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Introduction



Single-Sensor Super-Resolution

• Reconstruct high-resolution image from multiple low-resolution frames
• Exploit subpixel motion present in low-resolution image sequence
• Conventional algorithms only applicable to single modality (sensor)

→ Single-sensor super-resolution

Low-resolution 2 × Super-resolved
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Multi-Sensor Super-Resolution

• Main question: Can super-resolution do a better
job if we consider data from multiple sensors?

→ Yes, if we model dependencies/correlations
between the sensors

• Applications:
• Hybrid range imaging: 3-D range data augmented

with photometric information
• Multispectral imaging
• Other hybrid imaging setups, e. g. PET/CT or

PET/MR

→ Multi-sensor super-resolution
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Related Work (in Hybrid Range Imaging)

• Single-sensor super-resolution applied to range images 1 2

• Adopt techniques to range images originally introduced for color images
• Limitation: does not exploit complementary photometric information

• Multi-sensor super-resolution for range images guided by photometric data
• Guidance for motion estimation in presence of highly undersampled range data 3

• Adaptive regularization driven by color images 4

• Limitation: requires high-quality photometric information

• Our contribution:
• New regularization technique to guide range super-resolution by photometric data
• Super-resolved photometric data as by-product (photogeometric super-resolution)

1S. Schuon et al., (2008), High-quality scanning using time-of-flight depth superresolution, CVPR 2008
2S. Schuon et al., (2009), LidarBoost: Depth superresolution for ToF 3D shape scanning, CVPR 2009
3T. Köhler et al., (2013), ToF Meets RGB: Novel Multi-Sensor Super-Resolution for Hybrid 3-D Endoscopy, MICCAI 2013
4J. Park et al., (2010), High quality depth map upsampling for 3D-TOF cameras, ICCV 2011
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Proposed Guided Super-Resolution



Bayesian Modeling of Multi-Sensor Super-Resolution

Single-sensor super-resolution:

• Given: sequence of low-resolution frames
y =

(
y(1) . . . y(K )

)>
• Consider data of one modality (range images)
• Maximum a posteriori (MAP) estimation to reconstruct the

most probable high-resolution image x:

x̂ = arg max
x

p(x|y)

= arg max
x

p(y|x)p(x)
(1)

y, x
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Bayesian Modeling of Multi-Sensor Super-Resolution

Multi-sensor super-resolution with independent channels:

• Low-resolution range (y) and photometric data (p)
• High-resolution range (x) and photometric data (q)
• MAP estimation:

x̂, q̂ = arg max
x,q

p(x,q|y,p)

= arg max
x,q

p(y|x)p(p|q)︸ ︷︷ ︸
data likelihood

p(x)p(q)︸ ︷︷ ︸
prior

(2)

→ Single-sensor super-resolution applied to each channel

p, q

y, x
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Bayesian Modeling of Multi-Sensor Super-Resolution

Multi-sensor super-resolution with dependent channels:

• The sensors „see“ the same scene
• Extend the MAP estimation:

x̂, q̂ = arg max
x,q

p(x,q|y,p)

= arg max
x,q

p(y,p|x,q)p(x,q)
(3)

Joint density for both modalities to model prior:

p(x,q) = p(x)p(q|x)︸ ︷︷ ︸
dependencies

(4)

• How to model p(y,p|x,q), p(x) and p(q|x)?

p, q
m

y, x
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Modeling the Image Formation Process

• Mathematical modelM to describe formation of k -th low-resolution frame
(y(k) and p(k)) from high-resolution image (x and q)

Mx : x 7→ y(k) (range data)

Mq : q 7→ p(k) (photometric data)

• Generative model for range and photometric data:(
y(k)

p(k)

)
=

(
γ
(k)
m W(k)

y 0
0 η

(k)
m W(k)

p

)(
x
q

)
+

(
γ
(k)
a 1
η
(k)
a 1

)
(5)

• W(k)
y and W(k)

p (system matrices) model subpixel motion, blur and subsampling
• γ(k)m and γ(k)a models out-of-plane motion for range data
• η(k)m and η(k)a models additive/multiplicative photometric differences
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Joint Energy Minimization

• Log-likelihood function:

x̂, q̂ = arg min
x,q
{− log p(x,q|y,p)}

= arg min
x,q
{− log (p(y,p|x,q)p(x)p(q|x))}

(6)

• Formulation as unconstrained energy minimization problem:

(x̂, q̂) = arg min
x,q

 Fdata(x,q)︸ ︷︷ ︸
Data likelihood: p(y,p|x,q)

+Rsmooth(x,q) + Rcorrelate(x,q)︸ ︷︷ ︸
Prior: p(x)p(p|x)

 (7)

We use photometric data to guide range data as modeled by Rcorrelate(x,q)

• Joint optimization performed in cyclic coordinate descent scheme
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Anatomy of the Objective Function

(x̂, q̂) = arg min
x,q

{
Fdata(x,q) + Rsmooth(x,q) + Rcorrelate(x,q)

}

Data fidelity term for range and photometric data:

Fdata(x,q) =
KNy∑
i=1

βy ,iry ,i(x)
2 +

KNp∑
i=1

βp,irp,i(q)
2, (8)

• Residual error to measure data fidelity:

r(k)y = y(k) − γ(k)m W(k)
y x− γ(k)a 1

r(k)p = p(k) − η(k)m W(k)
p q− η(k)a 1.

