , kernel function $\mathcal{K}(\cdot)$
- vertex x_j in G_Q corresponds to parameter vector ξ_j

Concept (3)

- $x_j = \sum_{y_k \in Y} \eta_j \mathcal{K}(y_k, \xi_j)$
- prior η_j , kernel function $\mathcal{K}(\cdot)$
- vertex x_j in G_Q corresponds to parameter vector ξ_j
- conditional probability of vertex x_i : $P(x_i \mid C_{x_i}, Y) = \frac{1}{Z_O} \prod_{x_j \in C_{x_i}} f_O\left(\sum_{y_k \in Y} \mathcal{K}(y_k, \xi_j), x_i\right)$

Concept (3)

- $x_j = \sum_{y_k \in Y} \eta_j \mathcal{K}(y_k, \xi_j)$
- prior η_j , kernel function $\mathcal{K}(\cdot)$
- vertex x_j in G_Q corresponds to parameter vector ξ_j
- conditional probability of vertex x_i : $P(x_i \mid C_{x_i}, Y) = \frac{1}{Z_Q} \prod_{x_j \in C_{x_j}} f_Q\left(\sum_{y_k \in Y} \mathcal{K}(y_k, \xi_j), x_i\right)$

Potential function:

• Gibbs distribution:

$$f_Q(x_j, x_i) = \sum_{y_k \in Y} \alpha_{i,j} \exp\left\{-\frac{1}{T} d_M(y_k, \xi_j)^2\right\}$$

Potential function:

• Gibbs distribution:

$$f_Q(x_j, x_i) = \sum_{y_k \in Y} \alpha_{i,j} \exp\left\{-\frac{1}{T} d_M(y_k, \xi_j)^2\right\}$$

• Kernel function:

$$\mathcal{K}(y_k,\xi_j) = \sum_{y_k \in Y} \exp\left\{-\frac{1}{T} d_M(y_k,\xi_j)^2\right\}$$

Potential function:

• Gibbs distribution:

$$f_Q(x_j, x_i) = \sum_{y_k \in Y} \alpha_{i,j} \exp\left\{-\frac{1}{T} d_M(y_k, \xi_j)^2\right\}$$

• Kernel function:

$$\mathcal{K}(y_k,\xi_j) = \sum_{y_k \in Y} \exp\left\{-\frac{1}{T} d_M(y_k,\xi_j)^2\right\}$$

• Rewrite using kernel:

$$f_Q(x_j, x_i) = \alpha_{i,j} \sum_{y_k \in Y} \exp\left\{-\frac{1}{T} E_{\xi_j}(y_k)\right\} = \eta_i \eta_j \mathcal{K}(y_k, \xi_j)$$

Potential function:

• Gibbs distribution:

$$f_Q(x_j, x_i) = \sum_{y_k \in Y} \alpha_{i,j} \exp\left\{-\frac{1}{T} d_M(y_k, \xi_j)^2\right\}$$

• Kernel function:

$$\mathcal{K}(y_k,\xi_j) = \sum_{y_k \in Y} \exp\left\{-\frac{1}{\overline{T}} d_M(y_k,\xi_j)^2\right\}$$

• Rewrite using kernel:

$$f_Q(x_j, x_i) = \alpha_{i,j} \sum_{y_k \in Y} \exp\left\{-\frac{1}{T} E_{\xi_j}(y_k)\right\} = \eta_i \eta_j \mathcal{K}(y_k, \xi_j)$$

Algorithm: Expectation-Maximization on ξ_j , $\alpha_{i,j}$

Relation to Self-Organizing Maps

Consider a sampling process in *M*,

•
$$\alpha_{i,j} = \mathbb{I}(x_j \sim \rho) h\left(\frac{1}{T} d_Q(x_i, x_j)^2\right)$$

- ρ resembles the *best-matching unit* in a SOM
- I(x_j ~ ρ) indicates the vertex x_j connected to ξ_j with minimum distance to the input sample

