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Abstract. This paper proposes a novel super-resolution framework to
reconstruct high-resolution fundus images from multiple low-resolution
video frames in retinal fundus imaging. Natural eye movements during
an examination are used as a cue for super-resolution in a robust max-
imum a-posteriori scheme. In order to compensate heterogeneous illu-
mination on the fundus, we integrate retrospective illumination correc-
tion for photometric registration to the underlying imaging model. Our
method utilizes quality self-assessment to provide objective quality scores
for reconstructed images as well as to select regularization parameters
automatically. In our evaluation on real data acquired from six human
subjects with a low-cost video camera, the proposed method achieved
considerable enhancements of low-resolution frames and improved noise
and sharpness characteristics by 74 %. In terms of image analysis, we
demonstrate the importance of our method for the improvement of au-
tomatic blood vessel segmentation as an example application, where the
sensitivity was increased by 13 % using super-resolution reconstruction.

1 Introduction

Fundus imaging is one of the most routinely used modalities in clinical practice to
diagnose retinal diseases. High-end fundus cameras provide color photographs of
high spatial resolution captured from the background of the human eye. Despite
their broad application for diagnostic purposes, e. g. for diabetic retinopathy or
glaucoma, fundus cameras are limited to the acquisition of single or stereo im-
ages. In this context, novel video camera systems provide a complementary tech-
nology that enables the acquisition of fast temporal changes for new applications
such as time course measurement of fundus reflections to examine the cardiac
cycle [1]. However, inherent limitations for diagnostic applications are the lower
spatial resolution as well as the inferior conditions in terms of signal-to-noise
ratio (SNR) and image contrast due to technological or economical constraints.

Methods used for image enhancement in fundus video imaging include de-
noising techniques, e. g. temporal averaging schemes [2]. Additionally, blind de-
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convolution has been proposed for image restoration [3]. However, this tech-
nique is applied to pairs of photographs acquired in a longitudinal examination
rather than video data and does not increase the spatial resolution in terms of
pixel sampling. To overcome this issue, multi-frame super-resolution algorithms
[4] reconstruct a high-resolution (HR) image with improved SNR from multiple
low-resolution (LR) frames by exploiting sub-pixel motion in an image sequence.
Established methods formulate super-resolution from a Bayesian perspective as
maximum a-posteriori (MAP) estimation [4] or employ marginalization to recon-
struct HR images [5]. As super-resolution is an ill-posed problem and sensitive
to the accuracy of the motion estimate, robust algorithms have been introduced,
e. g. in the work of Farsiu et al. [6]. Super-resolution methods have also been
utilized for various medical imaging modalities [7]. In terms of retinal imaging,
Murillo et al. [8] have presented a first super-resolution approach for scanning
laser ophthalmoscopes. However, to the best of our knowledge, this method has
not been investigated for fundus video imaging. In particular, it does not consider
specific aspects of fundus images such as heterogeneous illumination.

This paper proposes a novel super-resolution framework to reconstruct HR
images from LR video sequences in retinal imaging. In our approach, natural eye
movements during an examination are used as a cue for super-resolution. The
major contribution of our work is threefold. First, we incorporate retrospective
illumination correction for photometric registration to the underlying imaging
model to compensate spatially and temporally heterogeneous illumination on the
fundus. Second, we utilize no-reference quality assessment for fundus images to
provide objective image quality scores and to select reconstruction parameters
automatically. Finally, our experimental evaluation demonstrates the importance
of our method towards diagnostic applicability of fundus video cameras.

2 Proposed Method

2.1 Multi-Frame Super-Resolution Reconstruction

We exploit LR frames denoted as y(1), . . . ,y(K) where the luminance channel
of the k-th frame (k = 1 . . .K) is reorganized into a vector y(k) ∈ RM . Due
to eye motion during image acquisition, each frame y(k) is warped with respect
to the unknown HR image x ∈ RN according to a geometric transformation.
Each warped y(k) is a blurred and downsampled version of x due to the camera
point spread function (PSF) and the finite pixel size. Furthermore, spatially and
temporally heterogeneous illumination is a common issue in retinal imaging and
results in photometric differences between x and y(k). Finally, each frame is
affected by additive noise ε(k). We utilize a generative model [6] extended with
a photometric transformation to define the relation between x and each y(k):

y(k) = γ(k)
m �DB(k)M (k)x+ γ(k)

a 1 + ε(k), (1)

where D, B(k) and M (k) models sub-sampling, blur and the geometric transfor-

mation of x for the k-th frame, respectively. γ
(k)
m represents the bias field which
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affects the k-th frame in a multiplicative illumination model, where � denotes

the element-wise vector product. The additive term γ
(k)
a 1 for the all-one vector 1

models varying brightness over time. Assuming a fixed and space invariant PSF
K(u) resulting in a fixed blur kernel B = B(k), the different transformations
D, B and M (k) are combined to a sparse system matrix W (k) [5]:

W (k) = DBM (k) with Wij = K
(
||ui −M (k)(vj)||2

)
, (2)

where ui are the coordinates of the i-th pixel in x and M (k)(vj) are the coor-
dinates of the j-th pixel vj in y(k) warped to x using the transformation M (k).

Geometric and Photometric Registration. Image registration is de-
composed into two stages for photometric and geometric transformations. The

photometric transformation is modeled by the bias field γ
(k)
m which is assumed

to be spatially smooth and temporal changes in brightness modeled by γ
(k)
a . To

estimate γ
(k)
m , we employ a retrospective correction based on a B-spline approx-

imation [9] of y(k). Once the bias field γ
(k)
m is determined, the associated illumi-

nation corrected frame ỹ(k) is obtained by inverting the illumination model:

ỹ(k) = γ(k)−1
m � y(k), (3)

where γ
(k)−1
m denotes the pixel-wise inverted bias field. Then, the illumination

corrected frames ỹ(1), . . . , ỹ(K) are photometrically registered up to an offset

γ
(k)
a which is determined by the temporal changes of the median brightness:

γ(k)
a = Median(ỹ(k))−Median(ỹ(r)). (4)

For geometric registration, we focus on steady acquisitions, where eye motion is
given by small random movements excluding saccades occurring in wider inter-
vals. Therefore, eye motion is modeled by a 2-D homography inM (k) as perspec-
tive distortions caused by the retina curvature are negligible. The homography
is estimated by means of affine registration [10] in a robust coarse-to-fine scheme

from the photometrically registered frame ỹ(k), where ỹ(1) is used as reference.
Image Reconstruction. After geometric and photometric registration, the

system matrices W (k) are assembled from the transformation parameters ac-
cording to Eq. (2). Multi-frame super-resolution is formulated as unconstrained
minimization problem using the Lp norm as data fidelity measure:

x̂ = arg min
x

{
K∑
k=1

∣∣∣∣∣∣y(k) − γ(k)
m �W (k)x− γ(k)

a

∣∣∣∣∣∣p
p

+ λ ·R(x)

}
, (5)

where R(x) weighted by λ regularizes the HR estimate x to enforce smoothness.
In order to make super-resolution robust to the registration uncertainty, we
chose p = 1 and adopted L1 norm minimization [6], which corresponds to a
MAP estimate for x if ε(k) is Laplacian noise. For R(x), the edge preserving
bilateral total variation (BTV) with window size L and weight α is employed:

R(x) =

L∑
m=−L

L∑
n=−L

α|m|+|n| ||x− Smv Snhx||1 , (6)
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Fig. 1. Flowchart of the proposed multi-frame super-resolution framework.

which compares x to its shifted versions in vertical and horizontal direction de-
fined in matrix notation by Smv and Snh, respectively. The objective function in
Eq. (5) is minimized employing iterative Scaled Conjugate Gradient (SCG) opti-
mization to enhance the convergence compared to steepest descent minimization
[6]. The temporal median of the geometrically and photometrically registered LR
sequence bicubic upsampled to the HR grid is used as initial guess for SCG.

2.2 Image Quality Self-Assessment and Parameter Selection

Super-resolution relies on the initialization of the regularization weight λ and is
affected by residual noise in case of too small λ, whereas a large λ leads to over-
smoothing. Parameter selection typically involves cross validation procedures
based on simple measures such as the mean squared error [5]. However, these
measures do not correlate with visual perception for diagnostic purposes. In this
paper, the content-based no-reference quality metric Qv [11] for fundus images
is utilized. Qv quantifies noise and sharpness for an image x according to:

Qv(x) =
∑

pi∈P(x)

σi · q(pi), (7)

where q(pi) measures the local quality for an anisotropic patch pi, which is
combined to Qv(x) based on spatially adaptive weights σi. The set of patches
P(x) is indicated by a dominant intensity gradient orientation determined by
statistical significance testing and σi denotes the local variance of a vessel prob-
ability map in pi estimated via blood vessel segmentation. To obtain unbiased
scores, all patches pi and weights σi are computed for the temporal median
of the registered sequence ỹ(1), . . . , ỹ(K). As Qv(x) depends on the number of
patches, quality assessment is normalized by the reference frame y(r) accord-
ing to Q̃v(x) = (Qv(x) − Qv(y(r)))/Qv(y