(9)

• βy ,i and βp,i are confidence maps (estimated in our optimization algorithm)
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Anatomy of the Objective Function

(x̂, q̂) = arg min
x,q

{
Fdata(x,q) + Rsmooth(x,q) + Rcorrelate(x,q)

}

Smoothness regularization for range and photometric data:

Rsmooth(x1, . . . , xn) = λxR(x) + λqR(q) (10)

• Edge preserving regularization weighted by λx ≥ 0 and λq ≥ 0
• We use the bilateral total variation (BTV) 5:

R(z) =
P∑

i=−P

P∑
j=−P

α|i|+|j|
∥∥∥z− Si

vSj
hz
∥∥∥

1
(11)

Calculates BTV for local neighborhood of radius P with weighting factor α
where Si

v and Sj
h models vertical/horizontal shifts of z

5S. Farsiu et al., Fast and Robust Multi-Frame Super-Resolution, IEEE TIP, 2004
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Anatomy of the Objective Function

(x̂, q̂) = arg min
x,q

{
Fdata(x,q) + Rsmooth(x,q) + Rcorrelate(x,q)

}

Interdependence regularization between both modalities:

Rcorrelate(x,q) = λc‖x− Aq− b‖2
2 (12)

Local (patch-wise) linear correlation model defined by guided filtering 6

• A (diagonal matrix) and b are guided filter coefficients (estimated in our
optimization algorithm)

• λc ≥ 0 indicates how strong photometric data guides the range data

6K. He et al., Guided Image Filtering, IEEE PAMI, 2013
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Numerical Optimization

Update
Confidence Maps

Guided Filtering
Range

Super-Resolution
Photometric 

Super-Resolution

Goto next iteration

• We employ iteratively re-weighted least squares (IRLS) optimization to
reconstruct super-resolved range and photometric data
→ Iteration sequence: let (x(t),q(t)) be the estimates at iteration t

• Guided filter coefficients (interdependence regularization) and confidence
maps (data fidelity term) are iteratively updated
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Numerical Optimization

Update
Confidence Maps

Guided Filtering
Range

Super-Resolution
Photometric 

Super-Resolution

Goto next iteration

Step 1 (confidence maps): derive from the residual error for (x(t),q(t))

β
(t)
y ,i =

1 if |r(t)y ,i| ≤ εy
εy

|r(t)y ,i |
otherwise β

(t)
p,i =

1 if |r(t)p,i| ≤ εp
εp

|r(t)p,i |
otherwise (13)

• Assign smaller confidence to observation with higher residual
• εy and εp are estimated from the median absolute deviation of the residual
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Numerical Optimization

Update
Confidence Maps

Guided Filtering
Range

Super-Resolution
Photometric 

Super-Resolution

Goto next iteration

Step 2 (photometric super-resolution): update q(t−1) to q(t) for fixed x

q(t) = arg min
q
{Fdata(x,q) + Rsmooth(x,q)}x=x(t−1) (14)

• Interdependence regularization not used (photometric data guides range data
but not vice versa)
• Convex optimization problem solved by scaled conjugate gradient method
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Numerical Optimization

Update
Confidence Maps

Guided Filtering
Range

Super-Resolution
Photometric 

Super-Resolution

Goto next iteration

Step 3 (guided filtering): compute filter coefficients A(t) and b(t) 7

Ãk ,k =

1
|ωk |
∑

i∈ωk
qixi − Eωk(q)Eωk(x)

Varωk(q) + ε
(15)

b̃k = Eωk(x)− Ãk ,kEωk(q) (16)

Filter parameters: |ωk | (kernel size) and ε (regularization parameter)
7K. He et al., Guided Image Filtering, IEEE PAMI, 2013
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Numerical Optimization

Update
Confidence Maps

Guided Filtering
Range

Super-Resolution
Photometric 

Super-Resolution

Goto next iteration

Step 4 (range super-resolution): update x(t−1) to x(t) for fixed q

x(t) = arg min
x
{Fdata(x,q) + Rsmooth(x,q) + Rcorrelate(x,q)}q=q(t) (17)

• Use filter coefficients A(t) and b(t) for interdependence regularization
• Convex optimization problem solved by scaled conjugate gradient method
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Experiments and Results



