Guided Image Super-Resolution:

A New Technique for Photogeometric Super-Resolution in Hybrid 3-D Range Imaging

Florin C. Ghesu¹, <u>Thomas Köhler^{1,2}</u>, Sven Haase¹, Joachim Hornegger^{1,2} 04.09.2014

¹ Pattern Recognition Lab

² Erlangen Graduate School in Advanced Optical Technologies (SAOT)

Outline

Introduction

Proposed Guided Super-Resolution

Bayesian Modeling Modeling the Image Formation Process Numerical Optimization

Experiments and Results

Simulated Data Real Data

Summary and Conclusion

Introduction

TECHNISCHE FAKULTÄT

Single-Sensor Super-Resolution

- Reconstruct high-resolution image from multiple low-resolution frames
- Exploit subpixel motion present in low-resolution image sequence
- Conventional algorithms only applicable to single modality (sensor)
 - \rightarrow Single-sensor super-resolution

Low-resolution

Multi-Sensor Super-Resolution

- Main question: Can super-resolution do a better job if we consider data from multiple sensors?
 - \rightarrow **Yes**, if we model dependencies/correlations between the sensors
- Applications:
 - **Hybrid range imaging:** 3-D range data augmented with photometric information
 - Multispectral imaging
 - Other hybrid imaging setups, e.g. PET/CT or PET/MR

\rightarrow Multi-sensor super-resolution

Related Work (in Hybrid Range Imaging)

- Single-sensor super-resolution applied to range images ^{1 2}
 - Adopt techniques to range images originally introduced for color images
 - Limitation: does not exploit complementary photometric information
- Multi-sensor super-resolution for range images guided by photometric data
 - Guidance for motion estimation in presence of highly undersampled range data ³
 - Adaptive regularization driven by color images⁴
 - Limitation: requires high-quality photometric information

Our contribution:

- New regularization technique to guide range super-resolution by photometric data
- Super-resolved photometric data as by-product (photogeometric super-resolution)

¹S. Schuon et al., (2008), *High-quality scanning using time-of-flight depth superresolution*, CVPR 2008

²S. Schuon et al., (2009), *LidarBoost: Depth superresolution for ToF 3D shape scanning*, CVPR 2009

³T. Köhler et al., (2013), ToF Meets RGB: Novel Multi-Sensor Super-Resolution for Hybrid 3-D Endoscopy, MICCAI 2013

⁴J. Park et al., (2010), *High quality depth map upsampling for 3D-TOF cameras*, ICCV 2011

Proposed Guided Super-Resolution

TECHNISCHE FAKULTÄT

Single-sensor super-resolution:

• Given: sequence of low-resolution frames

$$\mathbf{y} = \left(\mathbf{y}^{(1)} \ldots \mathbf{y}^{(\kappa)}\right)$$

- Consider data of one modality (range images)
- Maximum a posteriori (MAP) estimation to reconstruct the most probable high-resolution image x:

$$\hat{\mathbf{x}} = \arg \max_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}) \\ = \arg \max_{\mathbf{x}} p(\mathbf{y}|\mathbf{x}) p(\mathbf{x})$$
(1)

y, **x**

Bayesian Modeling of Multi-Sensor Super-Resolution

Multi-sensor super-resolution with independent channels:

- Low-resolution range (y) and photometric data (p)
- High-resolution range (x) and photometric data (q)
- MAP estimation:

$$\hat{\mathbf{x}}, \hat{\mathbf{q}} = \arg \max_{\mathbf{x}, \mathbf{q}} p(\mathbf{x}, \mathbf{q} | \mathbf{y}, \mathbf{p})$$

=
$$\arg \max_{\mathbf{x}, \mathbf{q}} \underbrace{p(\mathbf{y} | \mathbf{x}) p(\mathbf{p} | \mathbf{q})}_{\text{data likelihood}} \underbrace{p(\mathbf{x}) p(\mathbf{q})}_{\text{prior}}$$

 \rightarrow Single-sensor super-resolution applied to each channel

p, **q**

(2)

