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Abstract—We investigate the use of joint bilateral filtering for
noise reduction in energy-selective photon counting detectors. A
guidance image from all energy channels is computed, which
steers a non-linear filter to denoise each energy bin individually.
Our novel approach is evaluated with cone beam data simulated
using a numerical cardiac phantom. Results indicate that the
method increases cross-talk between energy channels only at
a very slight level. In terms of noise reduction, the method is
successful. The rRMSE is reduced by about 60% and the SNR
is increased from 3.3 to 72.9 for the channel with the lowest
photon count.

I. I NTRODUCTION

Spectral CT (S-CT) facilitates the quantitative measurement
of material properties in X-ray computed tomography (CT).
Popular diagnostic applications are bone removal, measure-
ment of blood volume in the lung or quantification of contrast
agent concentrations (e.g., in the myocardium) [1]. S-CT
data can be acquired using energy-selective photon counting
detectors [2]. The energy-selective detectors assign incoming
X-ray photons to energy bins. Figure 1 visualizes an idealized
binning of an X-ray photon spectrum into 3 bins. The binned
data can be reconstructed separately to obtain volumes with
energy-selective attenuation coefficients. This can be utilized,
for instance, to reconstruct contrasted and non-contrasted
images from a single acquisition. Since iodine contrast agent
has a K-edge of 33.2 keV, it will not be visible in high energy
bins (e.g., bins around 140 keV) [3]. Because the full spectral
data is acquired in one shot, contrasted and non-contrasted
images will be perfectly aligned. This is particularly beneficial
for imaging of moving organs, e.g., cardiac and lung imaging.

However, by splitting the acquired photons into bins the
noise statistics of the corresponding projection images suffer.
Especially bins covering only the low energy portion of
the spectrum energy distribution are corrupted by noise. For
instance, Figure 2a shows a numerical projection image of the
spectral data corresponding to Bin 1 in Figure 1. Due to the
low energy of this bin with respect to the spectrum distribution,
the projection image is obviously noisy. Thus an expedient
noise reduction method is required to obtain appropriate image
quality at clinically acceptable dose levels.

Iterative reconstruction algorithms have shown superior
image quality [4], but suffer from high computational de-
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Figure 1: Binning of a X-ray spectrum into 3 bins.

mand. Alternative computationally faster methods have been
proposed, which apply adaptive, anisotropic filters in a pre-
processing step on the projection data [5] or in a post-
processing step on reconstructed images [6], [7]. The advan-
tage of projection space denoising is that for photon counting
detectors the noise can be modeled accurately and easily
using Poisson statistics. Up to now, projection space denoising
methods using noise adaptive filter kernels [5], [8], [9], aswell
as methods using edge preserving filters [10] and combinations
of both methods [11] have been presented.

In this work we extend the idea of projection based de-
noising by edge preserving filtering to S-CT data of energy-
selective detectors. We guide the edge preserving filter using
information from the fully acquired spectrum. The novel
approach is evaluated using the CONRAD cone beam re-
construction and simulation framework [12] with data from
a numerical cardiac phantom.

II. M ETHODS

A. Energy-Selective Detector

The energy-selective photon counting detector assigns in-
coming photons intob = 1 . . . B bins. Each bin covers a
spectral bandwidth of∆E and the spectral bandwidth of the
first bin starts at energy levelE0. Let x = (u, v) be the spatial
location of the detector pixel with column indexu and row
indexv. The expected photon countIb(x) measured for binb
at locationx is given by

Ib(x) = I0
ˆ

E
0+b·∆E

E0+(b−1)∆E

S(E) exp

(

−

ˆ

L(x)

µ (E, l) dl

)

dE,

(1)
whereI0 denotes the number of photons per mm2 arriving at
the detector in the unattenuated case andS (E) denotes the
spectral distribution with the area under the curve normalized



(a) Bin 1 (b) Bin 2 (c) Bin 3 (d) Guidance image

Figure 2: Energy-selective projection images and guidanceimage for joint bilateral filtering.

to one. The X-ray attenuation is defined byµ (E, l) and
depends on the photon energyE and the spatial positionl
on the lineL (x), which points from the X-ray source to
the detector pixelx. Accordingly, the log-transformed image
Pb (x) is given by

Pb (x) = − log
Ib(x)

I0
b

with I0
b
=

ˆ

E
0+b·∆E

E0+(b−1)∆E

I0S(E)dE.

