Outlier Detection for Multi-Sensor Super-Resolution in Hybrid 3-D Endoscopy

Thomas Köhler, Sven Haase, Sebastian Bauer, Jakob Wasza, Thomas Kilgus, Lena Maier-Hein, Hubertus Feußner and Joachim Hornegger 17.03.2014 Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Graduate School in Advanced Optical Technologies (SAOT)

Introduction

TECHNISCHE FAKULTÄT

Hybrid 3-D Endoscopy

- Sensor fusion of photometric (RGB) and 3-D range data (e.g. Time-of-Flight, structured light) in one endoscope¹
- Exploit information of complementary modalities which is beneficial for
 - Segmentation
 - Registration
- We examine restoration of low-resolution range data by means of super-resolution guided by photometric data
 - \rightarrow Multi-sensor super-resolution

RGB + Time-of-Flight (ToF) data

¹Sven Haase, Christoph Forman, Thomas Kilgus, Roland Bammer, Lena Maier-Hein, Joachim Hornegger: ToF/RGB Sensor Fusion for 3-D Endoscopy. Current Medical Imaging Reviews 9 (2), 2013, 113-119

Outline

Introduction

Multi-Sensor Super-Resolution

Robust Multi-Sensor Super-Resolution Displacement Outlier Detection Range Outlier Detection

Experiments and Results

Summary and Conclusion

Multi-Sensor Super-Resolution

TECHNISCHE FAKULTÄT

Super-Resolution: Basic Idea

- **Given:** Multiple low-resolution frames (warped with sub-pixel motion)
- If sub-pixel motion is known: Fuse low-resolution frames into new high-resolution image

Sub-pixel motion \Rightarrow finer sampling

Multi-Sensor Super-Resolution

Flowchart for multi-sensor super-resolution²:

- Robust motion estimation (optical flow) on photometric data
- Maximum a-posteriori (MAP) super-resolution for range data reconstruction

²Thomas Köhler, Sven Haase, Sebastian Bauer, Jakob Wasza, Thomas Kilgus, Lena Maier-Hein, Hubertus Feußner, Joachim Hornegger: ToF Meets RGB: Novel Multi-Sensor Super-Resolution for Hybrid 3-D Endoscopy. MICCAI 2013, 139-146

Example

Single-sensor (SSR) vs. multi-sensor super-resolution (MSR):

Robustness Issues

Super-resolution reconstruction is sensitive to outliers

• Displacement fields:

- Occlusions in optical flow estimation
- Large displacements (of endoscopic tools) and non-rigid deformation
- Specular highlights
- . . .

Range data outliers:

- Flying pixels
- Specular highlights (invalid range measurements)
- Distance-dependent noise (no Gaussian noise)
- . . .

Robustness Issues

Example for liver phantom data:

RGB image

Range image

Super-resolved (MSR)

Super-resolution sensitive to mis-registrations in optical flow computation

Robust Multi-Sensor Super-Resolution

TECHNISCHE FAKULTÄT

Problem Formulation

• We formulate robust multi-sensor super-resolution as:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \sum_{i} \beta_{i} |r_{i}(\mathbf{x})| + \lambda \cdot R(\mathbf{x}) \right\}$$
(1)

 β_i measures the confidence for the *i*-th pixel in **r**

• Residual error to measure data fidelity: $r(\mathbf{x}) = (\mathbf{r}^{(1)}, \dots, \mathbf{r}^{(K)})^{\top}$

$$\mathbf{r}^{(k)} = \mathbf{y}^{(k)} - \gamma_m^{(k)} \mathbf{W}^{(k)} \mathbf{x} - \gamma_a^{(k)} \mathbf{1}$$
(2)

X :	unknown high-resolution range image
y ^(k) :	k-th low-resolution range image
$\mathbf{W}^{(k)}$:	system matrix to map x to $\mathbf{y}^{(k)}$
$\gamma_m^{(k)}, \gamma_a^{(k)}$:	range correction parameters for k-th frame

• Huber prior employed for regularizer $R(\mathbf{x})$ to enforce smoothness for \mathbf{x}

Outlier Detection Scheme

Outliers are detected on photometric and range data:

 $\beta_{i} = \beta_{r,i} \cdot \beta_{z,i}$

- \rightarrow Joint confidence map: β
- Displacement estimation outliers are detected on photometric data
 - \rightarrow Confidence map: β_z
- Range outliers are detected on range data directly
 - \rightarrow Confidence map: β_r

FRIEDRICH-ALEXANDEF UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT

Displacement Outlier Detection

• Detect outliers by local (patch-wise) image similarity analysis:

Displacement Outlier Detection

- Warp reference frame $\mathbf{z}^{(r)}$ to $\mathbf{z}^{(k)}$ according to estimated optical flow
- Similarity measure for patches $\mathcal{N}(\mathbf{u}_i)$ on photometric data
 - \rightarrow Mapped onto range images
 - Patch-wise normalized cross correlation (NCC) $\rho_{z,i}$
 - Thresholding to suppress outliers:

$$\beta_{z,i} = \begin{cases} 0 & \text{if } \rho_{z,i} < \epsilon_z \quad \to \text{outlier} \\ \rho_{z,i} & \text{otherwise} \end{cases}$$
(4)

 $\rho_{z,i}$ denotes the NCC for the *i*-th patch $\mathcal{N}(\mathbf{u}_i)$ (associated with *i*-th range pixel \mathbf{u}_i) ϵ_z is adjusted to the noise level for photometric data ($\epsilon_z = 0.8$ fixed for our experiments)

Range Outlier Detection

- Assumption: Image noise is a combination of Gaussian noise (→ L₂ norm) and Laplacian noise (→ L₁ norm)
 - \rightarrow Formulate super-resolution as weighted least squares problem

Outlier detection scheme:

• Determine initial estimate $\mathbf{x}^{(0)}$ for the super-resolved image with $\beta_r^{(0)} = \mathbf{1}$ and β_z precomputed for displacement outlier detection:

$$\mathbf{x}^{(0)} = \arg\min_{\mathbf{x}} \left\{ \sum_{i} \beta_{i}^{(0)} r_{i}(\mathbf{x})^{2} + \lambda \cdot R(\mathbf{x}) \right\}$$
(5)

• Assess $\mathbf{x}^{(0)}$ with the residual error:

$$\mathbf{r}^{(0)} = \mathbf{y}^{(k)} - \gamma_m^{(k)} \mathbf{W}^{(k)} \mathbf{x}^{(0)} - \gamma_a^{(k)} \mathbf{1}$$
(6)

• Derive range confidence map $\beta_r^{(1)}$ using a weighting function $\varphi(\mathbf{r}^{(0)})$

Range Outlier Detection

• Obtain refined solution $\mathbf{x}^{(1)}$ with updated confidence map $\beta_i^{(1)} = \beta_{z,i} \cdot \beta_{r,i}^{(1)}$:

$$\mathbf{x}^{(1)} = \arg\min_{\mathbf{x}} \left\{ \sum_{i} \beta_{i}^{(1)} r_{i}(\mathbf{x})^{2} + \lambda \cdot \mathbf{R}(\mathbf{x}) \right\}$$
(7)

Update β^(·)_r and **x**^(·) in an alternated scheme: Sequence of weighted L₂ norm minimization problems

 \rightarrow Iteratively re-weighted least squares³

³John A. Scales and Adam Gersztenkorn. Robust methods in inverse theory. Inverse Problems 4 (1988), 1071-1091

Iteratively Re-weighted Least Squares for Outlier Detection

Super-resolution using IRLS optimization

Given:

- Range images $\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(K)}$ with displacement vector fields
- Precomputed displacement confidence map β_z
- 1. Initialize range confidence map $\beta_{r,i}^{(0)} = 1$ for i = 1, ..., KM and t = 0
- 2. Determine super-resolved image $\mathbf{x}^{(t)}$:

$$\mathbf{x}^{(t)} = \arg\min_{\mathbf{x}} \left\{ \sum_{i} \beta_{i}^{(t)} r_{i}(\mathbf{x})^{2} + \lambda \cdot R(\mathbf{x}) \right\} \text{ with } \beta_{i}^{(t)} = \beta_{r,i}^{(t)} \cdot \beta_{z,i}$$