Bayesian Modeling of Multi-Sensor Super-Resolution

Multi-sensor super-resolution with dependent channels:

- The sensors "see" the same scene
- Extend the MAP estimation:

 $\hat{\mathbf{x}}, \hat{\mathbf{q}} = \arg \max_{\mathbf{x}, \mathbf{q}} p(\mathbf{x}, \mathbf{q} | \mathbf{y}, \mathbf{p})$ = $\arg \max_{\mathbf{x}, \mathbf{q}} p(\mathbf{y}, \mathbf{p} | \mathbf{x}, \mathbf{q}) \frac{p(\mathbf{x}, \mathbf{q})}{p(\mathbf{x}, \mathbf{q})}$

Joint density for both modalities to model prior:

$$p(\mathbf{x}, \mathbf{q}) = \underbrace{p(\mathbf{x})p(\mathbf{q}|\mathbf{x})}_{\text{dependencies}}$$

• How to model $p(\mathbf{y}, \mathbf{p} | \mathbf{x}, \mathbf{q}), p(\mathbf{x})$ and $p(\mathbf{q} | \mathbf{x})$?

Modeling the Image Formation Process

 Mathematical model *M* to describe formation of *k*-th low-resolution frame (y^(k) and p^(k)) from high-resolution image (x and q)

> $\mathcal{M}_{x} : \mathbf{x} \mapsto \mathbf{y}^{(k)}$ (range data) $\mathcal{M}_{q} : \mathbf{q} \mapsto \mathbf{p}^{(k)}$ (photometric data)

• Generative model for range and photometric data:

$$\begin{pmatrix} \mathbf{y}^{(k)} \\ \mathbf{p}^{(k)} \end{pmatrix} = \begin{pmatrix} \gamma_m^{(k)} \mathbf{W}_y^{(k)} & \mathbf{0} \\ \mathbf{0} & \eta_m^{(k)} \mathbf{W}_p^{(k)} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{q} \end{pmatrix} + \begin{pmatrix} \gamma_a^{(k)} \mathbf{1} \\ \eta_a^{(k)} \mathbf{1} \end{pmatrix}$$
(5)

- $W_{y}^{(k)}$ and $W_{p}^{(k)}$ (system matrices) model subpixel motion, blur and subsampling
- $\gamma_m^{(k)}$ and $\gamma_a^{(k)}$ models out-of-plane motion for range data
- $\eta_m^{(k)}$ and $\eta_a^{(k)}$ models additive/multiplicative photometric differences

Joint Energy Minimization

• Log-likelihood function:

$$\hat{\mathbf{x}}, \hat{\mathbf{q}} = \arg\min_{\mathbf{x}, \mathbf{q}} \{-\log p(\mathbf{x}, \mathbf{q} | \mathbf{y}, \mathbf{p})\}$$

$$= \arg\min_{\mathbf{x}, \mathbf{q}} \{-\log (p(\mathbf{y}, \mathbf{p} | \mathbf{x}, \mathbf{q}) p(\mathbf{x}) p(\mathbf{q} | \mathbf{x}))\}$$
(6)

• Formulation as unconstrained energy minimization problem:

$$(\hat{\mathbf{x}}, \hat{\mathbf{q}}) = \arg\min_{\mathbf{x}, \mathbf{q}} \left\{ \underbrace{F_{\text{data}}(\mathbf{x}, \mathbf{q})}_{\text{Data likelihood: } p(\mathbf{y}, \mathbf{p} | \mathbf{x}, \mathbf{q})} + \underbrace{R_{\text{smooth}}(\mathbf{x}, \mathbf{q}) + R_{\text{correlate}}(\mathbf{x}, \mathbf{q})}_{\text{Prior: } p(\mathbf{x}) p(\mathbf{p} | \mathbf{x})} \right\}$$
(7)

We use photometric data to guide range data as modeled by $R_{\text{correlate}}(\mathbf{x}, \mathbf{q})$

