

Multi-Frame Super-Resolution with Quality **Self-Assessment for Retinal Fundus Videos**

T. Köhler^{1,2}, A. Brost¹, K. Mogalle¹, Q. Zhang¹, C. Köhler³, G. Michelson^{2,3}, J. Hornegger^{1,2}, R. P. Tornow³ ¹ Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg ² Erlangen Graduate School in Advanced Optical Technologies (SAOT) ³ Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg thomas.koehler@fau.de

Background

Fundus video cameras enable the **non-invasive acquisition** of fast temporal changes on the human retina. The low spatial resolution limits their diagnostic applicability.

Contribution: Reconstruction of high-resolution retinal fundus images from low-resolution, low-cost video data by means of multi-frame super-resolution to enhance diagnostic usability.

Experiments and Results

- 1. Experiments for synthetic fundus images:
 - Ground truth images taken from the DRIVE database
 - Simulation: random translations for eye motion, blurring by a Gaussian PSF, subsampling and Gaussian noise

• Super-resolution: K = 16 frames for $2 \times$ magnification Evaluation of the peak-signal-to-noise ratio (PSNR) and influence of super-resolution to blood vessel segmentation:

Problem Statement

Generative image model: Each frame $y^{(k)}$ for $k = 1, \ldots, K$ is a low-resolution observation of the high-resolution image x:

$$\boldsymbol{y}^{(k)} = \boldsymbol{\gamma}_m^{(k)} \odot \boldsymbol{D} \boldsymbol{B}^{(k)} \boldsymbol{M}^{(k)} \boldsymbol{x} + \boldsymbol{\gamma}_a^{(k)} \boldsymbol{1} + \boldsymbol{\epsilon}^{(k)}$$
$$= \boldsymbol{\gamma}_m^{(k)} \odot \boldsymbol{W}^{(k)} \boldsymbol{x} + \boldsymbol{\gamma}_a^{(k)} \boldsymbol{1} + \boldsymbol{\epsilon}^{(k)}$$

- Eye motion modeled by geometric transformation $M^{(k)}$
- Point spread function (PSF) $B^{(k)}$, subsampling D, noise $\epsilon^{(k)}$
- Inhomogeneous illumination modeled by $\gamma_m^{(k)}$ and $\gamma_a^{(k)}$

Objective: Given a sequence of K low-resolution frames $y^{(1)}, \ldots, y^{(K)}$, reconstruct unknown high-resolution image x

Proposed Super-Resolution Framework

	LR frame	SR image	Ground truth
PSNR (in dB)	31.09 ± 3.10	$\textbf{31.92} \pm \textbf{3.39}$	-
Sensitivity (%) Specificity (%)	$57.59 \pm 6.01 \\ 94.31 \pm 1.40$	$\begin{array}{r} \textbf{70.37} \pm \textbf{5.00} \\ \textbf{93.99} \pm \textbf{1.26} \end{array}$	$\begin{array}{c} 72.85 \pm 6.70 \\ 94.57 \pm 1.34 \end{array}$

Peak-signal-to-noise ratio (PSNR) for synthetic images generated from the Figure 2: DRIVE database as well as sensitivity and specificity for automatic vessel segmentation.

Super-resolution enhanced mean PSNR by 0.8 dB and sensitivity for automatic vessel segmentation by 13%

2. Experiments for low-cost fundus video camera:

- Videos of 6 healthy subjects (\approx 15 s video per subject)
- System parameters: CCD camera ($640 \times 480 \, \text{px}$), 20° field of view (FOV), 12.5 Hz frame rate
- Super-resolution: K = 8 frames for $2 \times$ magnification

Comparison of super-resolved video data to high-resolution Kowa NonMyd images ($1600 \times 1216 \, \text{px}, 25^{\circ} \, \text{FOV}$):

Figure 1: Flowchart of the proposed multi-frame super-resolution framework.

- 1. Photometric and geometric registration for each lowresolution frame k = 2, ..., K using k = 1 as reference:
 - Estimate photometric parameter $\gamma_m^{(k)}$ using B-spline approximation [1] of the bias field and $\gamma_a^{(k)}$ by the median temporal brightness difference
 - Small, natural eye motion is modeled by $M^{(k)}$ and subpixel motion is estimated by affine registration [2]
- 2. Super-resolution image reconstruction:

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \left\{ \sum_{k=1}^{K} \left\| \boldsymbol{y}^{(k)} - \boldsymbol{\gamma}_{m}^{(k)} \odot \boldsymbol{W}^{(k)} \boldsymbol{x} - \boldsymbol{\gamma}_{a}^{(k)} \boldsymbol{1} \right\|_{1} + \lambda R(\boldsymbol{x}) \right\}$$

 $R(\boldsymbol{x})$ is an edge preserving regularizer weighted by λ

(a) Original (low-resolution) frame

(c) Kowa NonMyd image

Figure 3: Low-resolution and super-resolved image (magnification factor: 2) of the optic nerve head in comparison to a high-resolution image acquired with a Kowa NonMyd camera (images contrast enhanced for visual comparison).

 Q_v measure improved by 160 % w.r.t. to low-resolution data (compared to 86% for temporal median filtering)

Conclusion

Novel super-resolution framework for fundus video imaging:

• Geometric and photometric registration to model eye

 \rightarrow Iterative scaled conjugate gradient (SCG) optimization

3. Image quality self-assessment:

• Quality metric $Q_v(\boldsymbol{x})$ for anisotropic patches $\boldsymbol{p}_i \in \mathcal{P}(\boldsymbol{x})$:

 $Q_v(\boldsymbol{x}) = \sum_{\boldsymbol{p}_i \in \mathcal{P}(\boldsymbol{x})} \sigma_i \cdot q(\boldsymbol{p}_i)$

Local quality score $q(\mathbf{p}_i)$ adaptively weighted by local variance σ_i estimated from of the vesselness in p_i [3]

• Automatic selection of regularization weight λ :

 $\hat{\lambda} = \arg\max_{\lambda} Q_v(\boldsymbol{x}_{\lambda})$

 \boldsymbol{x}_{λ} : super-resolved image reconstructed with weight λ \rightarrow Joint super-resolution and parameter selection

motion and inhomogeneous illumination

- Image quality self-assessment for automatic selection of regularization parameter
- Quality of super-resolved low-cost images comparable to a high-resolution Kowa NonMyd camera

Acknowledgements

The authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German National Science Foundation (DFG) in the framework of the excellence initiative.

References

- [1] Radim Kolar, Jan Odstrcilik, Jiri Jan, and Vratislav Harabis. Illumination Correction and Contrast Equalization in Colour Fundus Images. In Proceedings EUSIPCO 2011, pages 298–302, 2011.
- [2] Georgios D. Evangelidis and Emmanouil Z. Psarakis. Parametric image alignment using enhanced correlation coefficient maxi-mization. *IEEE Transactions on Pattern Analysis Machine Intelligence*, 30(10):1858–65, 2008.
- [3] Thomas Köhler, Attila Budai, Martin F. Kraus, Jan Odstrcilik, Georg Michelson, and Joachim Hornegger. Automatic no-reference quality assessment for retinal fundus images using vessel segmentation. In *Proceedings CBMS 2013*, pages 95–100, 2013.