(2)

B. Joint Bilateral Filtering

For guided edge preserving noise reduction we apply joint
bilateral filtering (JBF) [13]. The JBF is a variant of the
bilateral filter [14], where the edge preservation is controlled
by a guidance image. Each intensity of a filtered imageP ′ (x)
is computed as a weighted average of the intensities of the
original imageP (x) in a spatial neighborhoodNx

I ′(x) =

∑

o∈Nx

I(x+ o)W(x,o)

∑

o∈Nx

W(x,o)
, (3)

with W(x,o) = GσS(x− o) · GσR

(

IG(x) − IG(x+ o)
)

,

where Gσ(z) = exp
(

−0.5 · ‖z‖22 /σ
2
)

denotes a Gaussian
kernel. The weighting termW consists of the spatial closeness
termGσS controlled by the domain parameterσS and the range
similarity termGσR controlled by the range parameterσR and
by the guidance imageIG.

C. Guided Range Filtering

To exploit the complete spectral information for the edge
preservation, the guidance image is formed by the sum over
all spectral bins. Therefore the guidance image to filter the
binned projection imagesIb (x) , b = 1 . . . B is defined by

IG (x) =
B
∑

b=1

Ib (x) (4)

Note that the summation inherently includes an uncertainty
weighting as the signal-to-noise ratio is proportional to the
number of measured photons. The range parameterσR is set
to the minimal contrast differenceD in the guidance image,
which should be preserved.

D. Guided Filtering in Reconstruction Domain

The idea of JBF can also be applied after reconstruction of
the image. In this case, however, the guidance image cannot
be simply created by a sum of the individual reconstructed
volumes fb (y). Note thaty = (x, y, z) is used to index
the volume space. In order to create a suitable guidance
image, the image contributions have to be scaled according
to their reliability. In our case, we picked an inverse variance
weighting and denote the variance in binb with σ2

b
. This leads

to the following guidance image

fG (y) =

B
∑

b=1

fb (y)

σ2
b

. (5)

As this method operates in the image domain (ID), we refer
to it as ID-JBF.

E. Experimental Setup

We simulated a static instance of the human heart as
described in [15]. The contents of the heart chambers were
simulated as water with a density of 1.06. The heart muscle
was simulated as water with a density of 1.05. In addition,
the coronary arteries were filled with a solution of Iopromide
(C18H24I3N3O8) that contained0.76 g of contrast agent per
gram of water. The density of this solution was set to 1.40
g/cm3 which is typical for a clinical contrast agent (e.g.,
Ultravist c© 370). The simulated spectrum is shown in Fig. 1.
Its properties were adjusted such that its half-value-layer is
comparable to that of a clinical C-arm system. We set the tube
voltage to90 kVp and the time-current product to0.1mAs.
In this configuration, we haveI0

1 = 948, I0
2 = 28982, and

I0
3 = 10103 photons per mm2 arriving at each detector bin,

if no object is hit between source and detector. In the present
experiment, we did not simulate cross-talk between the energy
bins and the detection efficiency was 100% at all energies.
While this might not be the case in a real detector, it maximizes
the independence between the energy bins and allows us to
study correlations between the energy bins that are introduced
by the denoising method. We did not perform an optimization
of the energy thresholds in the present study to maximize
the iodine contrast, as the focus of the study is denoising
and not material separation. The bins were equally spaced
between 10 and 100 keV according to the sampling range
of the spectrum, i.e.,E0 = 10 keV and∆E = 30 keV. All
simulations and algorithms were created using our open-source



flat panel simulation and reconstruction framework CONRAD
[12].

