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Abstract. Numerical phantoms are a common tool for the evaluation of
registration and reconstruction algorithms. For applications concerning
motion, dense deformation fields are of particular interest. Phantoms,
however, are often described as surfaces and thus motion vectors can
only be generated at these surfaces. In order to create dense motion fields,
interpolation is required. A frequently used method for this purpose is
the Parzen interpolator. However, with a high number of surface motion
vectors and a high voxel count, its run time increases dramatically. In
this paper, we investigate different methods to accelerate the creation
of these motion fields using hierarchical sampling and the random ball
cover. In the results, we show that a 643 volume can be sampled in less
than one second with an error below 0.1 mm. Furthermore, we accelerate
the interpolation of a 2563 dense deformation field to only 6̃.5 minutes
using the proposed methods from days with previous methods.

1 Introduction

The systematic evaluation and comparison of non-rigid image registration and
reconstruction methods requires the availability of ground truth data in the form
of dense deformation fields. Ideally, this data should not come from a regular-
ized registration or interpolation methods in order to to prevent bias towards a
certain approach, e.g. ground truth from a thin-plate-spline-based interpolation
will favor other thin-plate-spline based methods although they might be a more
realistic with respect to anatomy [1].

The 4-D extended cardio-torso (XCAT) phantom [2] defines per-organ defor-
mations over time and can be used to generate medical image sequences with
somewhat realistic respiratory or cardiac motion and also provides corresponding
sparse displacement vector fields defined on its parametric surfaces.

The main contribution of this article is a graphics processing unit (GPU)
accelerated method to compute dense displacement vector fields estimating the
motion inside and outside of organs from the given surface motion.
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Fig. 1. System overview.

2 Materials and Methods

In our two-step method (cf. Fig. 1), we first generate accurate point approxima-
tions of the parametric B-spline surfaces [3]. The motion sparsely defined at each
of these points is then interpolated efficiently on a dense regular grid to obtain
full respiratory and/or cardiac motion fields covering the upper body.

2.1 Efficient Point Approximation of Parametric Surfaces

In order to find point samples that will serve as nodes for the interpolation,
we finely tessellate the parametric surfaces s(u, v, t) defined in terms of control
points cl,k,i and their weights β(u) of degree 3:

s(u, v, t) =
∑
i

∑
k

∑
l

cl,k,iβ(u− l)β(v − k)β(t− i) (1)

with β(u) =


0, |u| ≥ 2
1
6 (2− |u|)3, 1 ≤ |u| < 2
2
3 −

1
2 |u|

2(2− |u|), |u| < 1

(2)

Note that this tessellation can be implemented even more efficiently using
texture units on the graphics card [3] at the cost of slightly decreased accuracy.
For the present work, we used double precision CPU computations, as we wanted
to investigate the accuracy of our interpolation approaches.

2.2 Fast Interpolation of Deformations on a Regular Grid

We now consider a regular 3-D grid with the desired properties, e.g. size, location
and spacing. For each grid point x, we aim to find an estimate of its motion dσ(x)
from a combination of the displacements defined at the closest surface points. In
the following, we only consider the evaluation of a deformation field from time
t0 to t1, i.e. the n surface points at time t0 are denoted as xi := s(ui, vi, t0)
and their deformation as di := s(ui, vi, t1) − s(ui, vi, t0). For interpolation, we
employ a Parzen density estimation [4] with a Gaussian kernel function.
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d̂σ(x) =
1∑n

i=1 w(x,xi, σ)

n∑
i=1

w(x,xi, σ)di, (3)

with w(x,xi, σ) = exp

(
−‖x− xi‖22

2σ2
+K

)
(4)

The parameter σ is used to control the smoothness of the interpolation and
K is a constant that is added to increase numerical stability of the Gaussian
kernel. Note that as the weights w(x,xi, σ) appear in the numerator and the
denominator, K cancels out. In our experiments, we chose K = 70.

The performance bottleneck of this approach is the summation over i, which
has to be repeated for each voxel. Given a grid of 2563 points and sparse vec-
tor field with about 700,000 vectors, 1.0 · 1013 evaluations of Eq. 4 have to be
performed. Such computations usually take hours to days to finish. However, as
the weight decays exponentially with increasing distance, we are able to reduce
the number of points that have to be considered at each voxel. In the follow-
ing, we will describe two hierarchical methods to achieve this reduction, and one
randomized method.

Slice Selection For parallelization on the GPU, we chose to run each kernel
execution for an individual slice. Thus, it makes sense to preselect only points
that are close to the current slice. As the distance threshold Tz, we selected 10 %
of the volume size in the z direction plus 6 standard deviations σ of the Gaussian
kernel. This leads to a reduced list of motion vector points per slice xi,S for use
in Eq. 3 instead of xi.

