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Background

Fundus video cameras enable the non-invasive acquisition
of fast temporal changes on the human retina. The low spa-
tial resolution limits their diagnostic applicability.

Contribution: Reconstruction of high-resolution retinal fundus
images from low-resolution, low-cost video data by means of
multi-frame super-resolution to enhance diagnostic usability.

Problem Statement

Generative image model: Each frame y(k) for k = 1, . . . , K
is a low-resolution observation of the high-resolution image x:

y(k) = γ(k)
m ⊙DB(k)M (k)x + γ(k)

a 1 + ǫ(k)

= γ(k)
m ⊙W (k)x + γ(k)

a 1 + ǫ(k)

• Eye motion modeled by geometric transformation M (k)

• Point spread function (PSF) B(k), subsampling D, noise ǫ(k)

• Inhomogeneous illumination modeled by γ(k)
m and γ(k)

a

Objective: Given a sequence of K low-resolution frames
y(1), . . . ,y(K), reconstruct unknown high-resolution image x
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Figure 1: Flowchart of the proposed multi-frame super-resolution framework.

1. Photometric and geometric registration for each low-
resolution frame k = 2, . . . , K using k = 1 as reference:

• Estimate photometric parameter γ(k)
m using B-spline ap-

proximation [1] of the bias field and γ(k)
a by the median

temporal brightness difference
• Small, natural eye motion is modeled by M (k) and sub-

pixel motion is estimated by affine registration [2]

2. Super-resolution image reconstruction:

x̂ = argmin
x
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R(x) is an edge preserving regularizer weighted by λ

→ Iterative scaled conjugate gradient (SCG) optimization

3. Image quality self-assessment:
• Quality metric Qv(x) for anisotropic patches pi ∈ P(x):

Qv(x) =
∑

pi∈P(x)
σi · q(pi)

Local quality score q(pi) adaptively weighted by local
variance σi estimated from of the vesselness in pi [3]

• Automatic selection of regularization weight λ:

λ̂ = argmax
λ

Qv(xλ)

xλ: super-resolved image reconstructed with weight λ
→ Joint super-resolution and parameter selection

Experiments and Results

1. Experiments for synthetic fundus images:
• Ground truth images taken from the DRIVE database
• Simulation: random translations for eye motion, blurring

by a Gaussian PSF, subsampling and Gaussian noise
• Super-resolution: K = 16 frames for 2× magnification

Evaluation of the peak-signal-to-noise ratio (PSNR) and in-
fluence of super-resolution to blood vessel segmentation:

LR frame SR image Ground truth

PSNR (in dB) 31.09 ± 3.10 31.92 ± 3.39 -

Sensitivity (%) 57.59 ± 6.01 70.37 ± 5.00 72.85 ± 6.70
Specificity (%) 94.31 ± 1.40 93.99 ± 1.26 94.57 ± 1.34

Figure 2: Peak-signal-to-noise ratio (PSNR) for synthetic images generated from the
DRIVE database as well as sensitivity and specificity for automatic vessel segmentation.

Super-resolution enhanced mean PSNR by 0.8 dB and
sensitivity for automatic vessel segmentation by 13 %

2. Experiments for low-cost fundus video camera:
• Videos of 6 healthy subjects (≈ 15 s video per subject)
• System parameters: CCD camera (640×480 px), 20◦

field of view (FOV), 12.5 Hz frame rate
• Super-resolution: K = 8 frames for 2× magnification

Comparison of super-resolved video data to high-resolution
Kowa NonMyd images (1600×1216 px, 25◦ FOV):

(a) Original (low-resolution) frame (b) Super-resolved image (c) Kowa NonMyd image

Figure 3: Low-resolution and super-resolved image (magnification factor: 2) of the optic
nerve head in comparison to a high-resolution image acquired with a Kowa NonMyd camera
(images contrast enhanced for visual comparison).

Qv measure improved by 160 % w.r.t. to low-resolution data
(compared to 86 % for temporal median filtering)

Conclusion

Novel super-resolution framework for fundus video imaging:
• Geometric and photometric registration to model eye

motion and inhomogeneous illumination

• Image quality self-assessment for automatic selection of
regularization parameter

• Quality of super-resolved low-cost images comparable to
a high-resolution Kowa NonMyd camera
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