JBF filtering was performed in intensity space before con-
version to line-integral space. The intensity difference in
the contrast filled vesselsD was found to be 1000 in the
guidance image. We pickedσS = 9 and σR = 100 for the
projection-based filtering. Then a standard Feldkamp short-
scan reconstruction was performed using a Shepp-Logan filter
[16]. We simulated 495 projections over an angular range of
200 degrees, which is the short-scan range of our 620×480
detector. Detector element size was 0.6×0.6 mm2, the source
detector distance1200mm, and the source to center of rotation
distance was750mm. The heart fit all projections in all views,
thus no truncation correction had to be performed. After re-
construction onto an2563 image grid with 0.5×0.5×0.5 mm3

voxels, we investigated the use of ID-JBF. Here, we chose
the parametrization asσS = 5 and σR = D. The guidance
image weightingsσ2

b
where determined by estimating the noise

variance inside homogenous regions of the corresponding
reconstructed images. JBF filtering and back-projection was
implemented in OpenCL.

Errors were measured using structural similarity [17], linear
correlation coefficient, and the relative root means squareerror
(rRMSE), that is the RMSE scaled by the maximum intensity.

III. R ESULTS

Table I displays structural similarity and correlations be-
tween the different reconstruction approaches. All denoising
methods show improved results compared to the ground truth.
While correlations increase slightly, the structural similarity
between the three bins is preserved by all methods. Thus, we
can conclude that the JBF does not cause the three energy bins
to display identical information.

Figure 3 shows the center slices of the different reconstruc-
tions of Bin 1. All reconstructions are shown at the same
window and level [10, 110 HU]. The ground truth image
(Figure 3a) nicely differentiates between the heart chambers
and the heart muscle. The excessive noise in Bin 1 does
not permit differentiation of the two heart chambers (Figure
3b, rRMSE 3.10%, SNR 3.3). JBF filtering in the projection
domain allows visualization of a slight contrast between the
two heart chambers. Streaking from polychromatic effects is
emphasized (Figure 3c, rRMSE 1.33%, SNR 29.0). ID-JBF
only is not able to recover the separation between the heart
chambers and the muscle tissue (Figure 3d, rRMSE 1.20%,
SNR 47.6). Additional filtering in the image domain reduces
noise and streak artifacts further (Figure 3e, rRMSE 1.26 %,
SNR 72.3).

IV. D ISCUSSION

We applied the idea of joint bilateral filtering to energy-
resolving detectors. First results demonstrate that the method
is feasible. We were able to restore low-contrast image data
in a very noisy channel. The comparisons between the chan-
nels showed that the method introduces very little cross-talk
between the different energy bins, and their similarity is only
slightly increased.

An advantage of bilateral filters is that they are very easy to
configure. We require only two parameters which can be easily
obtained from the guidance image. The first one isσS which
controls the locality of desired smoothing. It can be chosen
in the same way as a normal Gaussian filter. The second
parameterσR describes the amount of edge preservation. A
good rule-of-thumb way of setting it is to measure the lowest
contrast from the image that needs to be preserved (D). In
case of projection-based filtering, however, we recommend
settingσR to 10% to 20% of this value, as the preservation
of very small signal changes at the edge of high contrast
contours is crucial. Otherwise, streaking artifacts can arise in
the reconstructed images. In our present study, we already
introduced such slight streaking.

At present, we only investigated JBF and did not include
further modifications such as ray-by-ray weighting [5], [9]or
projection stack filtering [8]. Integration of both techniques
into this method is straight-forward, as the filter kernel is
designed for each ray individually anyway. Thus, we would
expect only minor increases in terms of run time. However,
this will require a different object, as we did not observe strong
streak noise in our reconstructions. Another topic for future
work is the straight-forward extension of JBF in the image
domain to 3D.

V. CONCLUSIONS

We created a joint bilateral filter for energy-selective detec-
tors. First results are encouraging. We found that only little
cross-talk is introduced between the channels. The SNR was
improved from 3.3 to 72.3 while preserving a low rRMSE
error.
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