Relation to Self-Organizing Maps

Consider a sampling process in *M*,

•
$$\alpha_{i,j} = \mathbb{I}(x_j \sim \rho) h\left(\frac{1}{T} d_Q(x_i, x_j)^2\right)$$

- ρ resembles the *best-matching unit* in a SOM
- I(x_j ~ ρ) indicates the vertex x_j connected to ξ_j with minimum distance to the input sample

Observations:

- Clique size eq. SOM neighborhood size
- Gibbs temperature *T* eq. SOM learning rate
- More general formulation, but binary neighborhood function

Input: publicly available test images

• 1020 x 1340 pixels, 33 bands (400nm - 720nm)

Input: publicly available test images

• 1020 x 1340 pixels, 33 bands (400nm - 720nm)

Algorithmic parameters:

- G_M: 10³ nodes in 3D, 6-connected lattice
- 50 000 iterations

Input: publicly available test images

• 1020 x 1340 pixels, 33 bands (400nm - 720nm)

Algorithmic parameters:

- G_M: 10³ nodes in 3D, 6-connected lattice
- 50 000 iterations

Visualization:

$$u = \sum_{\substack{y_k \in Y \\ x_j \in \mathcal{C}_\rho}} \mathbb{I}(x_j \sim y_k) \exp\left\{-\frac{1}{T} d_Q(x_j, \rho)^2\right\} \exp\left\{-\frac{1}{T} (y_k - \xi_\rho)^2\right\}$$

Input: publicly available test images

1020 x 1340 pixels, 33 bands (400nm - 720nm)

Algorithmic parameters:

- G_M: 10³ nodes in 3D, 6-connected lattice
- 50 000 iterations

Visualization:

$$u = \sum_{\substack{y_k \in Y \\ x_j \in C_\rho}} \mathbb{I}(x_j \sim y_k) \exp\left\{-\frac{1}{T} d_Q(x_j, \rho)^2\right\} \exp\left\{-\frac{1}{T} (y_k - \xi_\rho)^2\right\}$$

Material clustering:

- cluster on parameters ξ_j
- fast-adaptive mean shift algorithm
- hill-climbing to find material prototypes

Results: Learning process

Input

Pseudocolor

PCA

SOM-Euclidean SOM-Constant Our method

Visualisation

Visualisation

Visualisation

Results: Visualisation

Input in pseudocolour

Visualisation using only the best matching unit

Visualisation recovered using clique information

Results: Material clustering

Input in pseudocolour

Huynh and Robles-Kelly

Our method

Results: Material clustering (2)

Results: Dimensionality Reduction

Results: Dimensionality Reduction

Timing Results Training: 3 s, mapping: 12 s, clustering: 3 s, total 17.7 s

· We propose a new unsupervised statistical learning method

- We propose a new unsupervised statistical learning method
- · We model the problem of manifold learning with two linked graphs
 - 1. G_M represents data samples, supports parameters ξ_j
 - 2. G_Q is a constructed Gibbs field, enables ξ_j inference

- We propose a new unsupervised statistical learning method
- · We model the problem of manifold learning with two linked graphs
 - 1. G_M represents data samples, supports parameters ξ_j
 - 2. G_Q is a constructed Gibbs field, enables ξ_j inference
- Our method is shown to be effective for:
 - 1. material prototype recovery
 - 2. scene material segmentation
 - 3. visualisation and dimensionality reduction

- We propose a new unsupervised statistical learning method
- · We model the problem of manifold learning with two linked graphs
 - 1. G_M represents data samples, supports parameters ξ_j
 - 2. G_Q is a constructed Gibbs field, enables ξ_j inference
- Our method is shown to be effective for:
 - 1. material prototype recovery
 - 2. scene material segmentation
 - 3. visualisation and dimensionality reduction
- Our method is computationally efficient in terms of computing power and memory use
- We improve over state-of-the-art in speed and performance