Gridding In addition to Slice Selection, we can further reduce the number of
points per voxel by a Gridding approach. For each slice, we first create a list of
points gj forming a sub-grid at a lower resolution than the sampling grid with
step size p. Next, a list of close points xi,gj

is created for each gj . Each xi,S that
is closer than Tp := 2p + 6σ is added to this list. For the evaluation, first the
correct sub-list xi,gj has to be selected by finding the gj that is closest to x. Next,
Eq. 3 is applied using xi,gj instead of xi which leads to a dramatic reduction of
search points. A sub-sampling factor of 16 was used in our experiments.

Random Ball Cover The selection process described in the previous section
bears striking similarity to the Random Ball Cover (RBC) [5]. Thus, we propose
an adaptation of this method. Instead of using a regular grid as in the previous
method, we use the structure of the data vectors and select representatives gr
randomly. Again, a list for each representative has to be generated. In order
to pick an appropriate distance threshold, we have to determine the maximal
minimum distance p∗ between all points. Then the threshold Tr is found as

Tr = p∗ + min(6σ, p∗)
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Fig. 2. Two perpendicular views of the cardiac motion field generated with the XCAT
heart and the given configuration. The figure nicely shows the complexity of the 3-D
pumping motion of the heart.

which evaluates to p∗ + 6σ for few representatives and 2p∗ for many representa-
tives. The list xi,gr

is then built in the same way as in the previous approach
and used in Eq. 3.

3 Experiments and Results

All steps of the proposed methods have been implemented and optimized to
run on the GPU using the Open Computing Language (OpenCL) framework.
Our implementation will be made available as part of the CONRAD software
platform [6] designed for simulating basic processes in X-ray imaging and the
evaluation of image reconstruction algorithms [7].

In order to measure the evaluation accuracy, we investigated our methods
using the XCAT heart using a 643 voxel volume only. The voxel size was 2.5 mm
(isotropic). In total, 4,500 vectors have to be interpolated at each grid point. The
ground truth motion field obtained without any search point reduction is shown
in Fig. 2. We measured total computation time, kernel execution time, number of
points used for interpolation, and the root mean square error (RMSE) between
each method and the ground truth deformation field computed with CPU dou-
ble accuracy. The results are given in Table 1. With varying σ, we observe that
the thresholds we chose yield stable results for all methods. Errors are virtually
always below 0.1 mm. With the presented parameters, RBC performs best. How-
ever, reduction rates are the highest with the Gridding approach, which comes
with a slight increase in computational error.

Next, we evaluated the three methods with a bigger sampling grid using 2563

voxels with an isotropic size of 1.5 mm and 700,000 motion vectors. With this
number of vectors, we are not able to evaluate the plain OpenCL and the Slice
Selection approach, as the computation time per slice exceeds 2 s. This causes
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algorithm kernel time [s] total time [s] used vectors [%] RMSE [mm]

σ = 1

CPU - 274.107 100.0 0.0

OpenCL 4.961 5.241 100.0 2.44 E-6

Slice Selection 1.591 1.903 27.5 2.44 E-6

Gridding 1.544 1.857 3.9 0.096

RBC 500 0.951 1.498 13.5 0.012

RBC 250 0.874 1.435 15.6 0.029

RBC 50 1.077 1.450 18.7 0.137

σ = 5

CPU - 432.691 100.0 0.0

OpenCL 4.960 5.289 100.0 2.66 E-6

Slice Selection 3.027 3.432 56.4 0.084

Gridding 3.244 3.619 14.5 0.084

RBC 500 1.685 2.247 28.3 0.001

RBC 250 2.013 2.480 38.0 0.001

RBC 50 2.793 3.198 53.1 2.72 E-5

Table 1. Summary of the results using a 643 deformation field of the XCAT heart
phantom.

the graphics driver to terminate the kernel execution. While there are ways to
circumvent this, we generally do not want to pursue this direction as execution
times are too long. For the Gridding approach, we were able to compute the com-
plete deformation field in 389 s with about 200 vectors used per representative.
For the RBC, we were not able to obtain similar results. With 50,000 repre-
sentatives, the memory required to store the search list exceeded our graphics
card memory. With 500,000 representatives, we already need 3.5 · 1011 distance
comparisons just to build the RBC list. This is almost as complex as the original
problem. Thus, only the Gridding approach was suitable for the large problem
size. Fig. 3 shows the resulting motion vector field.

4 Conclusion

We have developed a fast method to generate dense motion vector fields from
phantom data. In the small problem size, all three proposed methods worked
well with an error of less than 0.1 mm. For the large problem size, only the
Gridding approach could be successfully applied, as it reduced the number of
interpolation vectors by the largest factor. In this case, we report a runtime of
about 6.5 minutes.
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Fig. 3. Two perpendicular views of the breathing motion field representing an inhala-
tion, generated with the XCAT torso and the given configuration. The vectors pointing
downward are linked to the downward motion of the diaphragm in the center of the
volume. The upward (along the z direction) and outward (against the y direction)
motion shows the expanding chest motion.
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