Joint optimization performed in cyclic coordinate descent scheme

Anatomy of the Objective Function

$$(\hat{\mathbf{x}}, \hat{\mathbf{q}}) = \arg\min_{\mathbf{x}, \mathbf{q}} \left\{ \frac{F_{\text{data}}(\mathbf{x}, \mathbf{q})}{F_{\text{data}}(\mathbf{x}, \mathbf{q})} + R_{\text{smooth}}(\mathbf{x}, \mathbf{q}) + R_{\text{correlate}}(\mathbf{x}, \mathbf{q}) \right\}$$

Data fidelity term for range and photometric data:

$$F_{\text{data}}(\mathbf{x},\mathbf{q}) = \sum_{i=1}^{KN_y} \beta_{y,i} r_{y,i}(\mathbf{x})^2 + \sum_{i=1}^{KN_p} \beta_{p,i} r_{p,i}(\mathbf{q})^2, \qquad (8)$$

• Residual error to measure data fidelity:

$$\mathbf{r}_{y}^{(k)} = \mathbf{y}^{(k)} - \gamma_{m}^{(k)} \mathbf{W}_{y}^{(k)} \mathbf{x} - \gamma_{a}^{(k)} \mathbf{1}
\mathbf{r}_{p}^{(k)} = \mathbf{p}^{(k)} - \eta_{m}^{(k)} \mathbf{W}_{p}^{(k)} \mathbf{q} - \eta_{a}^{(k)} \mathbf{1}.$$
(9)

• $\beta_{y,i}$ and $\beta_{p,i}$ are confidence maps (estimated in our optimization algorithm)

Anatomy of the Objective Function

$$(\hat{\mathbf{x}}, \hat{\mathbf{q}}) = \arg\min_{\mathbf{x}, \mathbf{q}} \left\{ F_{\text{data}}(\mathbf{x}, \mathbf{q}) + \frac{R_{\text{smooth}}(\mathbf{x}, \mathbf{q})}{R_{\text{correlate}}(\mathbf{x}, \mathbf{q})} \right\}$$

Smoothness regularization for range and photometric data:

$$R_{\text{smooth}}(\mathbf{x}_1, \dots, \mathbf{x}_n) = \lambda_x R(\mathbf{x}) + \lambda_q R(\mathbf{q})$$
(10)

- Edge preserving regularization weighted by $\lambda_x \ge 0$ and $\lambda_q \ge 0$
- We use the bilateral total variation (BTV) ⁵:

$$R(\mathbf{z}) = \sum_{i=-P}^{P} \sum_{j=-P}^{P} \alpha^{|i|+|j|} \left\| \mathbf{z} - \mathbf{S}_{v}^{i} \mathbf{S}_{h}^{j} \mathbf{z} \right\|_{1}$$
(11)

Calculates BTV for local neighborhood of radius *P* with weighting factor α where \mathbf{S}_{v}^{i} and \mathbf{S}_{h}^{j} models vertical/horizontal shifts of \mathbf{z}

⁵S. Farsiu et al., Fast and Robust Multi-Frame Super-Resolution, IEEE TIP, 2004

Anatomy of the Objective Function

$$(\hat{\mathbf{x}}, \hat{\mathbf{q}}) = \arg\min_{\mathbf{x}, \mathbf{q}} \left\{ F_{\text{data}}(\mathbf{x}, \mathbf{q}) + R_{\text{smooth}}(\mathbf{x}, \mathbf{q}) + \frac{R_{\text{correlate}}(\mathbf{x}, \mathbf{q})}{R_{\text{correlate}}(\mathbf{x}, \mathbf{q})} \right\}$$

Interdependence regularization between both modalities:

$$R_{\text{correlate}}(\mathbf{x}, \mathbf{q}) = \lambda_c \|\mathbf{x} - \mathbf{A}\mathbf{q} - \mathbf{b}\|_2^2$$
(12)

Local (patch-wise) linear correlation model defined by guided filtering ⁶

- A (diagonal matrix) and b are guided filter coefficients (estimated in our optimization algorithm)
- $\lambda_c \ge 0$ indicates how strong photometric data guides the range data