(r)) to quantify the relative improve-
ment. We combine super-resolution with a data-driven selection of the regularizer
weight according to:

λ̂ = arg max
λ

Qv(xλ), (8)

where xλ denotes the super-resolved image reconstructed according to Eq. (5)
with weight λ. In order to find an optimal weight, we perform a grid search with
equidistant step size ∆ log λ in the interval [log λl, log λu] of the log-transformed
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Table 1. Peak-signal-to-noise ratio (PSNR) along with sensitivity and specificity of
vessel segmentation for LR frames, temporal median and super-resolution.

LR frame Median image SR image Ground truth

PSNR (in dB) 31.09 ± 3.10 31.41 ± 3.28 31.92 ± 3.39 -

Sensitivity (%) 57.59 ± 6.01 67.83 ± 4.96 70.37 ± 5.00 72.85 ± 6.70
Specificity (%) 94.31 ± 1.40 94.80 ± 1.19 93.99 ± 1.26 94.57 ± 1.34

range of λ chosen as initialization. For a fixed λ, a few SCG iterations are per-
formed to check whether it improves the super-resolved image. For the selected
λ̂, a super-resolved image is estimated according to Eq. (5) by running SCG until
convergence. The overall flowchart of our framework is outlined in Fig. 1.

3 Experiments and Results

We adjusted all parameters experimentally based on real fundus video data used
in our experiments1. For BTV regularization, we chose α = 0.7 and L = 1 with
log λl = −2.0, log λu = 0 and step size ∆ log λ = 0.2 to select an optimal weight.
For quality self-assessment, anisotropic patches of size 8×8 were analyzed.

Synthetic Data. We generated synthetic image sequences with K = 16
frames for 40 images taken from the DRIVE database [12], by applying our model
defined in Eq. (1) in forward direction. The frames were related to the reference
frame by a uniformly distributed random translation (−2 to +2 pixels) to simu-
late eye motion, affected by Gaussian noise (σn = 0.01), blurred by an isotropic
Gaussian PSF (σ = 1.0) and sub-sampled by a factor of 2. For super-resolution,
we considered the green color channel as in fundus imaging the red and blue
ones are typically over- and under-saturated, respectively. Super-resolved im-
ages were assessed using the peak-signal-to-noise ratio (PSNR). Additionally,
we investigated blood vessel segmentation [13] as application of our method
to compare an automatic segmentation to a manually created gold standard.
Quantitative measures are summarized in Table 1 and the associated qualitative
results are presented in Fig. 2. Our framework improved the mean PSNR by
0.8 dB compared to LR images. In terms of vessel segmentation, the sensitivity
was enhanced by 13 % as fine vessels were reconstructed by our method. Both
increases achieved by super-resolution compared to LR frames and the temporal
median were statistically significant (p < 0.05) based on a Wilcoxon signed-rank
test. The specificity was comparable to segmentation on the ground truth.

Real Data. We acquired monochromatic fundus video data with a low-cost
camera prototype developed by Ralf P. Tornow, FAU Erlangen-Nürnberg, Ger-
many. The system is based on a CCD camera (640×480 px) equipped with LED
illumination and covers a field of view (FOV) of 20◦. As frame rate we chose
12.5 Hz. The left eye from six healthy subjects was examined. Additionally, we
examined the subjects with a Kowa nonmyd camera (1600×1216 px, 25◦ FOV)

1 Supplementary material is available online http://www5.cs.fau.de/research/software/

http://www5.cs.fau.de/research/software/
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(a) LR frame (b) Median image (c) SR image (d) Ground truth
PSNR: 32.6 dB PSNR: 32.9 dB PSNR: 33.6 dB

(e) Se: 0.57, Sp: 0.96 (f) Se: 0.65, Sp: 0.96 (g) Se: 0.67, Sp: 0.96 (h) Se: 0.68, Sp: 0.95

Fig. 2. Synthetic images with peak-signal-to-noise ratio (PSNR) for LR data (a), tem-
poral median (b) and super-resolved data (c) in comparison to the ground truth (d).
We evaluated sensitivity (Se) and specificity (Sp) for vessel segmentation where true-
positive and false-positive pixels shown in (e) - (h) are color-coded in green and red.

used in clinical practice to acquire HR images for comparison. We considered
two regions of interest (ROI) as shown in Fig. 3: (i) One ROI (256×256 px) show-
ing the optic nerve head was processed to evaluate the ability to super-resolve
anatomical structures such as optic disk and cup. (ii) A second ROI (120×120 px)
containing small blood vessels was analyzed to assess the reconstruction of fine
structures. We used K = 8 frames with a magnification factor of 2 and an
isotropic Gaussian PSF (σ = 1.0).

