# Guided Noise Reduction for Spectral CT with **Energy-Selective Photon Counting Detectors**

Michael Manhart<sup>1,2</sup>, Rebecca Fahrig<sup>3</sup>, Joachim Hornegger<sup>1,4</sup>, Arnd Doerfler<sup>2</sup>, Andreas Maier<sup>1,4</sup>

<sup>1</sup> Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg, Germany <sup>2</sup> Department of Neuroradiology, Universitätsklinikum Erlangen, Germany

<sup>3</sup> Department of Radiology, Stanford University, CA, USA

<sup>4</sup> Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander University Erlangen-Nuremberg, Germany



### Introduction

- **Spectral CT** facilitates the **quantitative measurement** of material properties in X-ray CT.
- Popular diagnostic applications are bone removal, measurement of blood volume in the lung or quantification of contrast agent concentrations (e.g., in the myocardium).
- Spectral CT data can be acquired using **energy-selective photon counting detectors** [1]. The energy-selective detectors assign incoming photons to energy bins (Fig. 1).



However, especially bins covering only the low energy portion of the spectrum energy distribution are **corrupted by noise**. Therefore noise reduction is required to obtain appropriate image quality at clinically acceptable dose levels.

### Materials and Methods

- We apply **joint bilateral filtering** (JBF) [2] for computationally fast edge preserving noise reduction in projection space and in image space after FBP reconstruction.
- The JBF is a variant of the bilateral filter, where the edge preservation is controlled by a **guidance image**:

$$I'(\mathbf{x}) = \frac{\sum_{\mathbf{o} \in \mathcal{N}_{\mathbf{x}}} I(\mathbf{x} + \mathbf{o}) \mathcal{W}(\mathbf{x}, \mathbf{o})}{\sum_{\mathbf{o} \in \mathcal{N}_{\mathbf{x}}} \mathcal{W}(\mathbf{x}, \mathbf{o})} \qquad \begin{array}{c} I & \text{Input image} & I' & \text{Filtered image} \\ I^{G} & \text{Guidance image} & \mathcal{N}_{\mathbf{x}} & \text{Spatial neighborhood} \end{array}$$

Spatial and range  $\mathcal{W}(\mathbf{x}, \mathbf{o}) = \mathcal{G}_{\sigma^{\mathrm{S}}}(\mathbf{x} - \mathbf{o}) \cdot \mathcal{G}_{\sigma^{\mathrm{R}}} \left( I^{\mathrm{G}}(\mathbf{x}) - I^{\mathrm{G}}(\mathbf{x} + \mathbf{o}) \right)$ closeness weighting  $\mathcal{G}_{\sigma}(\mathbf{z}) = \exp\left(-0.5 \cdot \|\mathbf{z}\|_{2}^{2} / \sigma^{2}\right)$  Gauss kernel



Fig. 1: Binning of an X-ray spectrum into 3 bins.

### **Simulation of a static human heart:**

**Phantom description:** The heart chambers consist of water (1.06 g/cm<sup>3</sup>), heart muscle (1.05 g/cm<sup>3</sup>) and coronary arteries filled with Iopromide (1.40 g/cm<sup>3</sup>). Poisson noise was simulated assuming  $I0_1 = 948$ ,  $I0_2 = 28982$ , and  $I0_3 = 10103$  arriving photons per mm<sup>2</sup> at the corresponding detector bins in the un-attenuated case. We simulated 495 projections over an angular range of 200 degrees.



(d) Guidance (a) Bin 1 (b) Bin 2 (c) Bin 3 image

**Fig 2:** Energy-selective projection images and guidance image.





• To exploit the complete spectral information for the edge preservation, the guidance image is formed by the **sum** over all spectral bins.

 $I^{\mathrm{G}}\left(\mathbf{x}
ight) = \sum_{b=1} I_{b}\left(\mathbf{x}
ight)$  $f^{\mathbf{G}}(\mathbf{y}) = \sum_{b=1}^{B} \frac{f_{b}(\mathbf{y})}{\sigma_{b}^{2}}$ 

In projection space an equally weighted sum is used, which inherently includes an uncertainty weighting as the signalto-noise ratio is proportional to the number of measured photons.

In image space the reconstructed bins are combined by an inverse variance weighting.

• For evaluation we simulated a static instance of the human heart using the **CONRAD** framework [3] (Fig. 2).

### **Results and Discussion**

- Fig. 3 shows that combined JBF in projection and image space could restore low-contrast heart chambers in the very noisy bin 1.
- Tab. 1 shows that JBF does **not significantly increase**

| Image                   | GT Bin 1    | GT Bin 2    | GT Bin 3    | Bin 2       | Bin 3       |
|-------------------------|-------------|-------------|-------------|-------------|-------------|
| Ground truth (GT) Bin 1 | 1.0 (1.0)   | 0.78 (0.97) | 0.62 (0.99) | 0.78 (0.97) | 0.62 (0.99) |
| No Filtering Bin 1      | 0.95 (0.91) | 0.67 (0.87) | 0.52 (0.91) | 0.69 (0.90) | 0.56 (0.92) |
| JBF Bin 1               | 0.98 (0.98) | 0.76 (0.95) | 0.60 (0.98) | 0.79 (0.99) | 0.64 (0.99) |
| ID-JBF Bin 1            | 0.98 (0.98) | 0.75 (0.95) | 0.60 (0.98) | 0.78 (0.98) | 0.64 (0.99) |
| JBF + ID-JBF Bin 1      | 0.98 (0.98) | 0.76 (0.65) | 0.60 (0.98) | 0.79 (0.99) | 0.64 (0.99) |

**structural similarity** between bins. Thus only **little cross-talk** between the channels is introduced.

## Conclusions

- We created a **joint bilateral filter** for **energy-selective detectors** with encouraging first results.
- The SNR was improved from 3.3 to 72.3, while a low rRMSE is preserved and only little cross-talk between the channels is introduced.

### Contact

Michael.Manhart@cs.fau.de; Andreas.Maier@cs.fau.de http://www5.cs.fau.de/~manhart; http://www5.cs.fau.de/~maier **Tab 1:** Structural similarity and linear correlation (in brackets) for the different filtering methods.



[1] D. Niederlohner et al.: "Using the Medipix2 detector for photon counting computed tomography," IEEE NSS Conference Record, 2005. [2] G. Petschnigg et al.: "Digital photography with flash and no-flash image pairs," ACM Transactions on Graphics, 2004. [3] A. Maier et al.: "CONRAD - A software framework for cone-beam imaging in radiology," Medical Physics, 2013.