⁶K. He et al., *Guided Image Filtering*, IEEE PAMI, 2013

- We employ iteratively re-weighted least squares (IRLS) optimization to reconstruct super-resolved range and photometric data
 → Iteration sequence: let (**x**^(t), **q**^(t)) be the estimates at iteration t
- Guided filter coefficients (interdependence regularization) and confidence maps (data fidelity term) are iteratively updated

Step 1 (confidence maps): derive from the residual error for $(\mathbf{x}^{(t)}, \mathbf{q}^{(t)})$

$$\beta_{y,i}^{(t)} = \begin{cases} 1 & \text{if } |\mathbf{r}_{y,i}^{(t)}| \leq \epsilon_y \\ \frac{\epsilon_y}{|\mathbf{r}_{y,i}^{(t)}|} & \text{otherwise} \end{cases} \quad \beta_{p,i}^{(t)} = \begin{cases} 1 & \text{if } |\mathbf{r}_{p,i}^{(t)}| \leq \epsilon_p \\ \frac{\epsilon_p}{|\mathbf{r}_{p,i}^{(t)}|} & \text{otherwise} \end{cases}$$
(13)

- Assign smaller confidence to observation with higher residual
- ϵ_y and ϵ_p are estimated from the median absolute deviation of the residual

Step 2 (photometric super-resolution): update $\mathbf{q}^{(t-1)}$ to $\mathbf{q}^{(t)}$ for fixed **x**

$$\mathbf{q}^{(t)} = \arg\min_{\mathbf{q}} \left\{ F_{\text{data}}(\mathbf{x}, \mathbf{q}) + R_{\text{smooth}}(\mathbf{x}, \mathbf{q}) \right\}_{\mathbf{x} = \mathbf{x}^{(t-1)}}$$
(14)

- Interdependence regularization not used (photometric data guides range data but not vice versa)
- Convex optimization problem solved by scaled conjugate gradient method

Step 3 (guided filtering): compute filter coefficients $\mathbf{A}^{(t)}$ and $\mathbf{b}^{(t) 7}$

$$\widetilde{A}_{k,k} = \frac{\frac{1}{|\omega_k|} \sum_{i \in \omega_k} q_i x_i - \mathsf{E}_{\omega_k}(\mathbf{q}) \mathsf{E}_{\omega_k}(\mathbf{x})}{\mathsf{Var}_{\omega_k}(\mathbf{q}) + \epsilon}$$

$$\widetilde{b}_k = \mathsf{E}_{\omega_k}(\mathbf{x}) - \widetilde{A}_{k,k} \mathsf{E}_{\omega_k}(\mathbf{q})$$
(15)
(16)

Filter parameters: $|\omega_k|$ (kernel size) and ϵ (regularization parameter)

⁷K. He et al., *Guided Image Filtering*, IEEE PAMI, 2013

Step 4 (range super-resolution): update $\mathbf{x}^{(t-1)}$ to $\mathbf{x}^{(t)}$ for fixed \mathbf{q}

$$\mathbf{x}^{(t)} = \arg\min_{\mathbf{x}} \left\{ F_{\text{data}}(\mathbf{x}, \mathbf{q}) + R_{\text{smooth}}(\mathbf{x}, \mathbf{q}) + R_{\text{correlate}}(\mathbf{x}, \mathbf{q}) \right\}_{\mathbf{q}=\mathbf{q}^{(t)}}$$
 (17)

- Use filter coefficients $\mathbf{A}^{(t)}$ and $\mathbf{b}^{(t)}$ for interdependence regularization
- Convex optimization problem solved by scaled conjugate gradient method

Experiments and Results

TECHNISCHE FAKULTÄT

Experiments and Results

Experiments:

- Simulated data with known ground truth
- Real datasets (Microsoft's Kinect)

Compared methods:

- MAP super-resolution with L₂ norm model (applied to each modality separately)
- Robust super-resolution based on L₁ norm model (applied to each modality separately) ⁸
- Proposed method for photogeometric super-resolution

Motion estimation: optical flow on photometric data (employed for all super-resolution methods) ⁹