Experiments and Results

Experiments:
• Simulated data with known ground truth
• Real datasets (Microsoft’s Kinect)

Compared methods:
• MAP super-resolution with L2 norm model

(applied to each modality separately)
• Robust super-resolution based on L1 norm model

(applied to each modality separately) 8

• Proposed method for photogeometric super-resolution

Motion estimation: optical flow on photometric data
(employed for all super-resolution methods) 9

8S. Schuon et al., (2008), High-quality scanning using time-of-flight depth superresolution, CVPR 2008
9T. Köhler et al., (2013), ToF Meets RGB: Novel Multi-Sensor Super-Resolution for Hybrid 3-D Endoscopy, MICCAI 2013
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Simulated Data: Experimental Setup

Low-resolution range Ground truth

• Ground truth range/photometric data simulated with 640 × 480 px 10

• Simulation of Gaussian PSF and subsampling (factor: 4) to generate
low-resolution data
• 4 datasets: 10 image sequences (K = 31 low-resolution frames per sequence)

10using the range imaging toolkit (RITK): http://www5.cs.fau.de/research/software/range-imaging-toolkit-ritk/
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Simulated Data: Results

Evaluation for range data:

MAP (L2 norm) MAP (L1 norm) Proposed
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Simulated Data: Results

MAP (L2 norm) MAP (L1 norm)

Proposed Ground truth
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Simulated Data: Results

Evaluation for photometric data:

Low-resolution Guided approach Ground truth
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Simulated Data: Results

Evaluation for photometric data:

Low-resolution Guided approach Ground truth
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Simulated Data: Results

• Evaluation of peak-signal-to-noise ratio (PSNR) and structural similarity
(SSIM) for range and photometric data:
• All results averaged over n = 10 test sequences

Sequence Low-resolution MAP - L1 MAP - L2 Proposed

R
an

ge

Bunny-1 32.78 (0.96) 34.10 (0.96) 34.05 (0.97) 35.01 (0.98)

Bunny-2 31.29 (0.94) 32.84 (0.95) 33.22 (0.97) 33.34 (0.98)

Dragon-1 24.63 (0.57) 27.68 (0.72) 28.71 (0.84) 30.00 (0.91)

Dragon-2 27.14 (0.75) 29.09 (0.84) 29.76 (0.93) 30.80 (0.95)

P
ho

to
m

. Bunny-1 28.48 (0.79) 29.82 (0.87) 29.79 (0.87) 29.79 (0.88)

Bunny-2 30.05 (0.81) 31.35 (0.86) 31.42 (0.86) 31.43 (0.86)

Dragon-1 23.34 (0.65) 24.25 (0.72) 24.24 (0.71) 24.27 (0.72)

Dragon-2 24.65 (0.66) 25.60 (0.72) 25.51 (0.70) 25.60 (0.72)

→ Improved PSNR/SSIM for range data and competitive results for
photometric data (photometric data guides range data, not vice versa)
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Simulated Data: Results

Experimental analysis of the convergence: PSNR vs. IRLS iteration number

5 10 15
29

29.5

30

Iteration number

P
S

N
R

 [d
B

]

5 10 15
30

30.5

31

Iteration number
P

S
N

R
 [d

B
]

Dragon-1 dataset Dragon-2 dataset

• Initialization: MAP super-resolution based on L2 norm
• Typically converged after ≈ 10 IRLS iterations
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Real Data: Experimental Setup

Microsoft’s Kinect:

Photometric data Range data

• Acquisition of real data using Microsoft’s Kinect (640 × 480 px, 30 fps)
• Subpixel motion due to small shaking of the device
• Datasets with sequences of K = 31 frames (magnification factor: 4)
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Real Data: Results

Evaluation for range data:

Low-resolution MAP (L2 norm) MAP (L1 norm) Proposed
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Real Data: Results

Evaluation for photometric data:

Low-resolution MAP (L2 norm) MAP (L1 norm) Proposed
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Real Data: Results

Super-resolved 3-D mesh with color overlay:

MAP (L2 norm) MAP (L1 norm) Proposed

• Invalid pixels (due to occlusions) reconstructed by all methods
• Improved reconstruction of edges by our method
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Summary and Conclusion



Summary and Conclusion

• Novel interdependence regularization to guide range super-resolution by
photometric data
• Photogeometric resolution enhancement: super-resolve range and

photometric data in a joint framework
• Robust image reconstruction based on IRLS optimization

Outlook: Adaption/generalization for other sensors and hybrid imaging
setups, e. g.
• Time-of-Flight imaging (range + amplitude data)
• RGB-D imaging to handle multiple color channels
• Multispectral imaging
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Supplementary Material

A super-resolution toolbox (Matlab & MEX/C++) and datasets used for our
experiments are available on our webpage:

http://www5.cs.fau.de/research/data

Thank you very much for your attention!
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