We compared super-resolved images to the green channel of HR data acquired
with the Kowa camera. Both image types were registered based on manually se-
lected feature points and a projective transformation. For the sake of comparison
between the Kowa image and video data, we also corrected the bias filed of the
Kowa image. Visually, we obtained substantial enhancements of structures such
as blood vessels by means of super-resolution while noise was suppressed as de-
picted in Fig. 3. Opposed to raw video data, photometric registration utilized in
our framework compensated heterogeneous illumination. The similarity to the
registered Kowa image was assessed using the normalized mutual information
(NMI). Super-resolution yielded the highest similarity with NMI = 0.048. Ad-
ditionally, we applied our framework in a sliding window scheme based on K
successive frames for each window. The relative quality measures Q̃v for ten
consecutive windows per subject and both ROIs are summarized as boxplots
in Fig. 4. On average, the proposed framework yielded Q̃v = 1.6 and further
improved the quality score by 0.74 compared to temporal median filtering.
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(a) LR frame (b) Median image (c) SR image (d) Kowa nonmyd
NMI = 0.013 NMI = 0.044 NMI = 0.048

Fig. 3. Results obtained from the low-cost camera: Low-resolution frame (a), temporal
median used as initial guess (b), final super-resolved image (c) and green channel
of Kowa nonmyd image for the same subject (d). We assessed the similarity to the
registered Kowa image using the normalized mutual information (NMI).
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Fig. 4. Boxplot of Q̃v for temporal median filtering and super-resolution in image
regions showing the optic nerve (left) and blood vessels (right) as depicted in Fig. 3.

4 Conclusion and Future Work

This paper proposes a novel super-resolution framework for fundus video imag-
ing. Multi-frame super-resolution exploits natural eye movements during an ex-
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amination by means of affine registration to reconstruct a motion-compensated
HR image from LR video data. The underlying model considers photometric
registration to account for heterogeneous illumination. We also employ quality
self-assessment for automatic parameter selection and to provide an objective
quality score for reconstructed images. Our method is able to achieve an image
quality for super-resolved images generated with a low-cost fundus camera that
is comparable to a high-resolution commercially available camera. The investiga-
tion of super-resolution for an analysis of disease-specific anomalies to improve
the reliability of medical diagnoses is ongoing research. We will also study the
impact of the proposed method in large-scale studies, e. g. in glaucoma screening.
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2. Köhler, T., Hornegger, J., Mayer, M., Michelson, G.: Quality-guided denoising for
low-cost fundus imaging. In: Proceedings BVM 2012. (2012) 292–297

3. Marrugo, A.G., Sorel, M., Sroubek, F., Millán, M.S.: Retinal image restoration by
means of blind deconvolution. J Biomed Opt 16(11) (2011) 116016

4. Milanfar, P.: Super-resolution imaging. CRC Press (2010)
5. Pickup, L.C., Capel, D.P., Roberts, S.J., Zisserman, A.: Overcoming Registration

Uncertainty in Image Super-Resolution: Maximize or Marginalize? EURASIP J
Adv Signal Process 2007 (2007) 1–15

6. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe
super resolution. IEEE Trans Image Process 13(10) (2004) 1327–1344

7. Greenspan, H.: Super-Resolution in Medical Imaging. Comput J 52(1) (2008)
43–63

8. Murillo, S., Echegaray, S., Zamora, G., Soliz, P., Bauman, W.: Quantitative and
qualitative image quality analysis of super resolution images from a low cost scan-
ning laser ophthalmoscope. In: Proc. SPIE Medical Imaging 2011. (2011) 79624T

9. Kolar, R., Odstrcilik, J., Jan, J., Harabis, V.: Illumination Correction and Contrast
Equalization in Colour Fundus Images. In: Proc. EUSIPCO 2011. (2011) 298–302

10. Evangelidis, G.D., Psarakis, E.Z.: Parametric image alignment using enhanced
correlation coefficient maximization. IEEE Trans Pattern Anal Mach Intell 30(10)
(2008) 1858–65
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