3. Update range confidence map:

$$\beta_{\mathbf{r},i}^{(t+1)} = \varphi(\mathbf{r}_i^{(t)})$$

4. If not converged set $t \leftarrow t + 1$ and goto step 2

Properties

• Weighting function: Soft-thresholding for residual error

$$\varphi(\mathbf{r}_i) = \begin{cases} 1 & \text{if } |\mathbf{r}_i| \leq \varepsilon & \to \text{inlier} \\ \frac{\varepsilon}{|\mathbf{r}_i|} & \text{if } |\mathbf{r}_i| > \varepsilon \end{cases}$$
(8)

- ε adaptively adjusted per iteration to the median absolute deviation (MAD):
 - ε adapted to the uncertainty of the residual error
 - No manual parameter tuning required
- Numerical optimization based on a Scaled Conjugate Gradients scheme

Experiments and Results

TECHNISCHE FAKULTÄT

Experimental Evaluation

• Experiments:

- Quantitative evaluation on synthetic data
- Qualitative evaluation on liver phantom data
- Comparison of proposed method to state-of-the-art super-resolution methods:
 - Baseline: Multi-sensor super-resolution (MSR) with unweighted L₂ norm data fidelity measure
 - MSR with outlier detection and unweighted L₂ data fidelity measure⁴
 - MSR with unweighted L₁ norm data fidelity measure⁵

ToF/RGB endoscope prototype (manufactured by Richard Wolf GmbH, Knittlingen, Germany)

⁴Wen Yi Zhao and Harpreet Sawhney. Is Super-Resolution with Optical Flow Feasible? ECCV 2002, 599-613

⁵Sina Farsiu, M. Dirk Robinson, Michael Elad, Peyman Milanfar. Fast and Robust Multiframe Super Resolution. IEEE Transactions on Image Processing, 13(10), 1327-1344, 2004

Synthetic Images

Quantitative evaluation: 4 synthetic datasets generated by ToF/RGB simulator

- S1: Small, random endoscope movements (baseline scenario)
- S2: Larger endoscope movements
- S3: Shifting surgical tools
- S4: Movements due to respiratory motion

Simulation: Errors simulated in range data

- Distance-dependent Gaussian noise
- Blur
- Flying pixels
- Specular highlights

RGB image (640 \times 480)

Synthetic Images

Example: Movements of surgical tools (S3) Super-resolution results (K = 31 frames, magnification factor: 4)

Synthetic Images

Sliding window processing (K = 31 frames, magnification factor: 4) over the datasets using peak-signal-to-noise ratio (PSNR) and the structural similarity (SSIM) index:

Method	PSNR [dB]	SSIM
L ₂ norm	$\textbf{33.11} \pm \textbf{1.48}$	$\textbf{0.939} \pm \textbf{0.008}$
Outlier detection + L_2 norm	$\textbf{33.06} \pm \textbf{1.09}$	0.936 ± 0.005
L ₁ norm	34.10 ± 0.68	0.939 ± 0.006
Proposed	$\textbf{34.54} \pm \textbf{0.75}$	$\textbf{0.943} \pm \textbf{0.003}$

- Improved robustness compared to L₂ norm MSR approach
- Higher accuracy compared to L_1 norm and outlier detection approach (Wilcoxon signed rank test: significant with P < 0.01)

Phantom Data

Super-resolution results (K = 31 frames, magnification factor: 4)

RGB data

Range data

MSR (L₂ norm)

MSR (Outlier detection)

MSR (L_1 norm)

Proposed

Summary and Conclusion

TECHNISCHE FAKULTÄT

Summary and Conclusion

- Joint outlier detection scheme for multi-sensor super-resolution: Displacement and range outlier detection
- Enhanced robustness to baseline method without outlier detection
- Improved accuracy compared to other state-of-the-art methods

Future Work:

- Modeling of sensor-specific properties for confidence maps (e.g. specular highlights in ToF)
- Evaluation of different weighting schemes

Supplementary Material

 A super-resolution toolbox (Matlab & MEX/C++) and datasets used for our experiments are available on our webpage:

http://www5.cs.fau.de/research/data

- Errata for typesetting in published workshop proceedings:
 - Modified paper title
 - Shortened abstract with typo
 - Wrongly formatted table and equation
 - Acknowledgments omitted

We provide the original version of the paper

Acknowledgments

Thank you very much for the support of this work