⁸S. Schuon et al., (2008), *High-quality scanning using time-of-flight depth superresolution*, CVPR 2008

⁹T. Köhler et al., (2013), ToF Meets RGB: Novel Multi-Sensor Super-Resolution for Hybrid 3-D Endoscopy, MICCAI 2013

Simulated Data: Experimental Setup

Low-resolution range

Ground truth

- \bullet Ground truth range/photometric data simulated with 640 \times 480 px 10
- Simulation of Gaussian PSF and subsampling (factor: 4) to generate low-resolution data
- 4 datasets: 10 image sequences (K = 31 low-resolution frames per sequence)

¹⁰using the range imaging toolkit (RITK): http://www5.cs.fau.de/research/software/range-imaging-toolkit-ritk/

Evaluation for range data:

MAP (L_2 norm)

MAP (L_1 norm)

Proposed

MAP (L₂ norm)

Ground truth

Evaluation for photometric data:

Low-resolution

Guided approach

Ground truth

Evaluation for photometric data:

Low-resolution

Guided approach

Ground truth

- Evaluation of peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) for range and photometric data:
- All results averaged over n = 10 test sequences

	Sequence	Low-resolution		MAP - <i>L</i> ₁		MAF	MAP - <i>L</i> ₂		Proposed	
Range	Bunny-1	32.78 ((0.96)	34.10	(0.96)	34.05	(0.97)	35.01	(0.98)	
	Bunny-2	31.29 ((0.94)	32.84	(0.95)	33.22	(0.97)	33.34	(0.98)	
	Dragon-1	24.63 ((0.57)	27.68	(0.72)	28.71	(0.84)	30.00	(0.91)	
	Dragon-2	27.14 ((0.75)	29.09	(0.84)	29.76	(0.93)	30.80	(0.95)	
Photom.	Bunny-1	28.48 ((0.79)	29.82	(0.87)	29.79	(0.87)	29.79	(0.88)	
	Bunny-2	30.05 ((0.81)	31.35	(0.86)	31.42	(0.86)	31.43	(0.86)	
	Dragon-1	23.34 ((0.65)	24.25	(0.72)	24.24	(0.71)	24.27	(0.72)	
	Dragon-2	24.65 ((0.66)	25.60	(0.72)	25.51	(0.70)	25.60	(0.72)	

 \rightarrow Improved PSNR/SSIM for range data and competitive results for photometric data (photometric data guides range data, not vice versa)

Experimental analysis of the convergence: PSNR vs. IRLS iteration number

- Initialization: MAP super-resolution based on L₂ norm
- Typically converged after \approx 10 IRLS iterations

Real Data: Experimental Setup

Microsoft's Kinect:

Photometric data

Range data

- Acquisition of real data using Microsoft's Kinect (640 \times 480 px, 30 fps)
- Subpixel motion due to small shaking of the device
- Datasets with sequences of K = 31 frames (magnification factor: 4)

Real Data: Results

Evaluation for range data:

Real Data: Results

Evaluation for photometric data:

Real Data: Results

Super-resolved 3-D mesh with color overlay:

MAP (L₂ norm)

MAP (L_1 norm)

Proposed

- Invalid pixels (due to occlusions) reconstructed by all methods
- Improved reconstruction of edges by our method

Summary and Conclusion

TECHNISCHE FAKULTÄT

Summary and Conclusion

- Novel interdependence regularization to guide range super-resolution by photometric data
- Photogeometric resolution enhancement: super-resolve range and photometric data in a joint framework
- Robust image reconstruction based on IRLS optimization

Outlook: Adaption/generalization for other sensors and hybrid imaging setups, e.g.

- Time-of-Flight imaging (range + amplitude data)
- RGB-D imaging to handle multiple color channels
- Multispectral imaging

Supplementary Material

A super-resolution toolbox (Matlab & MEX/C++) and datasets used for our experiments are available on our webpage:

http://www5.cs.fau.de/research/data

Thank you very much for your attention!

Acknowledgments

Thank you very much for the support of this work

